AN ELEMENTARY,- PRACTICAL AND THEORETICAL TEEATISE ON NAVIGATION: NEW AND EASY PLAN fob rnrDive DIFF. LAT., DEP., COURSE, AND DISTANCE BY PROJECTION. BY MTOYMATJRY, IiISVT., V. 8. HATY. SECOND EDITION, REVISED AND CORRECTED. -o-o©e-€H PHILADELPHIA: EDWARD C. BIDDLE, NO. 6 SOUTH PIPTH STREET. 1843. NOTICES OF FIRST EDITION OF MAURY'S NAVIGATION *"VN/N*\*V^^N/N/V%*S/S^**O^^W\/\*W>/>^\/>/« « U. S. N. 8., New York, January 19, 1836. "Dear Sir, — I have had much pleasure in the perusal of your "New Theoretical and Practical Treatise on Navigation;" the plan and arrange- ments of which are original; it contains little or nothing superfluous, and every part of it appears to he as clear and intelligible as the nature of the subject will admit. Such a work has long been wanted in our Naval Schools, and on board our vessels of war. I intend to make use of it in the Naval School on this station; and I recommend it to be used by all the professors of Mathematics, and Nautical Science in the Navy of the United States. Yours respectfully, EDW. C. WARD. " Passed Midshipman M. F. Maury. Prof. Math. U. S. Navy." U. S. Navy." " V. 8. Navy Yard, Gosport, March 7, 1836. " I have examined a Treatise on Navigation written by M. F. Maury of the U. S. Navy; and have no hesitation in recommending it to the students of that science. The explanations are clear, the rules are illustrated by many examples, and the new arrangement of some of the tables exemplify the calculations of the navigator. Mr. Maury is deserving of great credit for the work, and I wish him every success* P. J. RODRIGUEZ. "Navy Department, April 9, 1830. ** Sir, — I have to request that you will add the " New Theoretical and Practical Treatise on Navigation," by M. F. Maury, Passed Midshipman, to the list of books furnished vessels of the navy going to sea. I am respectfully yours. (Signed,) M. DICKERSON." " Com. John Rodgers, President of the Board of Navy Commissioners." Digitized by VjOOQIC Digitized by VjOOQIC Entered according to Act of Congress, in the year 1896, by KEY & BIDDLE, In the Clerk's Office of the District Court of the Eastern District of Pennsylvania. Digitized by VjOOQIC PREFACE. The object of the present volume, is to place in the hands of stu- dents, and especially of the Midshipmen of the United States Navy, a Text Book, in which the theory as well as the practice of Navi- gation, is explained and taught. It is not pretended that new theories are set forth, or that new principles are established in this work ; but it is believed that those which have already been established, are here embodied in such a form, that the means of becoming a theoretical as well as a prac- tical navigator, are placed within the reach of every student. For this purpose the works of Bonnycastte, Colburn, Hutton, Legendre, Davies, Bowditch, Lardner, Hassler, Kelly, Keith, and La Place, have been consulted. m Care has been taken to introduce only those theorems upon which the problems in Navigation immediately depend, and which y ' it is necessary to understand, in order, satisfactorily to comprehend „ the principles of Mathematics and Astronomy, involved in the : solution of these problems. A The fear of introducing more than is essentially requisite for this . purpose, may have led to an error on the other extreme, by causing V) something to be omitted, which should have been inserted ; but if or> such a fault be detected in the work, while it will be readily ad- \ mitted on one hand to be a fault, it can scarcely be unjust on the \ * other, to say that the error is on the safe side ; especially when 1 they who judge, are reminded, that there is not throughout the -vj. whole work, a single principle laid down which does not serve at once as a rule, or as the basis of a rule, or as reference in some suc- ceeding demonstration, position, or explanation either to prove, establish, or elucidate ; and moreover, that there are many, (perhaps the greater number,) of those for whose benefit the work is chiefly designed, who, during the whole period of their service at sea, never have the advantage of instruction from a teacher of Navigation; consequently they have to depend upon their own exertions,* and the books before them, for their proficiency as Navigators. How necessary is it then, that the work on Navigation for them, should be an elementary one, adapted to the capacity of all, and that it should not embrace the widest range ; more particularly so, as there is not yet any regular system of education provided for the Navy. The idea of such* work as the present, grew out of the author's own experience, and was suggested to him by his own wants while 384603 Digitized by VjOOQIC vi PREFACE. a student of Navigation ; if it be not sufficient for the supply of similar wants on the part of others, it is hoped that it will, at least, serve to provoke some more capable pen to undertake and complete what is here attempted. A more elementary work than any hitherto published on Naviga- tion is much required as a school book in the United States. The attention of teachers of Navigation throughout the country is respect- fully invited to it. These pages were written chiefly on board of a man-of-war, in the midst of the various calls of duty, and the thousand interruptions incident to such a place ; the author trusts that this circumstance will ensure him on the part of his brother officers, and those into whose hands his work may fall, the indulgence usually claimed for inexperienced authors. -s Digitized by VjOOQIC CONTENTS. ALGEBRA. Definitions .... 3 Addition .... 4 Subtraction. .... 5 Multiplication ... 6 Division - ... 7 Equations .... 8 Proportions - - - - 10 GEOMETRY. Part I. Definitions (of rectilineals) - 15 Axioms ----- 18 Propositions - - - 19 GEOMETRY. Pabt II. Definitions (of the circle and its parts) - ... 33 Propositions 35 Proportions and ratios 38 Axioms and propositions 39 LOGARITHMS. Nature and use of - - - 49 Multiplication and division - 57 Involution and evolution - 67 & 58 Log. sines, tangs., etc. 68 PLANE TRIGONOMETRY. . Cases and problems ... 65 Examples for practice 74 SPHERICS. Definitions 81 Right Aroled Trigonometry 85 The six cases and Napier's rules 85 The five circular parts Solutions of the cases Equivalents for sine, cos., etc Obliq.ue Trigonometry The six cases - - - Solutions of the cases PAOE 87 88 95 99 99 100 NAUTICAL ASTRONOMY. 121 Figure and Motions of the earth Day, astronomical, sea, civil, and sidereal - Equation of time Ecliptic and signs of the zodiac Equinoctial and solsticial points Year, solar and sidereal - Primary planets and nodes Equator and the poles Tropics and zones - Latitude, meridians, and longitude 127 Declination, right ascension, and horary angles Colures, cardinal points and hori- zon Zenith, azimuth circles, and prime vertical - - - . Altitude, refraction, and parallax 122 122 123 123 124 124 125 126 - 128 129 130 131 Variation of the Compass - 132 Stereographic projection - - 135 Azimuths and amplitudes - 137 Of the 8ur's Risiko ard Set- tiro .... 140 Time and degrees ... 140 Of the Plarets, Moor, etc. 142 Jupiter and its satellites - - 143 The moon's motions and phases 143 The motion of light - - 143 Radius vector - * - - - 144 Digitized by VjOOQIC Vlll CONTENTS. PAGE Or firdirg the Tiirt or Day 145 Of Long, bt Chronometers 147 The rate and error of chronometer 146 Latitude bt Meridian Alti- tudes - - - 151 Latitude bt Double Altitueb 153 of the sun - - 154 of two stars - - 158 of the son and a star 161 Luvabs - - - - 165 Latitude, time, ete, by lnnan - 170' Latitude bt the North 8tab 178 Tables for finding tame - • 180 PAGE Tide* 182 Table for time »f high water - 185 NAVIGATION. Of course, distance, etc. - - 108 Explanation of Plate I - - 191 Loxodromic sailing - - - 105 Op turning Def. irto Diff. Lorg. - - - - 100 Mercator's Sailing - - 210 Surystieo - - - - 218 Baseline .... 218 Triangulating ... 214 Reducing sounding! to low water 215 Digitized by VjOOQIC ALGEBRA. B Digitized by VjOOQIC Digitized by VjOOQIC ALGEBRA. § I. Algebra is a method of computation, in which magnitudes, or quantities, are represented by means of the letters of the alphabet. These letters have no positive or fixed value ; they only stand for the quantities to be computed. § II. In algebra, known quantities are expressed either according to their numerical value, or by the first letters a, 6, c, etc., of the alphabet. § III. And quantities of unknown value are usually represented by the last letters, x, y, z, etc. § IV. In algebraical computations, certain characters, called signs, have been introduced, and are used in the place of written words: thus, + {plus) is the sign of addition. — (minus) is the sign for subtraction. X or . is the sign for multiplication. as is the sign of equality. -f- is the sign for division. a + b — c x d = x -*- y, or -, is read a plus b minus c mul- tiplied by d equals x divided by v. § V. a > b signifies that the former quantity (a) is greater than the latter (b). a represents the difference between any two unknown quantities between which it is placed ; thus, x s> y denotes the dif- ference between x and y. $ VIII. oo signifies that the quantity standing before it, thus, a; co, is infinite in value. $ IX. The numbers 2, 3, 4, etc., placed after a letter, thus, a s , a 3 , a 4 , denotes the 2d, 3d, 4th, etc., power of the quantity which that letter represents. The second power is the square, the 3d the cube, the 4th the biquadrate: a x a = a % , a 8 x a as a 3 , a 3 x a =s a*. § X. The numbers 2, 3, 4, etc., placed as above, are called the indices of the quantities to which they are affixed. $ XI. The quantity which is a constant multiplier in the involu Digitized by VjOOQIC 4 INTRODUCTION. tion of a power, is called the root of that power : thus, ($ IX.,) a is the cube root of a', and the square root of a 9 . $ XII. s 15 a: ; transposing, 3570 = 7 a:, or 510 =■ x 9 the whole crew when the action commenced. C Digitized by VjOOQIC to INTRODUCTION. $ XLIVr When the value of more than one unknown quantity is required, the problem, if definite, comprises conditions for as many equations as there are quantities required. In such cases the un- known quantities (#, y, z, etc.) have the same value in all the equations ; i. e. x in one equation is equal to a? in another of the same set When the value of x y y , or z, is found, its value is sub- stituted in its stead. Ex# ^JL 3 ^ JJ^Tofindarandy; x - 44 — y, and x - 36 rf 3 y; thus 44 — y = 36 + 3 y ; transposing, 4 y = 8, or y = 2 ; and substituting, x = 44 — y , or x = 42. Ex. x + y + * = 60 ~) * + 4 y + 3 z = 144 vTo find a?, y, and * ; x =* ©0 — 2 a? + y + 8*»132j y — *; a? «= 144 — 4 y — 3 z; and a? s* 66 — | — 4 *. Elimi- nating x; 60 — y — * = 144 — 4 y — 3 * ; and 144 — 4 y — 3 z a 66 — • | — • 4 z. Transposing, to find the value of y ; 3 y = 144 — 60 — 2 z, or y = 28 — |s again, 7 y » 288 — 132 — o i a 156— 2 *' ,. . ,. 0£ > 2* 156 — %x 8 * + 6 s, or y «= ? ; ehmmating y,28 — — =- ? — * clearing the equation, 14 z — - 588 a 468 — 6 * ; transposing, 20 * a 120 or z =s 6. £ j For *, in the equation y = 28 — y, substituting its value (6), y a 28 — y , orjj* 24. And for z and y, in the equation a; » 60 — y-—z, substituting their values (24 and 6), a? =» 60 — 24 — 6, or a; s 30. $ XLV. There is another manner of expressing certain equa- tions which do not involve more than 4 terms, and when thus ex- pressed the terms are said to be proportional. Thus the propor- tion 3 : 4 : : 6 : 8, is but another method of expressing the equation 3 -4- 4 = 6 -$- 8, or £ = |. The dots (:) being an abbreviation of the sign (-«-) of division; and the dots (: :) being another form for expressing the sign (=) of equality, to show that the ratio be- tween the quantities on each side of it is the same. $ XL VI. Whence it may be inferred as a general rule, that, if the quotient of two quantities be equal to the quotient of two other*, these four quantities are proportional. And, f 1. That the ratio between either divisor and its dividend, is equal to the ratio between the other divisor and its dividend. $ XLVII. By this rule we have 4 : 3 : : 8 : 6, for # = f. Thi* form of expression for the proportion (3 : 4 : : 6 : 8) first quoted, is called " invertendo" (from inverting the divisor and dividends,) thus 3 + 4 a 8 + 8, and inversely 4 -*- 3 = 8 -*- 6. $ XL VIII. By the same rule we also have 3 : 6 : : 4 : 8. This form of expression for the proportion (3 : 4 : : 6 : 8) is called Digitized by VjOOQIC ALGEBRA. 11 " alternando" for by taking the terms alternately we have 3-4-6 = 4-1-8. $ XLIX. Whence also another general rule in proportions : that, if four quantities be proportional, they are also proportional when taken inversely, or when taken alternately. § L. 3 -s- 4 =s 6 -*- 8, by transposition 3x8 = 6x4; where- fore, also, if the product of two factors be equal to the product of two other factors, those four factors are proportional, as 3 : 6 : ; 4:8. Digitized by VjOOQIC Digitized by VjOOQIC GEOMETRY. PART I. Digitized byCjOOQlC Digitized by VjOOQIC GEOMETRY. DEfiNrnoNs. $ 1. A point is an atom of space.* $ 2. .4? Itne ( ) is length without breadth. § a. The track of a moving point would be a line. $ b. The extremities of every line are points. § e. A line may be of any length. § d. Lines are either straight or curved. § 3. A straight or right line ( ■ — ) is the shortest line thai can be drawn from one point to another. $ a. If two lines meet each other they form an angle. 4 § 4. A plane is an extent, (as the surface of this page), on which the straight line will lie that joins any two points which are in that extent. $ a. A plane is without thickness, and it may be of any length and breadth. § b. The limits of every plane are lines. § c. If two planes cross each other, the line of their intersection is a straight line. § 5. Two lines diverging from, or meeting in, the same pointy form an angle* $ a. The point in which the lines join or cross each other, i* called the angular point. § b. Angles are either right, acute, or obtuse. $8. When one straight line stands Upon another, without inclining to either side, the angle, or angles, which these two lines form, are called right angles. § a. All right angles are equal, and every one contains '90° (degrees). (Vide MM<*0 • According to the atomic theory of matter, all bodies are composed of mdi- tinble and impenetrable particles, called atoms; an atom then is to matter what a point is to space ; hence the idea of an atom of space* Digitized by VjOOQIC 16 DEFINITIONS. § b. Straight lines that form right angles with each other, are said to be perpendicular the one to the other; and those that are per- pendicular are at right angles with each other. § 7. Every angle which is less than a right angle, is an acute angle. § a. Angles are generally particularized by means of letters ; as the angle B. But when there are more angles than one at the same angular point, the angle to be particularized is made known by placing the letter at the angular point between the letters which stand for the lines that form the angle. As the angle ABC,orCBD. $ 8. Every angle which is greater than a right angle is an obtuse angle; as the angle 0. § a. An oblique angle may be either acute or obtuse. § b. Two angles are equal, when they contain the same number of degrees (°), minutes ('), and seconds (")> or when the lines which form an angle have the same divergence from each other, which the lines have that form the other angle. $ c. The difference between an oblique angle and a right angle is die complement of the oblique angle. § 9. Parallel lines are lines that have always the same distance between them. They lie in the* same direction, and if lengthened, ad infinitum, would neither approach, or recede from, each other, § a. The distance of two parallel lines from each other is mea- sured by any straight line (p) that may be drawn between them, perpendicularly from one to the other* § 10. A figure is any extent bounded by one or more lines, or surfaces. § a. The space included by a figure is called its area. § 11. A superficies is the surface of a figure. § a. A superficies and a plane coincide, when a straight line, that joins any two points in the superficies, lies on that surface. The superficies of a figure is limited to the extent of the surface of that figure ; but its plane is infinite. $ b. When the superficies and the plane of a figure coincide, the former is called a plane superficies. § 12. A plane triangle is a figure that is formed by the intersection of three straight lines, any two of which intersect the other in different points. § a. The intercepted parts of these lines are called the sides of the triangle. Digitized by VjOOQIC GEOMETRY. 17 $6. Every triangle has six parts; viz., three sides, and three angles. § c. Triangles, with regard to their sides, are either equilateral, isosceles, or scaline; with regard to their angles, they are either acute, right, or obtuse angled. § 13. An equilateral triangle has its sides all equal to each other ; viz., b equal to a or e. § 14. An isosceles triangle has two equal sides ; as, c and a. § a. An isosceles triangle may be either acute, right, or obtuse an- gled. Its third side (6) is its base. § 15. A scaline triangle has none of its sides equal. § a. A scaline triangle may also be right or oblique angled. § 16. An acute angled triangle has each of its angles less than a right angle. § a. The vertex of a triangle is the angle that is opposite to the base of the triangle. § b. Any angle may be called the vertical angle, and consequently any side may be made the base. § 1 7. A right angled triangle has an an- gle (B), that is, a right angle. § a. The side (b) which subtends the right angle, is called the hypothenuse; the two other sides (c and a) are called legs. § 18. An obtuse angled triangle has an angle (G) that is obtuse. § a. The altitude of a trian- gle is the perpendicular dis- tance (p) of the vertical angle (C) (§ 16, 5 b.) froth the base ic). The base must be pro- uced to meet the perpendicu- lar, if the perpendicular fall without the triangle. § b. As any side (§ 16, $ b.) may be made the base of a triangle, the perpendicular distance of ai y angle from its opposite side may be called the altitude, or height cf the triangle. § 19. A parallelogram is a right lined (§ 3.) quadrilateral figure, the opposite sides of which are equal and parallel. § a. The altitude of a parallel- ogram is the distance (p) ($ 9. $ a.) between either pair of its oppo- site sides. To show the altitude of a parallelogram, either of two D Digitized by VjOOQIC 18 AXIOMS. opposite sides may be produced until it meets at right angles, a perpendicular from the other side. § b. The measure or area of a parallelogram, is the product of its length and breadth, or of its base and altitude. § c. Any side of a parallelogram may be made its base. § 20. A square is a parallelogram of which all the sides and angles are respectively equal. § a. Every angle of a square is a right angle. \e£ / § 21. A rhombus is a parallelogram that has all of its sides equal to each other; but its angles are not right an- gles. § 22. A trapezoid is also a four-sided figure, but only two sides of it are pa- rallel, though they are not equal. § a. A diagonal is a straight line (d) that joins two opposite angles in L a four-sided figure. § b. The space included by a parallelogram is called (§ 10. § a.) its area, or measure, and is expressed (§ 19. § b.) by the product of its base and altitude. $ 23. Two figures are equal when every part in one is equal to the part in the other, which corresponds to it; and two equal figures are always of the same magnitude. $ a. And two figures are of the same magnitude when their areas are equal : a triangle and a parallelogram may be of the same mag- nitude, but they cannot be equal. A triangle only can be equal to a triangle ; a parallelogram to a parallelogram, etc. § b. Two figures are similar when every angle in one is equal to the angle which corresponds to it in another figure. Figures only of the same class are similar, viz. : triangles are similar to tri- angles, parallelograms to parallellograms, etc. § c. Homologous sides, or angles, are the sides, or angles, which, in two equal or similar triangles, cor- respond by their rela- tive positions to each other; thus c and h are homologous sides, also b and e, and a and d. § d. Homologous angles are equal to each other. B and G are homologous angles ; so also are A and D, and C and H. AXIOMS. § 24. Axioms are self-evident truths, such as : 31 /v Digitized by VjOOQIC GEOMETRY. 19 § a. Things that are equal to the same, or to equal things, are themselves equal. $ b. If equals he added to, or subtracted from, or substituted for, multiplied or divided by, the same or equal quantities, the sums or remainders, quotients or products, will be equal. § c. A part is less than the whole. § d. All of the parts are equal to the whole, and the whole to all of its parts. PROPOSITIONS. PROPOSITION I. $ 25. Two straight lines which cross each other, make the two angles that are on the same side of either line, either two right an- gles, or equal to two right angles. § a. Let A B and F 6 be two straight lines that cross each other in C ; the two angles (F C A, F C B) on the same side of either line (A B) are either two right _3 angles, or are equal to two right angles. § b. If A B and F 6 be perpendicular to each other, they cut each other at right angles (§ 6. § b.) ; and consequently each of the angles F C A and F C B is a right angle. But if A B and F G be not perpendicular to each other, from C, the point of their intersection, draw C D, which shall be perpen- dicular to (A B) one of them, then will D C A and D C B, the whole angular space from C, on one side of A B, be two right angles (§ 6. § b.) ; F C A and FOB, together, also comprehend the same angular space ; therefore they are equal to D C A + D C B (§ 24. § c), which are two right angles. In a similar manner, it may be proven, that BCF + BCG, orGCB + GC A,orA C G + A C F, are equal to two right angles. PROPOSITION II. § 26. All the angles, that any number of straight lines, which cross each other in the same point, make with each other, are together equal to four right angles. § a. Since the two angles (§ 25.) F C A, F C B, are equal to two right angles, and also G C B, G C A, equal to two right angles ; the four angles F C A, F C B, G C A, G C B, which two straight lines make by crossing each other, are equal to four right angles. If these four angles be divided into any number of other angles, by straight lines a 6, a 6, crossing in the point C, the Digitized by VjOOQIC 20 PROPOSITIONS. sum of the divisions thus made will be equal (§ 24. § d.) to four right angles. PROPOSITION III. § 27. When two straight lines A B, D E, cross each other, they make the angles D C B and ACE, or A C D and B C £, that are vertically opposite, equal to each other. § a. The angles A C D and D C B, (§ 25.) are together equal to two right angles ; by the same proposition A C D + A C E, are also equal to two right angles ; wherefore (§ 24. $ c.) iA C D + D C B = A C D + A C E; and A C D is a term in each member of the equation, and being taken away or cancelled, we have (§24. § b.) D C B as A C E. § b. It may be demonstrated in a similar manner, that the vertical and opposite angles A C D and B C E, are equal to each other. PROPOSITION IV. I K § 28. When a straight line (A C) / crosses two others (B E and G D) A »/ x that are parallel, it makes the angles ._..............--* (ABE and A C D), which are on the m ..-J— — ■ b same side of the two lines, equal to * I each other. / § a. If the straight line A C cross / the two others perpendicularly, the l*f proposition becomes evident, for the angles formed would be (§ 6. § b,) right angles, and consequently equal. § 6. But if they cross obliquely, it is obvious that if two lines be parallel to each other, they must have the same divergence from any straight line which crosses them; wherefore (§ 8. $ 6.) A B E «b A C D; for B E and C D have the same divergence from A C. § c. In the same manner it may be shown that E B / is equal to DC/. $ d. The angles (A B E, h B/, A C D, g C /, etc.) taken alter- nately on each side of A/, are called alternate angles. $ e. The angles (A B A, AB E,/ C g, and /C DO on the out- ride of the two parallel lines are called the external or exterior angles. §/. And the others are called internal or interior angles. Digitized by VjOOQIC GEOMETRY. 21 PROPOSITION V. $ 29. A right line that crosses two others which are parallel, makes the interior angles (§ 28. $ /.) (A H G and D F E) that are alternate (§ 28. § d.) equal to each other. § a. A H 6 and E H B are oppo- site and vertical angles, wherefore (§ 27.) they are equal to each other, * and E H B (§ 28.) is equal to D F E; therefore (§ 24. § a.) A H G is equal to D F E. § b. In the same manner it may be proven that the alternate and interior angles B H F and C F H are equal to each other. PROPOSITION VI. § 30. If a straight line cross two others that are parallel, it makes the sum of the two internal angles (B H F and HFC) that are on the same side of it, equal to two right angles ; and the alternate (§ 28. $ d.) angles (E H B, A H F, H F C, and D F G) equal to each other. § a. The angles B H E and B H F (§ 25.) are together equal to two right angles, and (§ 28.) B H E is equal to H F C, therefore (§ 24. § 6.) the internal angles (B H F and HFC) that are on the same side of E G, are together equal to two right angles. § b. The alternate angle EHB = AHF,andHFC = DFG, because (§ 27.) they are vertically opposite; and (§ 29.) AHF = HFC; wherefore (§ 24. § a.) the alternate angles EHB.AHF, HFC, and D F G, are equal to each other. § c. After the same manner of demonstration, it may be proven, that the alternate angles A H E, B H F, H F D, and C F G, are equal to each other. § d. Cor. If a straight line (E G) cross two others (A B and D C) so as to make the sum of the internal angles (§ a.) (B H F and H F C) on the same side of it, equal to two right angles ; or the alter- nate angles (§ b.) (E H B, A H F, H F C, and D F G,) equal to each other; or an exterior angle (§ 28.) (E H B) equal to its alter- nate and internal angle (H F C), these two straight lines are pa- rallel. Digitized by VjOOQIC 22 PROPOSITIONS. PROPOSITION Til. § 31. The exterior angle (D B G) which is formed by producing any side (A B) of a triangle, is equal to the two interior and remote angles (A and D) of the triangle. § a. From B let B E be drawn parallel to A D; also let A B be produced to *C. § b. Because A D and B E are parallel (§ a.) and A C crosses them, the an- gles A and E B C (§ 28.) •■ are equal to each other; moreover D B, by crossing the same two parallels (D A and B E), makes (§ 29.) the alternate and interior angles (D and D B E) equal to each other ; the exterior angle D B C is made up of D B E and E B C, then substituting the whole for its parts (§ 24. § d.) we have (§ 24. § 6.) the exterior angle D B C = A + D, the two interior and remote angles in the triangle A D B. § c. If either of the two other sides be produced, the proposition is proven in the same way. PROPOSITION Till. § 32. The sum of the angles of a triangle is 180°, or two right angles. § a. Produce a side (c) of any triangle to D. Then C B A and the exterior an- gle C B D (§ 25.) are equal to two right angles: and the exterior angle C B D, ($31.) is equal to the two remote angles C and A: therefore (§ 24. § 6.) C, A, and C B A are equal to two right angles : and C, A, and G B A are the three angles of the triangle (A G B) proposed. § b. Cor. If two angles of one triangle be known, the third is also known. It is found by subtracting the sum of the two known an- gles from 180°. $ c. Cor. And the two acute angles of a right angled triangle (§ 17.) are together equal to one right angle. § d. Wherefore the acute angles of any right angled triangle are the complements ($ 8. § c.) of each other. § e. It is also evident from the above, that if two angles in one triangle be equal to two angles of another, the remaining angles are also equal to each other. Digitized by VjOOQIC GEOMETRY. 23 PROPOSITION IX. § 33. A diagonal (A C) of a parallelogram divides the parallelo- gram into two equal (§ 23.) triangles (A C D and A C B). § a. The opposite sides of a parallelogram (§ 19.) are parallel and equal to each other ; where- fore D C = A B, A D «. C B, and A C is common to the two triangles (A C D and A C B); therefore their sides are equal, those of the one to those of the other. The angles D C A and C A B are equal to each other (§ 30.), for they are alternate angles (§ 28. $ d.) made by A C crossing the two parallels D C and A B. For the same reason the alternate angles D AC and A C B made by A C with the parallels A D and C B, are equal to each other. Where- fore, the two angles (D C A and D A C) in one triangle being equal to two angles (A C B and C A B) in another, the remaining angles (D and B) (§ 32. § e.) are also equal to each other. Therefore, the triangle A C D having its sides and angles respectively equal to the sides and angles of the triangle A C B, is equal (§ 23.) to the latter, and the diagonal (A C) divides the parallelogram DABC into these two equal triangles. § b. Scholium. The area (§ 10. § a.) of a parallelogram (§ 19. $ b.) is the product of its base and altitude. The triangle ABC and the parallelogram DABC have the same base (A B) and altitude (/>), and the triangle is proven to be half of the parallelogram ; Therefore, § c. Cor. The area or magnitude of a triangle is the product of its base by half its altitude. § d. Cor. The triangles into which a diagonal divides a parallelo- gram are both equal and (§ 23.) of the same magnitude. $ e. Scholium. D AC + B A C (§ a.) = D C A + B C A,and D = B. Therefore, §/. Cor. The opposite angles of a parallellogram are equal. § g. Cor. If the opposite angles of a quadrilateral figure be equal, figure is a parallelogram. proposition x. § 34. If a parallelogram (D A C B) and a triangle (A B C) stand upon the same base (A C), and between the same parallels (D B and A C), they have the same altitude (/>), and the triangle is equal to half the parallelogram. § a. If one side B (A B) of the triangle be diagonal to the parallelogram, the triangle falls within the parallelogram, and (§ 33.) the pro- position is proven. Digitized by VjOOQIC 24 PROPOSITIONS. § b. But if the vertex (H) of the triangle proposed, fall without the parallelogram, as A H C, continue one of the parallels (D B) on, through the vertex H, to E ; and upon the base A C construct the parallelogram A H £ C, to which the side H C of this triangle is diagonal (§ 22. § a.), therefore A H C (§ 33.) is half of the parallelo- gram A H E C. The parallelograms A H E C and D A C B f § 19. § a.) have the same base (A C) and altitude (/>), and the area of each (§ 19. § b.) is the product of A C by p ; wherefore (§ 24. § b.) these two parallelograms are of the same magnitude ; therefore (§ 24. § a.) the triangle A H C is also equal in magnitude to half of either pa- rallelogram, say D B C A ; and'/* (§ 18. § a.) is also the altitude of the triangle A H C. § c. Cor. If a triangle and a parallelogram have their bases and altitudes equal, the triangle is equal in magnitude to half the paral- lelogram. § d. Cor. Triangles which have the same or equal bases and alti- tudes, are of the same magnitude. PROPOSITION XI. § 35. When two sides (A C and C B) of any triangle (A C B) are equal to two sides (E A and A C) of another (A E C), if the an- gles (A C B and C A E), which these sides contain, be equal, the two triangles are equal. K ■ytf § fl - ket one of the equal sides \ ^/\ (A C) be made common to the \ ^^ \ two triangles proposed, by con- \ ^/^ \ structing them on opposite sides \ S^ \ of it; the figure A E C B, thus A.v£~ i* formed, will be a quadrilateral. % b. By the conditions of the proposition, the angle E A C = A C B, and they are alternate angles, made by A C with the equal lines E A and C B, therefore (§ 30.) E A and C B are parallel ; and the opposite straight lines (E C and A B) which join their ex- tremities are also parallel, wherefore (§ 30.) the alternate angles E C A and C A B are equal to each other. § c. E and B are the remaining angles of the two triangles, and (§ 32. § e.) they are equal to each other, for (§ b.) E A C + E C A bsACB + CAB, therefore the angles of the two triangles pro- posed are equal to each other. § d. Now, since EAC + BAC = ECA + BCAthe whole (§ 24. $ d.) E A B is equal to the whole E C B ; and (§ c.) E — B; these four are the opposite angles of the quadrilateral A E C B, which therefore ($ 33. § g.) is a parallelogram, and (§ 19.) E C «= A B, and (§ 33.) A C divides the parallelogram into the two equal triangles A C B and A E C. § e. Cor. If the opposite sides of a quadrilateral figure be either parallel or equal, the figure is a parallelogram. Digitized by VjOOQIC GEOMETRY. 35 PROPOSITION XII. § 36. Either side (6) of any triangle is less than the sum of the two other sides (a & c). .* § a. The straight line 6, which joins the two points A and C, is less than the two straight aZ ^ c < lines c and a which join the same two points, because the shortest distance between any two' points (A and C) (§ 3.) is the straight line (6) which joins them ; wherefore b is less than the sum of the two other sides of the triangle, or of any two lines that can join A and O. PROPOSITION XIII. § 37. Any two triangles (CAB and D C A) are equal, if a side (A C), and the two angles (B A C and B C A) adjacent to it, in the one, be respectively equal to a side (C A) and the two angles (A C D and CAD) adjacent to this side in the other. A » § a. Let the equal "7 side (A C) be made common, by construct- ing the two proposed triangles upon it, so that one of them may be on each side of the common line A C ; the / IX figure (B A D C) thus B £ w J / < formed is a quadrilate- ° ral, and the side A C, which is common to the two proposed triangles, is a diagonal of it. § b. By the conditions of the proposition, the angles B A C and A C D are equal, and (§ 28. § d.) they are alternate angles, where- fore (§ 30. § d.) the two opposite sides (B A and C D) of the qua- drilateral, are parallel. By supposition also, B C A and C A D are equal, and they are likewise alternate angles, wherefore (§ 30. § d.) the other two opposite sides (B C and A D) of the figure, are pa- rallel. £ c. If the opposite sides of a quadrilateral figure (§ 35. § e.) be parallel, the figure is a parallelogram ; therefore B A D C is a paral- lelogram, and it is divided by the diagonal A C into the two pro- posed triangles CAB and D C A, which (§ 33.) are therefore equal to each other. PROPOSITION XIV. § 38. Any triangles (B C A and D B C) are equal, if two angles ( A & A B C) and an opposite side (C B), in one of the triangles E Digitized by VjOOQIC S6 PROPGMITONS. be respectively equal to two angles (D & B C D) and the corre- sponding side (B C), of the other triangle. c » § a* Let the equal ^ "side (O B) be made ,^^"' common to the two tri- angles, by constructing them so that one will be on each side of C B. Then C B becomes diagonal to the quadrilateral figure A C D B, which is formed by thus constructing the two proposed triangles. § 6. By supposition, A = D, and ABGaBCD; wherefore ($ 32. § e.) the remaining angles A C B and C B D are equal to each other, and they are alternate angles, therefore (§ 30. $ dJ) the two opposite sides, C A and D B, of the four sided figure, are parallel ; the other two opposite sides, C D and A B, are also parallel, the alternate angles ABC and BCD being equal, by the conditions of the proposition. Therefore, the quadrilateral A C D B (§ 35. § e.) is a parallelogram, and is divided by the diagonal B C, (§ 33.) into the two equal triangles B C A and DBG. § c. Cor. Hence it is inferred, that if two angles and a side of one triangle be equal to two angles and a side of another, the two triangles are equal. PROPOSITION XV. § 89. Any two triangles (BAG and B D C) are equal, if every side of the former be equal to its corresponding side in the latter : e. g. AB« DC; AC = BD; andBC = CB. * __ _ ^n § a. Let one of the common to the two triangles proposed, by £'" constructing one of them on each side of B C ; the figure (A B D C) thus formed is a quadrilateral, and thft common side B C is a diagonal of it § b. By the conditions of the preposition A B is equal to D C, and A C to B D, and they are opposite sides of the quadrilateral figure A B D C ; and if the opposite sides of a quadrilateral figure be equal (§ 35. § e.), the figure is a parallelogram ; therefore A B D C is a parallelogram, and its diagonal B C divides it into the two proposed triangles B A C and B D C, which (§ 38.) are therefore equal. § c. Scholium. Since the corresponding parts in equal figures (§ 23.) are equal, it follows :— § d. Cor. That, if the sides of one triangle be equal to the sidea of another triangle, the angles opposite the equal sides are equal. PROPOSITION XVI. $ 40. Every equilateral triangle (A B C) is also equiangular. Digitized by VjOOQIC GEOMETRY. 27 § a. Let an equilateral tri- angle (E D H) be drawn, having its sides equal to those of the proposed triangle. The two triangles (§ 39.) are then equal, and the angles A and D which correspond, (§ 39. § d.) are equal to each other. § b. By the conditions of the proposition each side of A B C is equal to the same thing, and by construction, equal to either side of £ D H ; then A B = E H ; and the two triangles (§ a.) being equal the angles D and O, which are opposite to those equal sides (§ 39. § C) bf a straight line (B D) drawn fnrni the vertex (B) of the triangle. § b. This line (B D) divides the isosceles triangle inttf the two tri- angles A B D and D B C, in Which every side of the one, is equal to the side which corresponds to it in the Other ; viz : A B =* C B (§ 14.) for they are the legs of the isosceles triangle A B C ; A D == D C (§ a.), by construction ; and B D is common to both of the triangles ; therefore (§ 39.) these two triangles (A B D shid D B C) aire equal, and the corresponding angles A and C, being opposite to the common side B D, are therefore (§ 80. § d.) equal to each other. § c* Scholium. A B D = C B D, because (§ 39. § tf.) they are apposite to the two equal sides A D and DC; for a similar reason B D A and B D C are also equal to each other, and (§ 25.) these are together equal to two right angles, therefore each of them is a right angle, and the right line B D (§ 6. § 6.) is perpendicular to the base (A C) of the isosceles triangle ABC; wherefore :— § d. Cor. A straight line drawn from the vertex, so as to bisect Digitized by VjOOQIC 28 PROPOSITIONS. the base of an isosceles triangle, is perpendicular to the base, and it divides the vertical angle (A B C) into two equal parts, and the isosceles into two equal triangles. Also ; § e. Cor. A straight line (BD) that is drawn perpendicularly from the vertex, to the base of an isosceles triangle, bisects the vertical angle and the base. PROPOSITION XVIII. § 42. If only two angles (A & B) of a triangle (A C B) be equal, the triangle is isosceles. r § a. Call the other angle (C) (§ 16. § b.) the vertex of the proposed triangle ; and from it, let the straight line C D be drawn, so as to bisect the vertical angle (C) and divide the proposed triangle into the two C A D and C B D, in which, by construction, the side C D is common, the angles A C D and B C D equal, and (§ 42.) A = B ; wherefore in these two triangles (C A D & CBD), two angles and a side of the one are equal to the homologous angles and side of the other, and therefore (§ 38. § c.) these two triangles are equal to each other ; consequently (§ 23.) the corresponding sides, C A & C B, are equal, and hence, (§ 14.) the triangle A C B is isosceles. PROPOSITION XIX. $ 43. In every right angled triangle (A C B), the square (D A B E) of the hypothenuse (§ 17. § a.) is equal in magnitude to the squares (ACFH&BCQP) of the two legs. $ a. Let D A B E represent the square (§ 20.) of the hypothe- nuse (A B), and A C F H & B C Q P, the squares of the two legs A C and B C ; then (§ 43.) DABE = ACPH + BCQP. § b. From the right angle (A C B) let C R be drawn parallel to the parallels (§ 20. & § 19.) A D & B E, join C D and H B. _ § c. The angles of a square (§ 20. § a.) are right angles, and all right angles (§ 6. § a.) are equal, therefore HAC = DAB; to each of these equals add the angle B A C, and the sums H A B and D A C ($ 24. § b.) will be equal ; also HA = AC, because (§ 20.) they, are sides of the same square A F; and D A= A B, because they also are sides of a square A E. 5 d. Wherefore, in the two tri- angles A H B and A D C, the two sides H A and A B of the one, Digitized by VjOOQIC GEOMETRY. 20 are respectively equal to the two sides G A and A D, of the other, and the angles H A B and D A C, contained by these sides, are also equal (§ c), therefore (§ 35.) the two triangles are equal. § e. The triangle A D C is equal in magnitude (§ 34.) to half of the parallelogram A R, for they stand upon the same base D A, and between the same parallels (§ b.) C R and A D. And the triangle A H B is equal in magnitude to half of the parallelogram A F, be- cause they stand upon the same base A H, and between the same parallels H A and F C B. § /. The parallelograms A F and A R, being each double of either of the equal triangles (§ d.) A H B and A D C, are therefore (§ 24. § b.) equal to each other in magnitude ; but the parallelogram A F (§ a.) is the square of the leg A C ; wherefore the square of the leg A C, and the parallelogram A R, are of the same magnitude. § 8- fy joining A P and C E, it may be demonstrated in the same manner, that the parallelogram B R, and the square (B P Q C) of the other leg B C, are of the same magnitude. § h. The parallelograms A R and B R make up the square (D A B E) of the hypothenuse (§ a.) A B, therefore (§ 24. § a.) the square of the hypothenuse (A B) is equal in magnitude to the sum of the squares of the two legs (A O & C B). Digitized by VjOOQIC Digitized by VjOOQIC GEOMETRY. PART II. Digitized byCjOOQlC Digitized by VjOOQIC GEOMETRY. DEFINITIONS. $ 49. A circle is * figure that is bounded by a line of uniform curvature: all parts of this line are equi- distant from a point (a) within it, which is called the centre. $ a. If a straight line of any determin- ate length were to re- volve in a plane, and on the point at one of its own extremities* its other extremity would describe the circumference (A D C H) of a circle; the point (a) on which the line would revolve would be the centre of the circle ; "* the length of the re- volving line would be the radius (a B) of the circle ; and the plane in which the line would revolve, would be the plane of the circle. $ b. The circumference (A D C H) of every circle is divided into 300 equal parts, called degrees (°) ; every degree is divided into 00 equal parts, called minutes (' ) ; every minute is divided into 00 equal parts, called seconds ( " ) ; and these, when calculations are performed in which great nicety is required, are divided into halves, tenths, or hundredths. $ c. Whether the circumference of a circle be infinitely great, or infinitely small, a degree is still the same ; and the circumference of the smallest is equal to the circumference of the largest circle, when the two circumferences are compared in degrees, minutes, and seconds, to each other ; for a degree is the 300th part of the circumference of every circle. $ d. Degrees (°), minutes ^ ' ), and seconds ( " ), are, the terms . in which the value of angles is expressed. * Digitized by VjOOQIC 34 DEFINITIONS. § e. When the straight lines which contain an angle, are produced to the circumference of any circle that may be described from the angular point as a centre, that part of the circumference which the two lines intercept, contains the degrees, etc., which express the value of said angle. An angle is said to stand upon the part of the circumference that is thus intercepted. Neither the length of the lines which contain the angle, or the distance of it from the cir- cumference by which it is measured, affects its angular value. § 50. The radius of a circle is a straight line (e) that extends from the centre to the circumference of the circle. $ a. All the radii of the same, or equal circles, are themselves equal. $ 51. The diameter of a circle is a straight line (A C) that passes through the centre of the circle, and is terminated at each end by the circumference of the circle. $ «. Either of the two parts (A B C & A H C) into which the diameter divides the circle, is a semicircle. $ ft. A segment of a circle is any part (g) cut from the circle by a line (f)$ or a plane, which crosses the circle. $ 53. Jin arc of a circle is any part of its circumference. That part (A H) of 'the circumference which bounds a segment (g) is an arc ; and the straight line (/) which joins the extremities of an arc, is a chord. $ a. The complement of an arc, or angle, is the difference be- tween either and 90° ; and the supplement is what either wants of being 180°. $ ft. The radius and centre of a segment, or of an arc, are the radius and centre of the circle, of which the segment, or the arc, is a part. $ c. Every arc or angle has its sine and co-sine, tangent and co- tangent, secant and co-secant, besides its versed sine and semi-tan- gent. $t the radii, AB and AH, be drawn to join to extremities of the chord (B H). The triangle (B A H) thus formed (§ 50. § a. & $ 14.) is isosceles. And the straight line A F C bisects the vertical angle H A B (§ 41. $ e.) ; for by the conditions of the proposition, A C is perpendicular to the chord B H, which is the base of the isosceles triangle BAH. Wherefore (§ 41. § d.) the two trian- gles B F A and H F A are equal, B H is bisected, and the angles BAG and H A C are equal to each other, and being equal (§ 59. § d.) they stand upon equal arcs (B C & C H). Therefore the chord (B H), and its arc (B C H), are bisected by the radius A C. $ b. Cor. If a radius bisect an arc, it also bisects the chord of that arc, and cuts the ehord at right angles. $ c. Cor. If a radius bisect a chord, it also bisects the arc of that chord, and cuts the chord perpendicularly. § d. Cor. If a radius bisect a chord, or its arc, it also bisects the angle at the centre, which stands upon that arc. proposition ni. $ 61. B C, half the chord (B D) of an arc (B E D), is the sine of CAB, half the angle (D A B) which that arc subtends. $ a. Let the chord be bisected at C, and through C let the radius ACE be drawn, then this radius (§ 60. $ c.) bisects the arc B E D, cuts the chord B D at right angles, and also (§ 60. § d.) bisects the angle (D A B) which this arc subtends. Wherefore, B A C is half of the angle DA B, BC is half the chord of B E D, and it is perpen- dicular to the radius A C E ; therefore (§ 54.) B C, half the chord of B E D, is the sine of C A B, which is half of the angle (DAB) proposed. proposition rv. $62. In any citcle, radius (AD), the sine (AH) of 90°, the Digitized by VjOOQIC GEOMETRY. 37 chord (B D) of 60°, and the tangent (D C) of 45°, are all equal to each other. § a. Let A be the centre of the cir- cle, the arc H B E D a* 90°, the ajc B E D = 60°, and the arc E D = ^5°, and join B A and C A. The angles at the centre (A) ($ 40. § e.) are measured by the arcs they stand upon ; therefore the angle DAC = 45°, D A B = 60°, and D A H = 90° ; A H then (§ 6. § b.) is perpendicular to A D, and A H (§ 54.) is the sine of the arc H B E D = 90°, it is a radius, and therefore ($ 50. § a.) equal to AD. § b. The radii A B and A D being equal ( §'50. § a.), makes the triangle BAD (§14.) isosceles; consequently ($41.) the angles ABD and AD Bare equal. The angle DAB = 60° (§49. §e.) because it stands upon the' arc BED; wherefore (§ 32.) ABD-f A D B = 120°, and being equal, the value of each is 60° ; there- fore the triangle B A D is equiangular, and (§ 40. § c.) also equi- lateral ; consequently (§ 13.) the chord (B D) of 60° is equal to radius (A D). $ c. C D is the tangent of E D = 45°, and consequently (§ 56.) is perpendicular to A D ; wherefore (§ 6. § b. & § a.) the angle C D A «= 90°, and (§ 17.) the triangle A D C is right angled. The angle CAD = 45° (§ 49. § tX because it stands upon the arc E D, therefore (§ 32. § d.) the angle AC D is also equal to 45°, and is equal to CAD, and (§42.) the triangle ADC is isosceles, and (§ 14.) the tangent (D C.) of 45° is equal to radius (A D). § d. Therefore the tangent of 45° (§ c), the chord of 60° (§ &.), and the sine of 90° (§ a) being each equal to radius, are (§ 24. § a.) equal to each other. proposition v. § 63. In every triangle, the angle (A) that is opposite to the greatest side (a) is the largest, and (B), that which is opposite to the smallest side (6), is the smallest angle of the triangle. § a. Describe a circle (A C H B) about the proposed triangles B A C, the circumference of which touches the three angular points (B, A, & C) of the triangle. Each side of the triangle then becomes the chord to the arc, which subtends the angle that is oppo- site to it § b. The angle A stands upon the arc B H C, which is greater than either of the arcs (B A, A C) upon which the Digitized by VjOOQIC 38 DEFINITIONS. two other angles (G & B) of the triangle stand. Each of these three angles (§ 59. § c.) is measured by half the arc that subtends it. Therefore A, which stands upon the greatest arc, and subtends the greatest side (a), is the largest angle of the proposed triangle. § c. Half the smallest arc (A. C) (§ 50. $ c.) measures the angle (B) that stands upon it ; therefore B (the angle that is opposite to the smallest side) (6) is the smallest angle of the triangle. DEFINITIONS. $ 64. The multiple of a magnitude is the product of this magni- tude and any other factor. $ «. Equimultiples of magnitudes are the product of each of these magnitudes by the same or equal multipliers. § b. Thus, 15 and 30 are equimultiples of 3 and 6 ; for 3 x 5= 15, and 6x5=30. Consequently (§ 24. § 6.)— $ 65. The same or equal multiples of equal magnitudes are equal to each other. $66. Ratio is the relation which the value of any magnitude bears to that of another, and it is shown by dividing one magnitude by the other. $ a. Thus, the ratio of a to b is a -*■ b, and is expressed thus,-— a : b. $ b. And if the ratio between two quantities (a & 6) be equal to the ratio between two other quantities (c & d), this equality of ratio is expressed (§ XLV. Algebra) by writing the sign ( : : ) between the two former and the two latter quantities* thus,— a : b : : c : d. $ 67. Proportion consists in the equality of the ratios between magnitudes. $ a. Thus, the ratio (§ 66.) of 3 to 4 is j ; and the ratio of 6 to 8 is f ess | ; and these quantities are proportional ; t. 0. 3 : 4 : ; 6 : 8, $6. Four quantities are in direct proportion* when the 4th is equal to the quotient, which arises from dividing by the 1st quantity, the product of the 2d and 3d. Thus (3 : 4 : : 6 : 8), 4 x 6 = 24, and 24 -j- 3 = 8. So, also, a : b : : c : d , which in Algebra (§ XLV.) is but another form for expressing that a«t-0saC-*-(2; and by transposition a x d « c x b ; also, (c x b) -*- a «= d. § c. The first and third (a Si c) of four magnitudes that are in direct proportion, are called antecedents ; and the second and fourth (6 & d) are called consequents, $ d. Also the first and fourth (a & d) are called extremes; and the second and third (6 & c) are called means. $ e. It is a rule in proportion, that the quantities for calculation be 90 arranged that the product of the two extremes be equal to the product of the two means. Thus, axd=bxc ; and as axdssdxa. (§XXV. fl. Algebra), dxa*=cxb. Wherefore the means may be made extremes, and the extremes means ; as-, b : a : : d : c ($ XLVIIJ. Alg.) ; the antecedents may be made consequents and the coaaequenta antecedents ; as, d : c : : b : a, without inter- rupting the harmony of the proportion between the quantities. Digitized by VjOOQIC I GEOMETRY. 89 §/. Hence if the value of three magnitudes be known, the un- known value of the fourth, which is in the same ratio of proportion, is determinable. It is the quotient that arises (§ ft.) from dividing the product of the two means by the known extreme. Thus, 3 : 4 : : 6 — ; a 4th quantity, 4 x 6 = 24, and 24 -h 3 = 8, the 4th quantity* Generally speaking, the magnitude whose value is re- quired is expressed last in the order of proportion. AXIOMS. § 60. Among quantities that are proportional, equals may be sub- stituted for equals. $ a. Magnitudes that are proportional to the same two, or to other magnitudes equal to these, are proportional to each other. § b. Equal magnitudes have the same ratio to the same magni- tudes. PROPOSITION VI. ( 70. The same, or equimultiples (C and D), of any two magni- tudes (A and B), are to each other as the magnitudes themselves. § a. Let C be the same multiple, say the 5th, of A, that D is of B ; then (§ 64. $ a.) A x 5 = C, and Bx5=D ; by transposition C-s-A=5, andD-f-B= 5 ; wherefore (§24. § a.) C -$- A = D -*- B ; then a XLVI.) C : A : : D : B, and alternately (§ XLVIII.) C : D : : A : B. Therefore, the equal multiples are as the magnitudes. § b. Scholium. The magnitude of a triangle (§ 33. § c.) is the product of its base and half of its altitude. § c. Wherefore the magnitudes of triangles of the same altitude, are equimultiples of their bases. And so of parallelograms of equal altitudes ; and therefore, $ d. Cor. Triangles, or parallelograms, that have the same altitude, are, in magnitude to each other as their bases ; or those that have equal bases are to each other as their altitudes. PROPOSITION VII. $71. When the product of any two quantities (a&b) equals the product of two others (c & d), the ratio of the greater multipli- cand to the greater multiplier, is equal the ratio of the less multi- plicand to the less multiplier | and the four quantities are propor- tional. $ a. Let ax&=*cX AHC). $ a. With the greatest side (A H) of the proposed triangle, as radius, describe the circle BHjo, about the centre A. The side A C is extended both ways, until it forms the diameter (B p) of the circle. Join 'B H, Up. DC is drawn parallel to H P. § b. Because A H = A B (§ 50. §a.) ; C A + A B, or C B is the sum t)f the two sides C A & A H. And because A H = A p ; A p — - A C, or C p is the difference be- tween the same two sides. $ e. The angle B H p (§ 59. $ e.) is a right angle ; then C D is perpendicular to B H, for it is drawn parallel to H p ; therefore (§ 30.) C D B is a right angle ; and B D is tang, of B C D. t $ d. The exterior angle H A B (§ 31.) is equal to the sum of the adjacent angles (A C H & A H C) ; H p B ($ 59.) is equal to half of H A B, for they stand upon the same arc (B H) ; then (§ 24. §a.) ^ HpB ACH + AHC 2 Because D C and H p(§a.)are pa- rallel, BCD (§28.) is equal to H p B ; therefore B C D is equal to Digitized by VjOOQIC 44 PROPOSITIONS. half the sum of the two angles A C H and AHC. And in the right angled triangle B D C, C B is the sum (§ b.) of the two sides A H, A C of the proposed triangle A C H, and B D (§ c.) is the tangent of B C D, which is half the sum of A C H and A H C. §e. By§31,theangleACH = C/)H+CHj0. Because AH« A p (§ 50. § a.), the triangle H A p (§ 14.) is isosceles ; and (§ 41.) C/>H=AH/>. Then (§24. § a.) AC H=A H/>+C Hjo; from this sum , subtracting A H C, the remainder is twice OH/), which is the difference between the two angles A C H and A H C ; then C H p is half this difference. And (§29.) CHp = HCD; therefore H C D is half the difference between the angles A C H and A H 0. Now making C D radius, D H (§ 56.) becomes tan- gent of H C D. §/. Now C p being the difference (§6.) between the two sides A H and A G ; and D C being parallel (§ a.) to the side H p of the triangle HBp;we have (§72,) B C : B D : : C p : D H. Or, AHC + ACH C A + A H : tangent ^ : : C A» A H : tangent A H C m A C H. 2 §g. Scholium. The half sum (§(f.) BCD added to the half dif- ference H C D (§ 6.) makes the greater angle A C H ; and the half difference C H p (§ c.) subtracted from the half sum A H p (§ c), gives the less angle AHC. Wherefore, § A. Cor. Half the difference and half the sum of any two mag- nitudes being added to each other, give the greater, and being sub- tracted from each other, give the less of the two magnitudes. PROPOSITION XIV. ^—*.^^ § 79. The base (c) of any trian- ■Jr^ ^% % £ le ( A B C) is to the difference be- / /\ \ tween the two sides (6 & c), as their / / \ \ sum is to twice the distance from / / \ \ the middle of the base to a perpen- / .• \ i dicular (A a) falling upon the base j / 5fc • from its opposite angle (A) ; that is, \ / \r \ \* / e : b « c : : b + e is to twice the \ / yS j \ / distance of a from the middle of ytis I X- ■yic the base. \ * m \ J' §a. With a radius equal to the % v, % ^^ longer side (b) of the proposed tri- *"* **'* angle, the circle E C R H is de- scribed about the angle (A) that is opposite to the base. Then b (§ 50. § a.) is equal both to A E and to A R ; and the difference between the two sides b and c is (A R — c =) B R ; and their sum is(c + AE=)BE; Digitized by VjOOQIC GEOMETRY. 45 $b. Because the perpendicular A a is drawn from the centre of the circle upon the chord C H ($60.), it bisects it. Then the distance of the perpendicular at a from the middle of the base («), plus, half the base, makes up (C a) half the chord G H. Dou- ble this, and we have the whole chord C H, which is made up of twice the distance from a to the middle of the base, and twice the half of the base e. Twice the half, is equal to the whole base «. Therefore subtracting the base e from the chord C H, the remainder (B U) is twice the distance of the perpendicular at a from the middle of the base. § c. The two sides C B, B E of the triangle E B 0, are the base («), and the sum of the two sides (b & c) of the proposed triangle* And the two sides BR,BH of the triangle H B R, are the dif- ference between those sides (6 & c,) and twice the distance (§ b.) from the perpendicular to the middle of the base («). These two triangles (E B C & H B R) (§ 23. $6.) are similar; for the vertical angles EBC&HBR (§27.)are equal; and HCE=»H RE ($59. $<*.), they stand upon die same arc (H E) ; and the remaining angles C E R, C H R, ($ 32. $ e.) are equal. Therefore (§ 73.) the homo- logous sides of these two similar triangles are proportional ; that is, C B : B R : : B E : B H ; or, e : ba> c :: b + a twice the dis- tance of the perpendicular at a from the middle of the base. $ d. Scholium. Then if the distance of the perpendicular from the middle of the base be added to half the base, the sum will be the greater segment (C a) ; or, if it be subtracted, the dif- ference will be the smaller segment (B a) ($ 77. $ A.). $ e. The distance of each angle from the perpendicular are the segments of the base. Digitized by VjOOQIC Digitized by VjOOQIC LOGARITHMS. Digitized by VjOOQIC to Digitized by VjOOQIC LOGARITHMS. $80. The purpose of logarithms is to facilitate arithmetical cal- culations. The term is derived from two Greek words {logos and arithmos), and may rightly be called the language of numbers ; for by means of logarithms, not only multiplication and division, but also the tedious operations of involving powers, extracting roots, etc., are simplified. They are performed by the simple process of addition and subtraction, multiplication and division. § a. Through the intervention of logarithms, angular and linear magnitudes are compared with each other, as quantities of the same denomination are in common arithmetic ; and the unknown value of a line, arc, or an angle, may be deduced from the known ratio be- tween other lines and angles. $©. Before the invention of Lord Napier had introduced into mathematical calculations the use of logarithms, the solution of tri- gonometrical problems was referred to synthesis, and obtained by construction. The process of finding the value of unknown quan- tities in trigonometry was tedious ; and the result, owing to the mechanical manner in which the operation was conducted, was sub- ject to partial inaccuracies. § c. If the logarithms that correspond to a series of numbers in geometrical progression, be taken out and noted down, they will be found to constitute another series of numbers in arithmetical pro- gression. And if two series of numbers be arranged, one in the order of geometrical progression (the first term of which shall be unity or 1, and the common ratio 10), and the other in the order of arithmetical progression, (the first term of which shall be zero (0), and the common difference 1), these two series will constitute a basis, or the ground work for forming a table of logarithmic num- bers, like those most generally used. § d. By arranging the two series of numbers, the one in geome- trical, the other in arithmetical order of progression, thus, Geometrical progression. Arithmetical progression.* 1 • 10 - 1 100 . 8 1000 . 3 10000 . 4 100000 - 5 1000000 - 6 10000000 . 7 100000000 - 8 1000000000 . 10000000000 - - - 10, * H Digitized by VjOOQIC 50 LOGARITHMS. the relation and connexion between the orders of the two series will appear. The terms in the order of arithmetical progression, are the logarithms of those in the geometrical order : each the loga- rithm of the term to which it is opposite ; t. e., is the logarithm of 1 ; the logarithm of 10 is 1, of 100 is 2, of 1000 is 3, of 10,000 is 4, and of 100,000 it is 5, etc. $ e. By observing the different relations which exist between the terms in the two series above, it appears, — 1st. That the logarithm of any whole number has for its index the figure, which expresses the number of digits, minus one, that are in the natural number for which the logarithm is required. Thus 1 is the logarithmic index of 10, which has two digits; 2 is the logarithmic index of 100, which has 3 digits ; 3 of 1000; 4 of 10,000, etc. - 2d. That the logarithm of any number intervening between 1 and 10, must be a fraction less than unity ; for the logarithm of I is 0, and of 10 it is 1 ; then the logarithm of any number between 1 and 10 must be less than 1. The logarithm that corresponds to any number between 10 and 100, must be greater than 1 and less than 2, etc. 3d. That the product of any two numbers in the series of geo- metrical progression, answers to the sum of the two numbers in the arithmetical order, which correspond to them. Thus ; 100,000,000 in the geometrical, answers to 8 in the arithmetical order, and 100,000,000 is the product of 1000x100,000, which two numbers correspond with 3 and 5 in the arithmetical series ; and in this series 3 + 5, or 8 = 100,000,000 in the geometrical series. Now 3 is the logarithm of 1000, and 5 of 100,000. Hence, therefore, if the logarithms of any quantities whose product is required, be added together, this sum will be the logarithm of the required product. 4th. That the difference (4) between any two numbers (2 — 6) in the series of the arithmetical order of progression, is the loga- rithm of the quotient (10,000) which arises from dividing by each other, the two numbers (1,000,000 -f- 100) that correspond, in the geometrical order, to the two said arithmetical terms (2 and 6). 5th. That logarithms of numbers are a series of terms in the order of arithmetical progression, which series corresponds to another series of numbers in the order of geometrical progression. $/. The logarithm of 10 is not necessarily J. Any other num- ber as well as 1 may be assumed as the logarithm of 10. But if any other number were taken as the logarithm of 10, it would establish another base for calculating a table of logarithms, and this change would effect the logarithm of every other number in the same ratio. From this it appears that the value of a logarithm is entirely conventional. But in order to simplify, and facilitate their application to practice, mathematicians have assumed, in the order of geometrical progression, a series of numbers in the ratio of 1, 10, 100, 1000, 10,000, etc. ; and as logarithms to these, they have assigned, in arithmetical progression, a series of numbers in the Digitized by VjOOQIC LOGARITHMS. 51 order of 0, 1, 2, 3, 4, etc., having 1 for the common difference. The latter numbers, taken in the order in which they stand, are called the logarithmic indices, or characteristics, of the former, taken in the same order. Whence (§ e. 1st) the logarithmic index of every whole number, is made always to express one less than the number of digits contained in the whole number. Thus, the characteristic of 100 is 2, as the number of digits or figures in 100, is 3. The number of digits in 1000 is 4, and the logarithmic characteristic of 1000, is 3. $ g. The logarithmic signs and tangents, co-sines and co-tangents, etc. of degrees, minutes, and seconds, are also of conventional value. They are expressed in parts of the radius of a circle ; the value of which radius is assumed to be equal to 10,000,000, etc., with as many ciphers affixed as the compiler intends the mantissa shall consist of digits. $ h. The mantissa is the decimal part of a logarithm ; or the part which is not the index. The logarithm of 250 is 2 .397940 ; 2 is the index, and .397940 is the mantissa. § 81. The characteristic of a logarithm depends upon the number of digits which are contained in its geometrical* number; being one less than the number of digits, it is known by counting the figures of the geometrical number, and writing down one less than their number for the index. $ 82. The mantissas have been previously calculated and arranged in a tabular form, and in such a manner that the mantissa for any geometric number, (however great or small), may be determined with readiness. $ 83. The first column of the tables (I.) is marked N. (Numbers.) It contains the geometrical numbers, from 1 to 999. The mantissa of each term in this series, is in a line with its geometrical number, and in the next column which is marked 0. The nine other columns, headed with the cardinal numbers 1, 2, 3, etc., to 9, also contain mantissae ; but these are of geometrical numbers that have four digits ; the last figure of which, being found at the head of one of these columns, and the three first in the first column (N), show at their angle of meeting, the proper mantissa. Thus, the logarithm of 3681 is 3.565966 ; 368 being found in the first column, N., the mantissa for 8681 is found in a line with 368, and in the column, at the top and bottom of which, stands 1. $ 84. To take from the table (I.) the mantissa for any geometrical number less than 1000. $ a. Find the given number in the first column (N.); its mantissa is opposite to it in the next column (0). $6. The mantissa for 9 is .954243; for 14 it is .146128; and for 964 it is .984077. • The natural numbers, which correspond to, er are represented by, a loga- rithm, are here called geometrical numbers, from their being terms in the geometrical series 1 of progression. Thus 419, of which 2.622214 is the logs* rithm, is the geometrical number of log. 2<622214. Digitized by VjOOQIC 52 L0GAEITHM8. $ c. These mantissa?, with the proper characteristics prefixed, con- stitute the logarithms of those numbers ; thus, logarithm of 9 as 0.054243 ; of 14 *= 1.146128 ; and of 064 = 2.084077. § 85. To take from the tables, the mantissa for any geometrical number that is greater than 1000, but less than 10,000. $ a. Find, in the first column (N.) of the tables, the three first figures of the proposed number ; in a line with them, and in the column over which the fourth figure stands, is the proper man- tissa. $ b. The mantissa (.973500) for 9410 is found in the column marked (0), and opposite to 941 in the first column; and the man- tissa (.954918) for 9014, is found in the column marked (4), and opposite to 001 in the first column (N.). $ c. The geometrical numbers in this case have four digits ; 3, then, is the characteristic of their logarithms ; which are, 3.973590 — 9410 ; and 3.954918 « 9014. $ 86. To take from the tables the mantissa of any geometrical number that has more than four digits, or that is greater than 10,000; say of 43568. $ a. Take out the mantissa for the four first digits ($ 85. $ &•), and subtract it from the mantissa next in order. Then say,— If unity (i), prefixed to as many ciphers as there are digits remaining of the proposed geometrical number, give this mantissa! difference, what mantissal difference will the remaining digits of the geometrical number, give ? This last mantissal difference being added to the mantissa for the four first digits, produces the required mantissa. {i $ o. The mantissa for the four first digits (4356) of 43568 is \ 639088 ; the mantissal difference between this and the next (.639188) in order, is .000100 ; one digit (8) of the proposed geo- metrical number remains ; and unity (1) ($ a.) must be prefixed to one cipher (0), which makes (10) ; then the oider and terms of the proportion are, 10 : .000100 : : 8 : .000080. This last term, plus the former mantissa, (or .639088 -f. 000080) =.639 168, the mantissa required. $ c. The geometrical number (43568) in this example has Jivt digits ; then (4) being prefixed as an index to the mantissa (.639168) makes the logarithm of 43568 » 4.639168. $ d. The mantissa for the four first digits (7419) of 741946 is .870345 ; the difference between the mantissa of 7419, and of 7420, is .000059. And the order and terms of the proportion are, 100 : 000059 : : 46 : .0Q0027. This last term feeing added, and the characteristic (5) being prefixed to the mantissa (.870845), makes the logarithm of 741946 « 5. 870372. $ e. The mantissa for the four first digits (5941) of 594106734 is .773860 ; the mantissal difference «a .000073 ; the remaining digits (06734) are Jive in number. Prefixing 1 to Jive ciphers, the proportion is 100000 : 000073 : : 06734 : 000004. Prefixing the characteristic (8) to .773860 + 000004, makes the logarithm of 594106734 - 8.773864. $/. The mantissa for 124, and the mantissa for 1240000000 are Digitized by VjOOQIC LOGARITHMS. W the same (.093422). But the logarithm of 124 = 2.093422 ; and the logarithm of 1240000000 = 9.093422. Hence, j $ g\ The effect of final ciphers in a geometrical number, on its I logarithm, is confined to the characteristic of the logarithm, for the I logs. ($/) of 124 and 1240000000 have the same mantissa. $ 87. To find the logarithm of a geometrical number that is mixed with a decimal fraction. $ a. The mantissa is found as it would be, were the proposed number integral ; but the characteristic of the logarithm must express one less than the number of digits in the integral part of the number proposed. Thus ; Mixed Geometrical Nob. Their Logarithms. 9414.5 = 3.973797 941.45 - = 2.973797 94.145 - = 1.973797 9.4145 — 0.973797 ' § 88. As the logarithm of unity, or (1), is 0, it follows that the logarithm of any quantity less than unity, or the logarithm of a frac- tion, must be less than ; that is, it is a negative quantity. Thus, — Logarithm of 1=0 .000000 Logarithm of 0.1 = — 1 +.000000 Logarithm of 80 = 1 .903090 Logarithm of 0.08 = — 2 +.903090 § a. But the use of negative and positive quantities (such as the logarithms of integers and of fractions, as just quoted above), in the same operation, has a tendency sometimes to perplex the calcula- tor. It is better, therefore, that all quantities in the same sum should be affected with like signs. This may be effected with the logarithms of fractions by means of a little artifice, by which negative quantities are made to change their signs, or become as positive quantities. $ b. This artifice consists in borrowing and applying 10, or 20, or 100, etc., to the logarithmic index of the fraction, and restoring the borrowed quantity again during the progress of the calculation. Thus, in the summing up of the logarithms of 80, and of 0.08, in- stead of adding the mantissa and subtracting the characteristics of the two logarithms ( 1.903090 — 2 +.903090 = 0.806180% the operation may be performed entirely by addition, if the arithmeti- cal complement of — 2, which is 8, be used as the index ; thus, 1.903090+8+.903090=*10.806180 ; rejecting the 10, which was borrowed in the logarithmic index of 0.08, there remains 0.806180. $ c. Any quantity with the sign (— ) prefixed, may be commuted into a positive quantity by substituting for that quantity its arith- metical complement. In this way subtraction may be performed by addition, as we have seen (§6.) in the case of the negative index — 2. $ d. The arithmetical complement of a number, is the difference Digitized by VjOOQIC 64 LOGARITHMS. between that number, and the first number that ends with a cipher, and is one scale higher in the decimal order of notation. The arith- metical complement of 6, is 4, (10 — 6 = 4) ; of 77, is 23, (100 — 77 = 23) ; of 115, is 885, (1000— 115 =885), etc. $ e. If it be required to subtract 6 from 9, the result is the same, whether we say 9 — 6 = 3, or take the arithmetical complement (4) of 6, add it to 9, (4 + 9 =13), and reject the borrowed (10) from their sum (13 — 10 = 3). § 89. To find the arithmetical complement of a logarithm. $ a. Prefix (1) to as many ciphers as there are digits in the pro- posed logarithm; then from this number subtract the proposed logarithm, and the remainder will be the required arithmetical com- plement. § 6. Thus, the arithmetical complement of 1.903090 is 8.096910 ; for 10000000. 1.903090 8.096910 § c. The same result may be obtained by beginning at the left, and subtracting from 9, every figure except the last significant one, which must be subtracted from 10. Thus— 9.9999(10)0 1.9030 9 8.0969 1 § d. If the index be greater than 9, it must be subtracted from 19. § 90. To find the logarithm of a decimal fraction. 5 a. The mantissa for the proposed fraction is taken from the table, as for an integral geometrical number of the same significant figures which the fraction has. » $ b. The logarithm for the same figures expressed both integrally and fractionally, differs only in the characteristic ; the mantissa is the same in both cases. Therefore we have only to teach how to determine a positive characteristic, or the logarithm of a decimal fraction. $ c. The characteristic is determined by means of the number of ciphers which precede the first significant figure of the decimal, for the number of these subtracted from (9), gives the required charac- teristic. Thus, logarithm of the decimal .301 = 9.478567 Logarithm of the decimal .0301 = 8.478567 Logarithm of the decimal .000301 =» 6.478567 $ 91. To find the logarithm of a vulgar fraction that is less than unity. $ a. Take from the tables the mantissa for the numerator, and for the denominator, separately, and as if each were a whole num- ber expressed by the same figures. Then, from the logarithm of the numerator, plus 10 to the index, subtracting the logarithm of the denominator, leaves the logarithm of the proposed fraction. Thus, Digitized by VjOOQIC LOGARITHMS. 55 $ 6. To find the logarithm, of ■£&. Logarithm of 25 = 1.397940 Logarithm of 100 = 2.000000 Logarithm of j£ — 9.397940 To find the logarithm of f . Logarithm of 3 — 0.477121 9 Logarithm of 8 = 0.903090 Logarithm of | = 9.574031 $ 92. To find the logarithm of a mixed number. $ a. If the number proposed (9.05) consist of a whole and a dV cimal fraction, take from the tables the mantissa for the mixed number as if it were a whole, and then prefix the index, which ex- presses one lea than the number of digits in the integral part of the mixed number proposed. Thus, the index of the logarithm for 9.05 is 0, and for 90.5 it is 1 ; the mantissa (.956649) is the same for each number ; because it is taken out for the figures (905) a* though they stood for a whole number. Then, the logarithm of 9.05 = 0.956649 The logarithm of 90.5 = 1.956649 $ b. But if the proposed mixed number consist partly of a vulgar fraction, let it be reduced to an improper fraction ; then find the logarithm of the numerator, and of the denominator, as if they were separately whole numbers ; and the remainder of logarithm of the numerator, minus logarithm of the denominator, is the required logarithm. Thus, logarithm 121 = 1.102663 ; for 12f reduced to an impro- per fraction is V ; and Logarithm 38 = 1.579784 Logarithm 3 = 0.477121 1.102663 = 12| r- § c. The index to the logarithm of an improper fraction, is always a proper index ; for the numerator, being greater than the deno- minator of such a fraction, the logarithm of the latter can be sub- tracted from that of the former, without borrowing 10 in the index. $ 93. To find the geometrical number which corresponds to a logarithm. $ a. The number of digits in the geometrical number for a loga- rithm, is known by the characteristic of the logarithm ; for 1 added to the characteristic tells the number of digits. $ b. Find, in the table, the mantissa of the proposed logarithm. The figures in the first column (N.) being prefixed to the figure that stands at the top of the column in which the mantissa is found, compose the geometrical number that is required. Digitized by VjOOQIC ft LOGABITHMS. $ c. The geometrical number of log. 3.750314 = 5744. The geometrical number of log. 2.759214 *= 574.4. The geometrical number of log. 1.750214 = 57.44. The geometrical number of log. 0.759214 = 5.744. This mantissa is found in the column (4) of the table, and opposite to 574 in the first column (N.). § d. Had the index of the logarithm been greater than (3), the number of digits for the geometrical number required, would have been made up by affixing ciphers to the numbers (574 and 4) found above, and opposite to, the mantissa. Thus, the geometrical num- ber for 4.976854 is known ($ a.) to consist of five digits, because of the index (4). The mantissa (.976854) is found opposite to 948 (in the column N.), and under 1 ; making up with ciphers, the proper number of digits. The geometrical number for 4.976854 =- 94810 The geometrical number for 5.976854 « 948100 The geometrical number for 6.976854 «* 9481000 $ e. If the proposed mantissa cannot be found in the tables, take that mantissa in the tables, which, being less, comes nearest to it, and affixing any number of ciphers to the difference between these two mantissa?, divide it by the difference between said tabular man* tissa and the one next in order after it ; the quotient, being affixed to the numbers opposite to, and at the head of the column of, said least mantissa, comprise the figures of the required geometrical number. The digits for the integral part of the geometrical num- ber are determined by the index of the proposed logarithm ($<*«)> and the figures which are to the right of these digits, constitute the fractional part of the geometrical number. Thus, $/. Geometrical number for 4.979744 = 95443. Geometrical number for 2.979744 = 954.43. Geometrical number for 0.979744 == 9.5443. The proposed mantissa (979744) cannot be found in the tables. The difference between the next less (.979730) and the next greater (979776) found in the tables, is 46 ; and the difference (14) between the less of these two and the proper mantissa being prefixed to any number of ciphers, (14000 ----), and divided by the tabular dif- ference (46), gives 3 + to be affixed to the four figures 9544, from which the required digits for the integral part of the geometrical number, are to be separated according to the index of the logarithm proposed. $ g. If the index of the logarithm proposed be an improper cha- racteristic, the geometrical number of the logarithm is a decimal fraction. And the difference between this characteristic and (9), tells how many ciphers must intervene between the decimal point ( . ) and the first significant figure of the fraction. Thus (the in- dices being improper), The geometrical number for 7.911424 — 0.008155. The geometrical number for 9.897027 «* 0.79. The geometrical number for 5.698970 =« 0.00005. Digitized by VjOOQIC LOGARITHMS. 5? $ 94. To perforin multiplication by logarithms. $ a. Add the logarithms of the factors together; the sum of these is the logarithm of the product. Thus, $ b. To multiply 3 by 4 ; 20 by 2.5; and .25 by .30. Logarithm 3 = 0.477121 Logarithm 20 = 1.301030 4 = 0.602060 " 2;5 = 0.397940 1.079181=12 1.698970=50 Logarithm 0*25 = 9.397940 „ 0.30 a 9.477121 8.875061 = 0.075 § 95. To perform division by logarithms; \ $ a. Subtract the logarithm of die divisor from the logarithm of the dividend, the remainder will be the logarithm of the quotient. $bi To divide 36 by 3; 8941 by 19; 50 by .05; and 82.7 by 70.9f. Log. 36 » 1.556302 „ 8 = 0.477121 Log. 8941 = 3.951386 „ 19 = 1.278754 1.079181 = 12. 2.672632 = 470.57+ Log. 50 — 1.698970 „ .05 = 8.698970 Log. 82.7 = 1.917506 „ 70.91 = 1.850708 3.000000 = 1000 0.066798 = 1.16+/^ § 96. To perform involution by logarithms. $ a. Multiply the logarithm of the proposed geometrical number by the index (§ X.) of the power to be involved ; this product will be* the logarithm of the required power. $&. Raise 8* 17 s 112* 516». Log. 8 = 0.903090 Log. 17 = 1.230449 2 3 1.806180 = 64 3.691347 = 4913 __ 11 Log. 112 = 2.049218 4 8.196872 = 157351936 Digitized by VjOOQIC 58 LOGARITHMS. Log. 516 = 2.712650 9 24.413850 = 2593267484132083176308736 § c. If the geometrical number that is proposed to be raised, be a decimal fraction, the difference between the characteristic of the logarithm of the power, and the product of 10 by the index of the power involved, expresses one more than the number of ciphers, that must precede the first significant figure of the required power. $ d. To raise .17 s .05* .064*. Log. 0.17=9.230449 Log. 0.05=8.698970 3 2 27.691347=0.00491 + 17.397940=0.0025 Log. 0.064 = 8.806180 6 44.030900 = 0.000001073+ § 97. Evolution is the converse of involution. $ a. To perform evolution by logarithms. \b. The quotient, obtained by dividing the logarithm of the power proposed, by the exponent (§ XII.) of the root to be extracted, is the logarithm of the root required. § c. To evolve the square root of 196, the <& of 81, and the 1/ of 128. Log. 196 = 2.292256 -*- 2 = 1.146128 = 14. Log. 81 = 1.908485 -*- 3 = 0.636161 + = 4.326+. Log. 128 = 2.107210 -5- 7 = 0.301030 = 2. # § d. If fiie geometrical number whose root is to be evolved, be a decimal fraction, in order to obtain the logarithm of the root required, the exponent, less one, of the root to be extracted, must be prefixed to the characteristic of the logarithm of the number proposed ; and then the quotient, that arises from dividing this quantity by the exponent of the root to be evolved, will be the logarithm of the power required. Thus, to find the cube root of .27. The loga- rithmic index of 0.27 is 9 ; now, to 9, prefixing one less (2), than the exponent (3) of the root to be evolved, makes the logarithm of 0.27 = 29.431364 -s- 3 = 9.810454 + = 0.646+. To find the square root of 0.00776, the logarithmic index of which is (7) ; pre- fixing to 7 one less (1) than the exponent (2), makes the loga- rithm of 0.00776 = 17.889862 -+• 2 = 8.944931 = 0.088 +. $ 98. In the tables (II.) containing logarithms for sines and co-sines, Digitized by VjOOQIC LOGARITHMS. 59 / I / \ tangents and co-tangents, the logarithms are calculated from the ratio between the radius and the sine, or the tangent of an arc. $ a. In these tables, as in all others, the logarithmic value of a sine or a tangent is conventional, as are the logarithms of geometri- cal numbers. $ b. In forming these tables, radius is taken as the base, or the ground work for the calculations ; and its value is assumed to be 10.000000. The logarithmic value of the sine of 90°, or of the tangent of 45° (§ 62.), shows that this is the value with which radius enters this system. Wherefore, in every calculation, ra- dius SB 10. § 99. If an arc of 90°, or if a right angle, be divided into any two parts, the sine or the tangent of either part, is the co-sine or co-tangent of the other. Thus, in the quadrant AB C ; AB=30°, B C = 60°, A a = 35°, and a C = 55° ; P B is the sine of A B = 30°, and co- sine of B C = 60° ; B S is the sine of 60° (B C), and co-sine of 30° (A B); therefore the co-sine of A B, is B S, which is sine of B C, and the co-sine of B C is B/7, which is sine of A B. In the same manner A H and C D are reciprocally the tangents and co-tangents of A a and a C. Wherefore the tables, by being calculated m * as far as 45°, answer for the whole circle, or for two right angles. § 100. The logarithmic value of the sec. of an arc, or an angle, is the arithmetical complement of the logarithmic co-sine of the same arc or angle. . % a. The logarithmic co-sec. is the arithmetical co. of the loga- rithmic sine, and the logarithmic co-tangent is the arithmetical co. of the logarithmic tangent, and vice versa (Vide § 109. § A.). $ b. Wherefore in logarithmic tables of the trigonometric func- tions, it is only essential that the logarithms of the sine, co-sine, and tangent, or of the sec, co-sec, and co-tangent, should be given, for the first three are the arithmetical co. of the latter, and vice versd ; but to facilitate beginners in their calculations, the logarith- mic sine, co-sec, co-sine, secant, tangent, and co-tangent, for every degree (°) and minute ('), are given in the tables (II.), as well as for every hour (h), minute (m), and four seconds (*), of the day. § 101. In trigonometrical calculations, when any logarithm is to be subtracted, the proper result may be obtained by adding the arithmetical co. of such logarithm. , § a. This method of changing subtraction into addition is found very convenient in practice. After a little exercise in it, the arith- metical co. of a logarithm may be read from the logarithm, as readily as the logarithm itself is read from the tables. § b. Wherefore in the solution of trigonometrical problems, sub- 1/ Digitized by VjOOQIC K 00 LOGARITHMS. traction need never be performed, for (§ 101.) instead of subtracting a logarithm, the same result is obtained by substituting, for this loga- rithm, its arithmetical co., and adding this arithmetical co. in the calculation ; therefore (§ 100. § a.), Ck logarithmic sine of an arc or an angle is to be subtracted, I add its co-sec, and vice versd. WhenJ ^ logarithmic co-sine of an arc or an angle is to be sub* ™ | tracted, add its sec, and vice versa. I A logarithmic tangent of an arc or an angle is to be subtract-* [^ ed, add its co-tangent, and vice versa. § 102, To find in the tables (II.), the logarithmic value of the sine pf an arc or an angle. § d. If the proposed arc or angle be an extreme one, the number at degrees contained in it, is at the top of the page. But if the one proposed be a mean arc or angle, the degrees contained in it, are to Be found at the bottom of the page. § o. An extreme arc or angle is one that contains less than 45°, pr more than 135°. A mean arc or angle contains more than 45° but less than 135°. § c If the proposed arc contain less than 45° or 3 h, or having — than 00° or 6 h, contain less than 135° or h, the odd mi- to be found in the proper minute column at the left pf the page. TJfrHfit be greater than 135° or h, or being greater than 45° or 3 h, contain tess than 90° or 6 b, the odd minutes of \t are contained in the minute column, that is at the right hand side pf the page. § d. The columns marked at the bottom, Cos., Sec, Sin., Co- sec, Go-tang., and Tang., contain the logarithmic co-sine, secant, sine, co-sec, co-tang., and tang., of the degrees, etc, that are at the bottom of the page. And those marked Sin., Co-sec, Cos., Sec, Tang,, and Co-tang., at the top, contain the logarithmic sine, co-sec, co-jnne, secant, tangent, and co-tangent of the degrees,etc, at the top of the page. § e. To take out of the tables the logarithmic sine of an extreme arc, that is less than 45°, say of 34° 40'. The degrees (34°) of the arc proposed being found at the top of the page, and the minutes (40') in the minute (') column at the left of the page, the logarithm (0.754060) which, in the column of Sin. stands opposite to the minutes (40'), is the required logarithm. In the same way the lo- garithmic co-sine, or tangent, etc, is found in its proper column, and opposite to the given minutes. Co-sine 21° 14' logarithm =* 9.969469. Tangent 19° 56' logarithm =* 9.659491. $/. If the arc (179° 7') proposed be extreme, and greater than 135 , the odd minutes (7') must be found in the last minute (') co- lumn on the page ; the required logarithm (8.187985) is then found ppposite, and in the column marked (Sin.) at the top. §g. The odd minutes of a mean arc, say 61° 12', that is less than 90°, are found in the last minute (') column ; and those of one, say 114° 59', that is greater than 90°, are found in the first minute Digitized by VjOOQIC LOGARITHMS. 61 (') column of the page ; and the character (Sin,, Cos,, Co-tang.) of the column is taken from the bottom of the page. Sine 61° 12' = 9.942656. Co-tangent 114° 59' = 9.068343. Tangent 114° 59' = 10.331657. § h. The trigonometric functions of hours, minutes, and seconds, are taken from the tables in the same way. $ 103. To find the degs. etc. for a log. sine. $ a. The minutes, in the minute (') column, which are found op- posite to the proposed logarithm, and the degrees, which stand where the column in which the proposed logarithm is found, is marked Sin., are the degrees and minutes required. The same directions answer for taking out the tangent, secant, co-sine, etc., of a loga- rithm. Thus, Logarithm 9.627300 sine = 25° 5' or 154° 55'. „ 9.956566 cos. = 25° 12' or 154° 48'. „ 9.831709 tang. = 34° 10' or 145° 50'. „ 9.745494 cos. = 56° 11' or 123° 49'. t , 10.377793 tang. = 67° 16' or 112° 44'. § 104. An arc (A B) and its supplement (B C) have the same sine (B H) ; therefore the same logarithm answers either to the sine of AB or B C. But, for the most part, in calculations, there is some circumstance connected in the operation, which determines whether an arc or its supplement be required. If not, the case or the solution is called doubtful. sines, secants, tangeants, etc. The same remarks apply to co- Digitized by VjOOQIC Digitized by VjOOQIC PLANE TRIGONOMETRY. Digitized by VjOOQIC Digitized by VjOOQIC PLANE TRIGONOMETRY. § 105. Plane trigonometry is that branch of mathematics by which, with certain data, the unknown parts of triangles are de- termined. § a. Plane trigonometry is divided into right, and oblique, angled trigonometry. The solution of right angled triangles pertains to the former ; and that of oblique angled triangles to the latter. The methods of solving problems in either, in most cases are similar* § 106. Every plane triangle consists of three sides and three angles ; which, in a general term, are' called the six parts of a triangle. §a. If the value of any three of these six parts (the three angles excepted), be known, the value of every one of the remaining parts is determinable by trigonometrical operations. § b. When the angles constitute the only data, the sides cannot b£ determined (except in species) ; because there may be any num- ber of triangles which are equiangular to each other, and their homologous sides may all be unequal, as the sides of the two tri- angles under § 73. are. § 107. In order to solve a trigonometric problem, the value of three of five parts, viz., two of the angles and the three sides, must be given, and at least one of these three parts must be a side*. § 108. The several combinations of three, which can be formed of five parts, comprise all the cases that are necessary for solving trigonometric problems. § a. To one of these every problem in trigonometry resolves itself for solution. § b. These several combinations are reduced to Jive cases ; viz., 1st, When two sides and the angle which is opposite to either of them, are given : 2d, When two angles and the side which subtends either of them, are given : 3d, When two sides and the angle which they contain, are given : 4th, When two angles and the side that is between them, are given: 5th, When the three sides are given. Digitized by VjOOQIC 66 , PLANE TRIGONOMETRY. CASK I. § 109. Given the sides (c & b) and the angle (B), that is opposite to (b) one of them: 4 _ 450 yards. b — 600 yards. B — 74° 49' Required the remaining parts (A, C, * «)! § a. First, to find the value of C By § 74., b : sine B : : c : sine C ; and substituting for these given parts (6, c, and C), their values, the proportion is, 600 : sine 74° 49' : : 450 : sine C. Log. sine of 74° 49' — 9.984669 Logarithm of 450 — 2.653213 12.637782 Logarithm of 600—2.778151 Log. sine C « 9.859631 « 46° 22' 15". $6. The sum of the two angles B and C (§ 32. $6.) being sub- tracted from 180°, gives the remaining angle (A) of the proposed triangle ABC. Tims, B + C - 121° 11' 15"— 180° « 58° 48' 45" —A. $c. The logarithmic process ($«.) of finding the value of C, might have been abbreviated, and the operation might have been performed entirely by addition. This abbreviation (§ 101.) con- sists in using the arithmetical complement of the logarithm of the first term in the order of proportion, in the place of said logarithm. This arithmetical complement, added to the logarithm of the second and third terms, gives the logarithm, (rejecting 10 from the index), of the fourth or required term. $ d. When one or more logarithms are to be subtracted in the process of a calculation, the operation may be simplyfied ($ 88. $ c.) by substituting for such logarithms, their arithmetical complements (§88. § e.), and adding these arithmetical complements in the calcu- lation, and then rejecting the borrowed 10 from the index of the sum thus obtained, the remainder is that which would have resulted by adding together the logarithms which were to be added, and then subtracting from their sum, the logarithms which were to be sub- tracted. J i e. Hereafter, instead of the logarithm of the first term in the er of proportion being used, its arithmetical complement will be adopted m calculation. This substitution of the arithmetical com- plement renders the arrangement for calculation uniform ; for it changes the process of addition and subtraction, into the simple operation of addition. Digitized by VjOOQIC PLANS TRIGONOMETRY. 67 $ f. Let it be borne in mind that the arithmetical complement ($ 88. $ d.) of any numerical expression, is obtained, by subtracting the expression proposed from the number which is made by prefixing unity (1) to as many cyphers, as there are figures in sand expres- sion. Thiif the aritnmetical complement of 89 is 11, for 89 — 100 ■■ 1 1 . Or, the arithmetical complement is obtained by beginning at the left, and subtracting each figure from 9 (§ 79. $ c), except the last significant figure, which must be subtracted from 10. Thus the arithmetical complement of 9,984569 is 0.015431 (what the former wants of 10.000000), and is obtained thus : 9.9 9 9 99(10) Logarithm 9.984 5 6 9 Ar. co. 0.0 15 4 3 1 $£. And the arithmetical complement of 3.450000 ($/.) is 6.550000, and is obtained thus : 9.9(10)0 00 Logarithm 3.4 5 000 Ar. co. 6,5 5 000 $ h. When the logarithmic index of any of the trigonometric functions exceeds 9, the arithmetical complement of such index is the difference between itself and 19, ($ 89. $ d.) and consequently the arithmetical complement is found by subtracting said index from 19. Thus the logarithmic tangent of 74° is 10.542504, and its arithmetical complement is 9.457496, which is the co-tang, of 74°. 19.9 9 99 9(10) 74° log. tang. 10.5 42 5 4 Ar. co. 9.4 57 49 6 $ »• To find the value of the side a; according to § 74, sin. B : b : : sin. A : a ; or, substituting their Tables, sin. 74° 49' : 60Q : : sin. 58° 48' 45" : a. Log. sine 74° 49' ar. co. = 0.015431 — co-sec. B (§ 100. §a. Logarithm 600 - = 2.778151 Log. sine 58° 48' 45" * 9.982208 Log. a wm 2.725790 = 531.8 yards. The 10, which was borrowed for the arithmetical complement of the logarithmic sine of 74° 49', being rejected in the sum, gives 2 for the index of the logarithmic value of a. %j. In the solution of all trigonometric problems by calculation, the logarithmic values of the function* employed are always used ; Digitized by VjOOQIC 68 PLANE TRIGONOMETRY. therefore the repetition of the word log. before sine, tangent, etc., will be omitted ; and the arithmetical complement of the logarithm of a function or number, is that which is to be understood, and not the arithmetical complement of the number itself. case n. § 110. Given two angles (A & C) and the si4e (c) that subtends one of them. c A = 23° 56' y^\ C = 76° 4' *f \ c = 1760 feet. *f' \ m To find the other parts (B, a \ and b), ^^ \ $ a. The process of solution in A ■* c m m ^" B this case is a repetition of the me- thods shown § 109. §6. & §».; for A + C subtracted from 180° (§ 32. $6.) gives B=80° ; and(§ 74.) sine C : e : : sin. A : a : : sin. B:6. § b. To find a. Sin. 76° 4' : 1760 : : sin. 23° 56' : a. Sine 76° 4' ar. co. = 0.012970— co-sec. C($ 101. $6.) Log. 1760 = 3.245513 Sine 23° 56* « 9.608177 Log. a = 2.866660=735.6 feet. $ c. To find b. Sin. 76° 4' : 1760 : : sin. 80° : b. Sine 76° 4' ar. co. = 0.012970=co-sec. G Log. 1760 = 3.245513 Sine 80° = 9.993352 Log. b = 3.251835—1785.8 feet. $va 0=119° 41'. ^S^ >^ To find the other ^S ^ >* parts (A, B & c), a s^ ^v j § a. The solution of & this problem is founded upon $77. § b. One angle (G) of the proposed triangle being known, the sum of the two other angles (A & ; B) (§ 32. § b.) is obtained by sub- tracting the given angle from 180°. Thus, 180°— 119° 41 '=60° 19', the sum of A & B. $ c. To find the values of A and B ; according to § 77., (b+d) : A+B AeoB tang. — §— : : (6od a) : tang. — g . Therefore, by substitution, A tr> "11 898.8 : tang. 30° 9' 30" : : 59.2 : tang. —^-. ( b+a )=898.8 log. ar. co. =7.046337 (A+B)-*-2=30°9'30" tang. =9.764207 (&* a)=59.2 log. =1.772322. A<» B Tang. —£~ =8.582866=2° 11/ 30". Digitized by VjOOQIC 70 PLANE TRIGONOMETRY. Now half the difference (2° 11' 30") between A and B, being added to half their sum (30° 9' 30") (§ 78. § A.), gives B the greater angle; and being subtracted from said half sum, gives A the less angle. Thua 30° V 30"+2° 11' 30"=32°21',orB; and 30° 9> 30" — 2° 11' 36" =27° 58% or A. A is known to be the less angle ($ 63.), because its subtending side (a) is the less of the sides b & a. $ d. The angles and two sides being known, the value of the third side (c) is deducible by means of calculations conducted upon the proportion ($74.) between the aides and sines of the angles of plane triangles. $ e. To find c. Sin. B : b : : sin. C : c. B=32° 21' sin. ar. co. — 0.271 573 =* co-sec. B ($100. $ a.) 6=479 faths. log. =2.680336 0=119° 41' sin. =0.988908 ($ 102. %g.) Log. € =2.890817=777.7 faths. $/. If the problem comprise a right angle triangle, with similar data, the process of solving it is much more simple. For the two legs and the right angle being the given parts, the calculations for determining the unknown parts, are founded upon the relations of the sides and trigonometric functions of a right angled triangle, as they are shown $ 75. $ g. In the prOpoeed triangle (D B JP C), right angled at B, the values of jf the legs, are \ * c=479 faths.; andrf =419.8 laths.; to find the other parts. $A. Making either leg (c\ radius, indordei / *A \ $ u To find D. c—479. Log. ar. co.= 7.319664 Radius - - =10. <*= 419.8 log. = 2.023042 ($ 75. $ c.) the terms and order of the proportion for finding the value of D, are, c : rad. : : d : tang. D. And for finding the hypothenuse (6) they are, rad. : c : : sec D : b. Tang. D = 9.942706=41° 13' 53" $j. To find 6. Radius - =10. c—479 log. = 2.680386 D=41° W 53" sec. = 0.123777 Log. b = 2.804113=636.9 faths. Digitized by VjOOQIC FLAWS TMGOWOMBTBY. 71 CASK IT. $112. Given two angle* (A & C) and the side (b) between them; A— 26° 1' C=38° 49' 6« 179 chains, To find the values of the other parts (B, c & a) of the proposed triangla(ABC). - $a. Two angles being known, the third (B) (§ 32. $ b.) is also known; it is B=*115° ltf. § b. The remaining unknown parts (a & c) of this triangle, are de- termined by means of the principles involved in the solution of the problem under Case 2. The process of operation in the solution of this, is precisely similar to that of $ 109. § t. under Case 1. In the method of their solution, Cases 1, 2, and 4, are only repetitions of each other. For whenever two angles of a triangle are given, the third is also known (§ 32. § 6.) ; and, whenever an angle and its subtending side are two of the known parts, the required parts are determinable through calculations conducted upon the proportion (5 74.) which exists between the sides and sines of angles in all triangles. $ c. To find the value of a. Sin B : b : : sin. A : a. B=115° 10', sin. ar. co.=0.043316=co-sec. B(§101.$6.) 6—179 chains log. =2.252853 A=26° 1', sin. =9.642101 Log. To find the value of = 115° 10' co-sec. = 179 chains log. z 38° 49' sin. - Log. c a c. =1.938270 =86.7 chains. B = b = C = Sin. B : b 0.043316 2.252853 9.797150 : : sin. C : c. 2.093319 = 123.9 chains. § e. Transferring the con- ditions of this problem to one in right angled trigonometry, the use of sines may be re- tained in the calculation for determining the unknown parts (c & d) ; for by making the given side (6), radius to- an arc (C H), the two legs of the proposed triangle (D B C) become (§ 75. § a.) sine and co-sine to the acute angles (D & C) ; ->n Digitized by VjOOQIC 72 PLANE TRIGONOMETRY. and ($75. §6.) rad. : b : : sin. Did:: co-sine D : e* The parte given axe D = 26° 1', and £ = 170 chains. $/. To find the values of e and d. Radios - - * 10. 6 = 179. log. = 2.252853 D = 26° 1' sin. = 0.642101 Log. d = 1.804054=78.5 chs. Radius = 10. 6=170 log. = 2.252853 D=20° 1' cos. = 0.053500 Log. c = 2.206452 = 160.8 chains. § £. The same result may be obtained by making a radius of either leg (c), and introducing different trigonometric functions into calculation, upon the principles shown under § 75. $ c. Thus ; sec D : b : : radius : c : : tang. D : rf. $ A. To find c and d by this method of calculation : D = 26° 1' sec. (ar. co.) = 0.053500=cos. D ($101. $6.) b = 170 chains log. = 2.252853 . Radius - - - = 10. Log. c = 2.206452=160.8 chains. D=*26° 1' cos. (§ 101. § b.) = 0.053500 6=170 chains log. = 2.252853 D=26° V tang. = 0.688502 Log. d = 1.804054 =78.6 chains. § t. The use of sine and co-sine as functions in plane trigonome- trical calculations, being more convenient than that of other func- tions, the former (§/.) is generally preferable to the latter method (§ A.) of solving problems. Digitized by VjOOQIC PLANE TRIGONOMETRY. 73 CASE V. ^ § 113. Given the three sides (B C, b, e) B C = 144 chains. \ b = 220 chains. \ c = 103 chains. \ To find the angles \ (C, A & B) \ § a. Here is the ap- j plication to practice of j the principles involved / in §79. And in order ...... /j| to determine the value / of any one (C) of these / angles by calculation, f the distance (a a') from the middle (a) of the base (C B), to the per- pendicular (A a') upon it, must be found by means of the proportion, (§ 79.) the base B G : b cdc : : b+c : 2 a a'. Then either of the segments (G a'-) is found (§ 79. §tf.) by applying (C a) half the base (C B) to (aa!>) the distance of the perpendicular at of from the middle of the base. This segment (G a'), the perpendicular (A a'), and the side (6), adjacent to the required angle (G), form a right angled triangle (G A of) ; of which are known the hypothenuse (6) and a leg (Ca'). § b. The value of the required angle (G) is then found according to the principles established under § 75. For by making the hypo- thenuse (G A) radius, the segment (G a!) becomes co-sine to the required angle (G) ; the value of which may then be determined (§ 75. § b) by means of the proportion, b : radius : : Co 7 : cos. G. § c. Knowing the value of any one (G) of the angles, either of the others (A) may then be determined by means of calculations conducted upon the proportion (§74.) of the sides of triangles to the sines of their opposite angles. And the remaining angle (B) (§32. § 6.) is determinable by subtraction. § d. To find the value of the angle C, 1st. Gall C B the base, in order to find twice the distance (a of) from the middle of the base, to a perpendicular drawn upon the base, from its opposite angle (A) (§79.). Twice the length of this die* tance(a a') is evolved by the proportion; C B : b & c : : b+c : % a a' . C Bt= 144, log. ar. co.=*7.841837 6o»c«=117. log. =2.068186 &+c«>38&. log. =.2.509208 Log. 2 a of =2.419026=262.4 L Digitized by VjOOQIC 74 PLANE TRIGONOMETRY. 2d. To find the greater segment C a'. One half of 262.4 (2 a a') is equal to the distance (a a') of the perpendicular from the middle B f of the base ; and (§ 79. § d.) a cr + -£-= c «'• Therefore, 131.2 +72«C a* =203.2. § e. If twice the distance (a a') of the perpendicular from the middle of the base be greater than the base, the perpendicular falls without the triangle, as in the case before us. But if it be less than the base, the perpendicular falls within the triangle. To find the value of G. According to § b. we have, b : rad. : : C of : cos. C. 6=220. log. ar. co.= 7.657577 Radius =10. G o / =203.2 log. = 2.307924 Cos. 0=9.965501=22° 32' 11" §/. To find the value of A (§ c.) we have, c : sin. C : : B C sin. A. x c=103. log. ar. co.=7.987l63 C=22° 32' ll"8ine= s 9.583504 BC=144. log. =2.168363 Sine A =9.729030=32° 24' 2" § g. To find the value of B. According to § 32. $6. C+A— 180°»B; therefore B=125° 3' 47". $ A. If, when the perpendicular falls without the triangle, the obtuse angle (B) be the first part required, the side (c) adjacent to it becomes hypothenuse to the right angled triangle, of which, the perpendicular to the base and the smaller segment (B a!) of the base, are legs, and the supplement (A B a!) of the required angle ) is that which is evolved from the proportion ($6.), c : rad. : : \ a' : cos. A B a\ EXAMPLE I. ffi 1 § 114. A rock is seven miles from a light-house, and a ship, having the light-house to bear E. by N., is nine miles 8. W. of the rock ; What is the distance between the ship and the light- house ? Ans. 12.4 miles. § a. The solution of this problem is conducted after the methods shown under § a. and § t. (§ 109.) The parts given are the sides a and c, and the angle (A) contained at the ship, between the bear- ing of the rock and light-house. The value of A is known by con- verting into degrees, etc., the points contained between the bear- Digitized by VjOOQIC PLANE TRIGONOMETRY. 75 nock ing of the rock and light-house, from the ship. The rock hears N. E., and the light-house E. by N. from the ship. Three points intervene between E. by N. and N. E., and each point contains 11° 15' ; therefore the angle (A) contained between the lines of these bearings is 11° 15'x3, or 33° 45'. § b. Unless the problem were embraced in a right angled tri- angle, the value of C must be found, and B known (§ 32. § b.) before that of b is determined. C is found (§ 109. § b.) from the proportion (§74.) which exists between certain parts of every triangle ; viz., a : sin. A : : c : sin. G. Then C+A — 180°=B; and then, sin. G : c : : sin. B : 6, affords the solution required. EXAMPLE II. § 115. A ship was steering N. and sailing 10 knots per hour ; she made a point of land bearing N. E. by N. ; two hours afterwards the same point bears E .by S. What is the distance of it from the ship? Ans. 12.+ miles. § a. The solution of this problem depends upon the principles which Example 1 involves. The angle (A) between the point of land and the ship's course is three points, or 33° 45'. The angle (C) between the bearing of the ship from the point of land at each station, is six points, or 67° 30* . And the angle (B) between the second bearing of the land and the line upon which the ship sailed, Digitized by VjOOQIC T6 PLANE TRIGONOMETRY. '£Xq ta W. 4» is seven points, or 78° 45* ; or it is A +C— 180=78° 45'. Then the proportion of sin. C : c : : sin. A : a, determines the value of the part required. EXAMPLE III. § 116. Several boats, intending to cut a ship out from under the guns of a castle, wish to know how far she is off from the castle, which bears N. i E. 917 fathoms from a watch-tower, that is 491 fathoms N. W. from the ship. ' Ans. 1285.7 fathoms. N $ a. The solution of this problem involves in it the principles demonstrated § 77, by which either angle (B or C) is found ; and then the length of the required side (a) is determined by the ratio between the sides and sines of opposite angles. § b. The parts given are, the distances (6 & c) of the watch-tower (A) from the ship and castle, and the angle (A) contained at the watch-tower between the lines of bearing from it to the castle and ship. The angle (A) at the watch- Digitized by VjOOQIC PLANE TRIGONOMETRY. 77 towr contains 111 points, or 129° 22' 30". The sum of the angles B and C is found by subtracting A (§32.) from 180°. And half their difference is determined by the proportion (§77.), b+c : tangent Z :: ba> c : tang. _ — _. § c. The value of B and of C is then known by § 77. § h. ; and the solution completed by evolving the value of a from the propor- tion, — sin. C : c : : sin. A : a. EXAMPLE IV. § 117. Wishing to know the height of a Chinese pagoda that stood in a plane, I took the altitude of the sun from an artificial horizon, and at the same time the length of the shadow cast by the pagoda was marked and measured* The sun's corrected altitude was 21° 10'. The length of the shadow 347 feet. Ans. Height of pagoda 134.3 feet. §a. The pagoda is supposed c to stand upright. The angle (A) .^.-*"f1 which is formed at the end of the shadow by an imaginary line drawn thence to the top of the pagoda, is 21° W, or whatever be the altitude of the body which causes the shadow. The solution of this problem may be conducted according to the principles shown § 75. § c. § b. The parts given are the length (c) of the shadow, the angles A and B. The latter is known from the primitive condition of the triangle, which is right angled. § c. Making the given leg radius, the other leg (a) or height of the pagoda, becomes tangent to the angle (A) of altitude. The value of tne required part (a) is evolved by means of the proportion, rad. : c : : tang. A : a. example v. § 118. A road crosses a mountain, the base of which is nine miles across. The distance from the foot to the top of the mountain, is 4.5 miles on one side, and 5.3 on the other. What is the angular ascent of the rbad on each side of the moun- tain, and how high is the top above the base ? „ Ans. Angle of ascent on one side=^H? 3tfc\ «2 ' • - ' • ' ^ Angle of ascent on the other=2fl? 1W»'-Z $7 -V i . 3 c Height of the mountain 1.94 miles, -f.^?: . § a. This problem involves in the solution of it, the principles Digitized by VjOOQIC 78 PLANE TRIGONOMETRY. demonstrated § 79. and § 75. The parts given are the three sides ^ a ' ' §&. The operation for finding the ascent of the ^^T^^^ road, or the angles A and 2 - j ^^^-^ C, is a repetition of the me- ^s^ \ ^*^^ thod shown in Case 5, §11 3, a-^- jTft ° for finding C and B. Bj>, the perpendicular upon the base (b) of the mountain, shows its height ; the value of it is deter- mined (§ 75.) after the angles A& C are determined. AC : cm a i:c+a : 2pb; and (§79. §d.)p b +^-=pC; and (§75. §6.) 2 a : rad. : : p C : cos. C ; and (§ 74.) c : sin. C : : a : sin. A ; and rad. : a : : sin. C : B p. EXAMPLE VI. Wishing to ascertain the breadth of a river, I observed that a cocoa-nut tree, which stood at the water's edge on the opposite bank, bore west of me ; then after having walked due south 194 yards, the same tree bore N. W. How wide was the river ? Ans. 194 yards. EXAMPLE VII. Wishing to know the height of a mountain in South America, on the morning of the 22d December, 1832, between eight and nine o'clock, I measured with a sextant the altitude of the sun above the top of the mountain; it was 19° 40' 15". The apparent alti- tude of the sun, measured at the same time from an artificial hori- zon, was 41° 47' 45". Then going from the mountain, I measured 4420 fathoms, and the next day, when the top of the mountain was again in the plane of the sun s azimuth circle, the sun's altitude above the top of the mountain, and from an artificial horizon taken as before, was, from the horizon = 40° 21' 30", above the moun- tain — 25° 14' What is its height? Ans. 3564.1 fathoms, or 21384 feet 7 inches. EXAMPLE VIII. Supposing that a ray of light is not refrangible, that the earth is a perfect sphere, that its diameter is 7924 miles, and that the height of Chimborazo is 21384 feet, How far can the top of this mountain be seen from the surface of the earth ? * The mean diameter of the earth is about 7923.57 miles. Digitized by VjOOQIC SPHERICS. Digitized by VjOOQIC Digitized by VjOOQIC SPHERICS. $ 119. Spherical Trigonometry is one of the principal branches upon which the science of navigation is founded. The solution of all problems for finding latitude, longitude, variation, etc., from data obtained by means of observations made upon celestial objects, depends upon the principles of spherical trigonometry. § a. As the figure of the earth is an approximation to that of a sphere, the whole science of navigation, properly speaking, is based upon the doctrines of the sphere. $ 120. The figure of a sphere may be generated by the revolution of a semicircle about its diameter, as an axis. A perfectly round globe or ball is a sphere. $ 121. Trigonometiically speaking, all lines upon a sphere are curved lines. These lines are either circles, or arcs of circles. Cir- cles are either great or small. $ 122. A great circle is concentric with the sphere. $ a. The shortest distance between two points on a plane ($ 8.) is the straight line that joins them ; and the shortest distance on a sphere, between two points, is the arc of a great circle, that joins them. $ b. Every great circle has two poles. § 123. The poles of a great circle are two points on the surface of a sphere, that are diametrically opposite to each other, and are equidistant from all points at the circumference of their circle. Consequently each pole is 90° from the circumference of its circle. $ a. The north and south poles are the poles of the equator. The equator is 90° from either pole. § 124. The straight line, which, passing through the centre of a great circle, joins its poles, is the axis of that circle. § 125. All great circles cross each other in points diametrically opposite. Therefore, • $ a. Two great circles cannot be parallel ; but they divide each other into arcs of 180° each. $ b. The space contained between the intersecting halves of two great circles, is called a lune. § 126. One great circle is perpendicular to another, when the two cross each other at right angles. § a. When two great circles cut each other at right angles, the axis of either lies along the plane of the other; and they pass through the poles of each other. M Digitized by VjOOQIC 82 SPHERICS. «$ 127. A secondary is a great circle that crosses another, perpen- dicularly. $ a* A meridian of longitude is secondary to the equator. § 128. Every great circle divides its sphere into two equal parts, as the Equator does the earth. $ 129. A small circle divides the sphere into two unequal parts ; as the Tropic of Cancer, or of Capricorn, or as a parallel of latitude, does the earth. § a. If every point at the circumference of a email circle be equi- distant from either pole of a great circle, the small is parallel to the great circle. § b. The centre of a small circle is in the axis of th« great circle to which it is parallel. $ 180. The radius of a small circle, is the sine of the arc inter- cepted between its circumference and the pole of the great circle, to which it is parallel. $ a. The radius of a parallel of latitude is the co-sine of its own latitude. $ 131. All spheric, like all rectilineal, angles, are either acute right, or obtuse ; and their values are expressed under the same de- nominations of degrees ( ° ), minutes ( ' ), and seconds ( " )• § 182. Two arcs of great circles, like two straight lines, (§ 25 & § 27.) that cross each other, make the vertically opposite angles equal to each other, the two angles that are on the same side of either, equal to two right angles, and the four angles together equal to four right angles. § 133. A spherical angle is at the pole of the circle, upon which it is measured. $ a. And the arc of this circle, which is intercepted between the two arcs forming the angle, is its measure. $ b. The two circles which form an angle are secondaries ($ 127.) to that upon which the angle is measured. §e. This circle ($ 126. $a.) passes through the poles of its se- condaries. § d. The distance between the poles of two great circles that form an angle with each other, measures that angle. $ 134. Every spherical, like every plane triangle, has three sides and three angles, and any two of the former are greater than the third. § 135. The sides of a spherical triangle are arcs of circles. Their values are always expressed in degrees ( ° ), minutes ( ' ), and se- conds ("). § 136. Plane triangles are unlimited as to the value of their sides ; the sum of the three sides of a spherical triangle is less than 360°. For if two arcs that form an angle be each 180°, they will intersect each other ($ 125.) in another point, that is diametrically opposite to their angular point; then, if a third arc cross these two, it will divide the lune (§ 125. § b.) into two triangles, and be a side to each. This third side is less (§ 134.) than the sum of the two other sides of either triangle, and the sum of these four sides, by supposition, Digitized by VjOOQIC 8PHERIC8. 83 b two semicircles, or equal to 360° ; therefore the sum of the two sides of either triangle plus the third side is less than 300° ; and so with any spherical triangle. § a. The minimum of the sides of a spherical triangle is without limits* $ 137. The sum of the angles of a plane triangle is equal to two right angles ; the sum of the angles of a spherical triangle, in all cases, is greater than two, but less than six, right angles. § a. The exterior angle of a spherical triangle (§ 132.), therefore is not, as in a plane triangle, necessarily equal to the sum of the two remote interior angles of the triangle. § b. Most of the other propositions of elementary geometry which •how the ratio, relations, or equality between the parts of plane tri- angles, are likewise applicable to spherical triangles. $138. Two angles, or two legs, of a spherical triangle, are alike, or of the same affectum, when both of them are either acute or obtuse. $ 139. In spherical, as in plane triangles (§ 63.), the greatest side and angle subtend each other ; so also do the mean and least. $ a. An angle and its opposite side are not always of the same affection. $ 140. Spherical, besides being, as plane triangles, divided into equilateral, isosceles, and scalene, are either right angled, quadrantal, or oblique. $ 141. A right angled spherical triangle has one right angle. $ a. The side subtending the right angle In the hypotheouse ; but it is not, as in a plane triangle, necessarily the greatest side. $ b. If the hypothenuse be less than 00°, the legs are of the same affection ; and the oblique angles also. $ c. If the hypothenuse be greater then 00° the legs are unlike, and the oblique angles also. $ J. A leg of a right angled spherical triangle, and its opposite angle, are always of the same affection. $ 142. A quadrantal triangle has a side that is a quadrant, or 90°. $ 143. An oblique spherical triangle has neither a side, nor an angle of 90°. $ 144. In plane triangles, the sides, and the sines of their opposite angles, have the same ratio to each other; in spherical triangles, the sines of the opposite sides and angles are proportional, $ 145. In plane triangles ($ 1(J7.), one side, at least, must be among the three parts that constitute the data necessary for finding the other parts ; in spherical triangles any three parts are data sufficient for determining the other parts. Therefore— § 146. In spherical trigonometry, the three sides of a triangle can be determined by having the three angles as data ; and the reverse. $ 147. For the purpose of facilitating, by logarithmic calculation, the solution of problems in spherical trigonometry that are included in oblique triangles, spherical trigonometry is here divided into right and oblique angled trigonometry. Digitized by VjOOQIC 84 SPHERICS. $ a. All the problems that come under the several cases, two ex- cepted, of oblique spherical trigonometry, may be solved by reduc- . ing them to analagous cases in right angled trigonometry ; this is done by means of drawing a perpendicular from an angle upon its subtending side, of the proposed triangle, and from such an angle, that the proposed oblique triangle will be divided into two right angled triangles, one of which shall contain two of the parts given in the problem. § 148. Every problem in oblique trigonometry may be solved without the direct intervention of a perpendicular, and of right an- gled triangles. § a. The process of calculation is shortened by solving the pro- blems without conducting the operation upon the principles of right angled triangles. For this reason spherical trigonometry is here divided into right and oblique trigonometry. $ 149. Problems comprising as data the three angles, or the three sides of an oblique triangle, do not admit of the intervention of right angles for determining the unknown parts ; because, in neither case can a perpendicular be so drawn in the proposed triangle, that two of the given parts will fall in either of the right angled triangles, or on either side of the perpendicular. § 150. By some, problems that depend upon quadrantal triangles, are included in a separate division of spherical trigonometry, called " quadrantal trigonometry." But knowing three parts, the other three of a quadrantal triangle may be determined by the rules for finding with similar data, like parts that are unknown in a right an- gled triangle. § a. In arranging for calculation the trigonometric functions of the parts in a problem included in a quadrantal triangle, the less must be called angles, and their adjacent angles, legs; the supple- ment of the angle that subtends the quadrantal side, must be called the hypothenuse, and the quadrantal side, radius. $ 151. The side and angle that are opposite in a quadrantal trian- gle, are of the same affection. $ 152. The relations between the parts of a triangle in plane, and the parts of a triangle in spherical, trigonometry, are similar; and the formula) for the solution of problems in the one, are analogous to the formula) for the solution of similar problems in the other. $ a. As much, with regard to the sides, can be determined from the three angles of a plane triangle, as can be determined from the three angles of a spherical triangle. In the former case, the trian- gle can be determined in species; and in the latter, the sides are de- termined in degrees and minutes of arcs, which arcs, in absolute length, may be infinitely great or small. And the number of miles, or of any units of a positive quantity, contained by any one of these arcs, depends upon the relations of other quantities to it, and not at all upon the relations between it and the other parts of its tri- angle. f ft. In order then to arrive at absolute values for the sides and angles of a triangle which are submitted for calculation, a third Digitized by VjOOQIC 8PHERIC8. S5 quantity, that will answer the purpose of a common measure for lines and angles, or arcs, must be brought into consideration. $ c. And this common measure is the radius of a circle. When we say that a side of a spherical triangle is an arc containing a cer- tain number of degrees and minutes, we have no reference to the absolute length of this arc, or to the number of inches, or fathoms, or miles, contained in it. It may be an arc whose radius is in- finitely great or small. But if the length of its radius in inches, or miles, be known, the absolute length of the arc also in the denomi- nations of the same dimensions is determinable. But this belongs to another branch of mathematics, which is not relevant to the pur- poses for which this treatise is designed. $ 153. The analogy between the formulae for the solution of pro- blems of like data and quaesita in plane and spherical trigonometry, grows out of the resemblance between the parts of a plane and a spherical triangle. $ a. Suppose that the sides of a spherical triangle should remain of the same absolute length, and that the radius of their sphere be increased ad infinitum. The angles at the centre of the sphere, which these sides subtend, and the number of degrees contained in these sides, or arcs, will be decreased until they reach the ultima- tum, when the surface included by these three sides becomes a plane, the triangle a plane triangle, and a finite portion of infinity. RIGHT ANGLED SPHERICAL TRIGONOMETRY. § 154. In the trigonometrical solution of right angled spherical triangles, there are five parts, (three sides and two angles,) any one of which may be the unknown and required part of the pro- blem. § a. The right angle is ever known from the condition of the triangle. In calculation the right angle is not called zpart. $ 155. Any two of the five parts of a right angled spherical tri- angle being known, the rest are determinable by means of trigono- metrical calculations. $ 156. In right angled spherical trigonometry, there can be six cases of two different parts as data, viz. : 1. The hypothenuse and a leg. 2. The hypothenuse and an angle. a. The two legs. 4. The two angles. 5. An angle and its opposite leg. 6. A leg and its adjacent angle. § 157. Lord Napier has given two rules, by which every problem that can occur in any of these several cases, may be solved. But he has not made known the process of reasoning, by which he ar- rived at the conclusions, whence he deduced these rules ; nor have mathematicians been able to follow the steps of this bold reasoner. $ a The truth of his, called the Catholic Proposition, is sufficiently Digitized by VjOOQIC 86 RIGHT ANGLED TRIGONOMETRY. established by practice, and by its utility, and may therefore be ad- mitted as an axiom or received truth. $ 158. In his Analytical Treatise on Plane and Spherical Trigo- nometry, Dr. Lardner observes, " We have thus established Napier 1 a rules, by proving separately all the several cases which they in- clude. There is no independent or general demonstration of these remarkable theorems, nor is it easy to conceive the process of mind by which their illustrious inventor arrived at them. Professor Woodhouse justly observes, that there are not, perhaps in the whole compass of mathematical science, rules which more completely at^ tain that which is the proper object of rules, namely, brevity and facility of computation. He might have added, that few, or per- haps no theorems equally general, make such an immediate and permanent impression on the memory."* § 150. The Jive parts of a right angled triangle, are called, in Napier's rules, the circular parts. $ a. The circular parts are the two legs, and the complements of the hypothenuse and its adjacent angles, instead of these three parte themselves. • $ 160. The right angle ($ 154. $ a.) is thrown out of considera- tion ; and the five circular parts join each other. § a. The complement of the hypothenuse joins the complement . of each of the two angles; each of which angular complements joins its adjacent leg, and the two legs join each other. $ 161. In every problem two of these parts are given and a third is sought They are named from their relative position with regard to each other. * § a. One of them is the middle part; the two others are extremes , either conjunct or disjunct. § 162. If the parts given and the part sought join each other in circular order, the first and last in this order are called extremes conjunct; and the part between them connects them together, and is called the middle part. $ a. The triangle ABC, represents a right angled spherical tri- angle, right angled at A ; its hypothenuse is a, and b &, c are its two legs. The circular parts are the leg 6, the complement of C, do. of a, do. of B, and the other leg c. § ft. The three parts, a, B, c, join in circular order. The com- plement of B is the connecting part between c and the complement of a. The complement of B is the middle part; c, and the comple- ment of a, are extremes conjunct. § c. Of the parts B, c, b. e, by C. 6, C, a. C, a, B. a, B, c. Middle part is, c. b. Complement of C. Complement of a* Complement of B. Extremes conjunct are, 6, and complement of B. c, and complement of C. b 9 and complement of a. Complements of C and B. c, and complement of a. • See Analytical Treatise on Plain and Spherical Trigonometry, by the Rev. Dfonyatue Lardner. Digitized by VjOOQIC 8PHBEIC8. « "\\ Complement of C/ SL ■qttq / ^o^'-~ § 163. If the parts given, and the parts sought, be not adjacent to each other in the circular order, that part which stands alone, or is not adjacent to either of the two other parts, is the middle part, and the two others are extremes disjunct $ a. The three parts, a, c, b, do not join each other in the circu- lar order; the complement of a is not adjacent to either of the two other parts, being separated from them by the complement of the two acute angles, C & B; it stands alone, and is therefore (§ 163.) the middle part, and the two other parts that do join each other, are the extremes disjunct. Middle part is, Complement of B. §6. Of the parts B, 6, C. c, C, a. c, C, B. 6, a, B. b. a, c, Extremes disjunct are, 6, and complement of C. Complements of C and a. and complement of B. Complements of B and a. b and c. Complement ofC. b. Complement of a. § 164. Napier's rules establish an equality of ratio between ra- dius, the sine of the middle part, and certain trigonometric functions of the extremes. They are, $ 165. The product of radius and sine of the middle part, is equal to the product of the tangents of extremes conjunct. And, § 166. The product of the co-sines of extremes disjunct, is equal to the product of radius and sine of the middle part. § 167. Every problem in right angled spherical trigonometry can be solved either by the one or the other of these two rules. § a. They have been put in the following mnemonic form ; " The product of radius and middle part's sine Equals that of the tangents of parts that combine ; Or, that of the co-sines of those that disjoin." Digitized by VjOOQIC RIGHT ANGLED TRIGONOMETRY. § 168. If the data and quesita be opposite sides and angles, the problem proposed may be solved by the pro- portion (§ 144.) between the sines of opposite sides and angles. § 169. ABC represents a right an- ged spherical triangle upon a plane; is the right angle, and b the hypo- thenuse. § a. The circular parts, commencing with c, and naming them in the order around to the right, in which they join; are c, a, cos. C, cos. 6, and [jl cos. A CASE I. § 170. Oiven the hypothenuse (6) and a leg (c). The hypothenuse b « 74° 40'. The leff c — 60° 14'. To find the other parts. § a. 1st. To find the other leg (a). The three parts that, in this case, comprise the data and qussitum of the problem, are the two legs (c, a), and the hypothenuse (6). The complement of 6, (§ 163. § a.) is not adjacent to either of the other parts, (c, a.); therefore (§ 163.) it is the middle part, and c and a are extremes disjunct; and ($ 166.) cos. e x cos. a ■■ Sin. 6°xRad.;* then (§ 71.) cos. c : Rad. : : sin. b° : cos. a. c » 60° J 4'. cos. ar. co. =■ 0.304108 (=« sec. c.) Radius 10. b a 74° 40'. cos. (- sin. ft ) — 0.422318 Cos. a a 9.726426 — 57° 40'. $ c. In looking in the tables for the degrees, etc., which corres- pond to the logarithmic co-sine, 9.726426, it will be seen that 122° 1 T, the supplement of 57° 49', also corresponds to it. Which of the two to take, is known ($ 141. $6.) by the affection of the two legs. $ d. The sine, tangent, secant, etc., of an arc or angle, ($ 52. § d.) are the co-sine, co-tangent, co-secant, etc., of the complement of that arc, and ($ 104,) the sine, tangent, secant, etc., of the supple- ment of the same arc. Therefore, § c. Cor. The logarithmic value of any trigonometric function * To obviate the necessity of writing complement, the circular ports of the hypothenuse end two angles will be denoted in the rest of the work by writing en (°) after the letter which standi for any one of those parts. Thus, o°, C°, B°, stands for the compleipents of a, C, B. Digitized by VjOOQIC SPHERICS. SO corresponds to two arcs or angles ; viz., an angle and its supplement. Thus, log. sine 9.611576 = 24° 8', or 155° 52'. §/. There is generally some circumstance connected with the conditions of the problem, or triangle, under solution, which deter- mines the affection of the required part, and thence the arc required ; for every one of the sides and of the angles of a spherical triangle (§ 136. & $ 137.), may be either greater or less than a right angle, or § g. To find the value of a. In this case A is the middle part. It is between, and joins, the two other parts 6° and c. Therefore ($ 162.) 6° and c are extremes conjunct And (§ 165.) rad. x sin. A° = tang, c x tang. 6°. Then (§ 71.), rad. : tang. o° : : tang, c : sin. A . : Radius =10. 03-74° 40' co-tang. = 9.438059 (= tang. 6°, $ 52. $ d.) c=60° 14' tang. 10.242655 Sin. A°(=co-ein. A. (§ 52. § d.) = 9.680714=61° 21' 9". § A. 61° 21' 9", and not its supplement, is known ($ 141. $6. & § d.) to be the required value of the angle A. $ t. If the angle (C) opposite to (c) one of the given sides be re- quired from the data of this case, the' ratio ($ 144.) between the sines of opposite sides and angles, will determine the value of it, viz. : Sin. 6 : sin. B (= ($ 62.) rad.) : : sin. c : sin. C. $/. Or the value of C may be determined by means ($ 166.) of the Catholic Proposition ; c ($ 163.) is the middle part, and b° and O are extremes disjunct; and ($ 166.) cos. o° x cos. C° = sin. c Xrad.$ wherefore (§71.) cos. b° : rad. : ; sin. c : cos. C°; which is the proportion under § *., stated under different denomi- nations, but the same ultimately ; for the co-sine 6° and cos. G° (§ 52. § d.) are the same as sin. 6 and sin. C. 6=74° 40 sin. ar. co. = 0.01 5741 =co-sec. (§ 101. § b.) Radius =10. c=60° 14' sine = 9,938547 Sine C « 9.954288=64° 10' 14" (§ 141. § d.) N Digitized by VjOOQIC 00 RIGHT ANGLED TRIGONOMETRY. CASE II. § 171. Given the hypothenuae (ft) and an angle (C), $—119° 39' C— 104° 01' To find the other parts. § a. 1st. To find the other angle (A). The two angles (A, C,) are adjacent to the hypothenuae (ft), which is therefore ($ 162.) the middle part, and the two angles (A, C,) are extremes conjunct; then ($ 170. § g.) tang. C° : rad. : : sin. 6° : tang. A° ; and ($ 52. $ d.) co- tang. C : rad. : : cos. ft : cotang. A. C— 104° 1' co-tang. ar. co. — 0.602601— tang. ($ 100. § a.) Radius —10. 6=119° 89' cos. - 0.604842 Co-tang. A— 10.207088— 26° 46' 86". § ft. The value of A is known to be less than 00° (§ 141. $ e«), because C is greater than a right angle. $ e. 2d. To find a, which ($ 141. § d.) is also less than a right angle. The three parts, a, C°, and 6°, join in circular order; and ($ 162. $ c.) C° is the middle part, and 6° and a are conjunct ex- tremes. Then (§ 170. §g.) tang. 6° : rad. : : sin. C° : tang, a; and ($ 52. § d.) co-tang. ft : rad. : : cos. C : tang. a. ft— 110° 80' co-tang. ar. co.— 0.244700— tang. ($ 101. $6.) Radius =10. C— 104° 1' cos. « 0.384182 Tang, a = 0.628801-28° 2' 68' $rf. 3d. To find e; c(§ 141. $rf.) is greater than a quadrant The method for finding the value of e in this case, is similar to that ($ 170. $ j.) of fining C, Case 1. Rad. : sin. ft : : sin. C : sin. c. Radius —10. ft— 110° 30' sin.— 0.030052 C— 104° V sin. — 0.086873 Sin. c- 0.025025-122° 31' 18". Digitized by VjOOQIC SPHERICS. 01 case ni. $ 172. Given the two legs (a, c), (§ 52. $ a.) cos. 6. Radius »10. e—74° 14' cos.= 0.434122 a— 31° 16' coe.^- 0.031845 Cos. b — 0.365067=76° 84' 12' $ b. 2d. To find an angle (C); it is less (§ 141. $ d.) than 00°. The three parts C°, a, c, join in circular order; and (§ 162.) C° & c, are conjunct extremes, and a is the middle part : then (§ 165. & $71.) tang, e : rad. : : sin. a : tang. C°=co-tang. C. c=»74° 14' tang. ar. co.= 0.450777=co-tang. Radius =10. — cos. B tang. c. & j. c— 74° 14' tang.— 0.549223 B— 20° 38' 27" cos.— 9.971 187 Tang. B p»0.520410— 73° 12' 39" * Had. (§ 98. % £.), being always equal to 1 or to 10 in logarithmic calcula- tions, is not written down in these formula ; its value is brought into account by applying H to the log. index of the result, as in the case above. By omitting rad. the formula) for calculation are rendered more compact and convenient. The proper value will always be given rad. in calculation, by having the fog. index of the result to consist only of one figure, as in the case above, where radius ia taken into the account by simply writing 9 instead of 19 for the log. index of auxl. a'. Digitized by VjOOQIC 10* TRIGONOMETRY. $ k. The perpendicular falling within the triangle, makes the sum of the segments (§ 193. $ a.) equal to the base a; therefore (§/. & jy.) a«81° 5' 55". $ /. To find the value of A. Sin. c : sin. C : : sin. a : sin. A. e =74° 14' cosec. =0.0 16655 C»69° 10' sin. =9.970636 a =81° 5' 55" sin. =9.994738 Sin. A=9.982028=106° 22' 12"; A is greater ($ 195.) than 90°. $ m. The value of A may also be determined bv the Catholic Pro- position; for (§ 171. $ a.) cotang. C A/>«=^~=(§ 196.) cos. b tang. C. Also co-tang. B A p=cos. c tang B. $ n. B Ap+C Ap«A, according as the perpendicular arc Ap falls within or without the triangle. $o. C— 69° 10' tang. =0.4 19611 ft«21°17' cos. »9.96932l Co-tang. C Ap=0.388934—22° 12' 51" B— 20° 88' 27" tang.»9.575983 c— 74° 14' cos. -9.434122 Co-tang. B Ap=9.010105— 84° 9' 21" BAp+CAp(§c.)«=A 106° 22' 12" 5 p. The process of solution by such methods of calculation as the above, is circuitous. But cases sometimes occur when they may be used with advantage. And in order that the process, by which the required result is obtained from calculations conducted upon the principles of right angled spherical trigonometry, may be made familiar to the learner, the calculations are carried out. § q. By analysis and the use of a little artifice, rules are deduced, and formula constructed, for obtaining the same result from the ap- plication of the same principles to calculation, but by less tedious operations. The auxiliary arcs and angles used in such methods, are derived from the principles of the Catholic Proposition ; and the methods themselves are nothing more than right angled sphe- rical calculations, rendered less circuitous in execution by previous combinations, eliminations, and substitutions of the parts that are contained in the two right angled triangles, into which the oblique one of the problem is divided. $ r. To find the value of A by the help of auxiliaries. Let the angle B A p be called auxiliary A" ; and let auxiliary A', be the angle (C Ap) which is in the right angled triangle in which two (5, C,) of the given parts of the primitive triangle are contained. Digitized by VjOOQIC OBLIQUE SPHERICS. 103 § *. According to § m. co-tang. A'— cos. b tang. C. $ t. Now, (§ 165. & $ XLV. Alg.) jI^Af,. Cos. A' , Tang. As Cos. A" . ' Cos. A" —t- ; also 2-j — - — — - ; wherefore — : — cot b rad. cot. c cot. c Cos. A' , , A -. ~ A „ Cos. A' Cot. c r- ; and by transposition, Cos. A — r— cot. b J r cot. b & ($ 101. § 6.) C ° 8 ^' ^ 0t C -Cos. A' Cot. e tang. b. Therefore, Cos. auxiliary A"— cos. A' cot. c tang. 6. Whence the general rale for finding the value of (A) the angle opposite to the unknown side. $ u. The product (§ «.) of tang, of the given angle, and cos. of the given side that is adjacent to it, is co-tang, of auxiliary A'. And, $ v. The product of tang, of the same side, and co-tang, of the other given side, multiplied by cos. of auxl. A' (§*.), is cos. of the other auxiliary A". And the sum (f 193. § a.), or difference (§ 193. § &.), of the two auxiliaries, gives the required angle. $w. c— 74°14' cot. —9.450777 b —21° 17' cos. —9.969321 - - - tang.— 9.590562 0=0:69° 10' tang.— 0.419611 Cot. A'— 9.388932— 22° 12' 51" - cos. —9.966506 84° 9' 21" - Cos. A"— 9.007845 A— 106° 22' 12" ($ o.) §x. The formula for the calculation (§w.) l * arranged in the most convenient order for operation. The value of auxl. A' is evolved during the process of finding that of the other A" ; and the log. tang, and cos. of 6, are taken out at one opening of the .tables ; so, also is the value of A' and its cos. System and method in cal- culation should by no means be neglected. They promote accuracy and facilitate practice. It is therefore the business of every calcu- lator to introduce, system in his operations. The habit of arrang- ing the several quantities in the most convenient order for calcula- tion, contributes to accuracy, and makes verification more ready. §y. To find the value of a, by the help of auxiliaries. Call the segment C /», auxl. a', and the segment B/>, auxl. a". $ z. From a train of reasoning analogous to that under $m., it ia shown that, tang. auxl. a'— tang, b cos. C. Rad. Cos. a' %za. Also ( 166. & $ XLV. Alg.) r-- r ;and * v 9 oy cos. Ap cos. b Rad. Cos. a" 4 . r Cos. a" Cos. a' , ♦*.«„«_ i ■ — • ; therefore — r- ; and by transpo- cos. Ap cos. c cos. c cos. b Digitized by VjOOQIC 104 TRIGONOMETRY. ,i Cos. a cos. c , e 1A , - . N , . sition cos. a"= r —($101. $6.) cos. a' cos. c sec. ft; then a n a" (§ c. & §n>)=a. Whence the general role for finding the third side. § * ft. The product of cos. of the given angle and tang, of its ad- jacent side, is (§*.) tang, of auxl. a'. And, $ z c. See. of the same side, multiplied by the product of cos. of the other side and cos. of auxl. a' ($za.), is cos. of the other auxl. a". %zd. If the two angles adjacent to the base, be each less than 60°, the perpendicular falls within the triangle, and (f 193. $ a.) the sum of the auxiliaries is the required part. %z e. But if these two angles be unlike, the perpendicular falls without the triangle; and then (§ 193. $6.) the difference of the auxiliaries is the required part $ */. c— 74° 14' cos. -9.434122 ft =21° 17' tang,— 9.590502 - - - sec— 0.080679 C— 69* 10' cos. —9.551024 Tang. cr*- 9.141586— 7° 53' 16'' - cos. =9.995872 73° 12' 89" - Cos. «"— 9.4*8679 a— 81 p 5'55"(§* 14'' These two last methods are this most common in practice. CASE II. ->* B* C= =29° Iff i74° 46' -150° 51' 50" co-8ec.> sin. sin. .0.810862 *9.984466 =9.687427 § 198. Given two angles and the side that subtends one of them, B=o=29° 16' C=150° 51' SO'' 6*=74° W To find the value of each of the other parts (A, c & a.) § a. The value of c (§ 144.) is deter- minable by a direct calculation ; Sin. B : sin. b : : sin. C : sin. e. Sin. c«9.982695=106° 4' 2" § 6. Suppose the perpendicular (A p) from A, upon the side op- posite to A, to fall without the triangle. Then the two known parts in the right angled triangle Ap C, are b, and (§ 132.) the supplement of U. The unknown parts of the proposed oblique tri- angle may be computed by right angled trigonometric operations. § c. In the triangle Ap C, (§ 197. § e.) tang. C p«=cos. C tang. b. Also in the triangle pAB, tang, p B*=cos. B tang. c. Then C$193. S*0 C P*P B—a- ^ (J. The value of A also, may be determined by rules of right an- gled trigonometry. § 6. When the perpendicular falls without the triangle, the dif- erence of the two auxiliary angles B Ap, and C A/7, is the an- gle A. P Digitized by VjOOQIC 106 TRIGONOMETRY. $ /. Bat if it falls within the triangle, B kp+C A j»— A, ($ 197. $n.) $ g. Co-tang, p A Cs«cos. 6 tang. C ; and co-tang. B A/>-*cot. e tang B (§ 107. § m.). Then ($ e.) A==B A pnp A C. $A. C«150°51'50" cos. — 0.041246 ($ c.) 6s 74o 46* tang.= 0.564022 Tang. Gp= 0.506168«72° 41' 3" B— 20° 16' cos. « 0.040603 c«-106° 4' 2" tang.= 0.540585 Tang, jo B= 0.481278— 108° 16' 15" Now (5 c.)pB—C />—««=. 35° 35' 12" $t\ C«150°51'50" tang. -0.746181 (§£.) &= 74° 46' cos. =0.410544 Co-tang. /> A C =0.165725= 81° 4C 4'' c=106°4'»" cos. =0.442111 B=20° 16 7 tang.=0.748505 Co-tang. B A />= 9. 190010=98° 49' 0" Now ($ e.) B kp—p A C=A=17° 8' 56" $j'. To determine the third angle (A) by the help of auxilia- ries. The angle p A C is auxiliary A'; and the angle B kp is auxiliary A". $ *. Co-tang. A'=cos. b tang. C (§ g.). $/. And ($ 166. and $ XLV. Alg.) ~ = SlP '^ ; also * oy cos. Ap cos. C Rad. Sin. A" . t Sin. A" Sin. A' . . _ r — = =- ; therefore =--= 7= ; and by trans- cos, kp cos. B cos. B cos. C ' •^ . i» Sin. A' cos. B , t %M e . N ., _ position, sin. A"= = =(§ 101. § 6.)=sin. A' cos. B see. C. Whence the general rale for finding the third angle. $ m. The product of cos. of the given side, and tang, of its adja- cent angte* (§ i.} is co-tang, of auxl. A'. And, $ n. The product of sec. of the same angle, and sin. of auxl. A% multiplied by cos. of the other angle, ($0.) is sin. of auxl. A". And ($ 107. $ n.) A'+ A" is the required angle. Digitized by VjOOQIC OBLIQUE SPHERICS. 107 5 *• B=29° ltf cos.=9.940693 C=160° 61' 60" tang.=9.746181 - - sec.=0 068764 6= 74° 4C cos. =9.419544 Cot AW.165726=81°40' 4" sin.=9995391 98° 49 / Sin. A"=9.994838 A=17° 8'60"($e.) $/>. To determine 'the value of the side (a) opposite to the un- known angle with the help of auxiliaries* Let the segment p C be auxiliary a 9 ; and the other segment p B, be auxiliary a", $ q. Tang- <*' ($ c)=-cos. C tang. b. $ r . And by a process of reasoning similar to that under Case I, ($ 197. § z a.), it is shown that sin. a"=sin. a' tang. C co-tang. B ; forfflffg.) Tang ' A ^ Sin ' g/ - 3lfl0 Tang.A J> Sin.A- , ,or u i*o.j_ — - __, also — -j -55^-. .» - Sin. a" Sin. a' tneretore, =» — — ; and by transposition, sin. a"— Sin. A' cot. B ^ ^ ", , , — c «sin. a' cot- B f[ and (( 198. $ «.) the auxiliary angle B A p+A, equals the auxiliary tingle C Ap. Also the difference of the auxiliary arcs/) B &p O ($193. §&.)isthesjfea. § 6. If any one ot the unknown parts be determined, the two others may be found from the proportion between the sines of op- posite sides and angles. $ c. To determine the value of C by the roles of right angled tri- gono4Betry. $ d. In the right angled triangle B p A, ($ 166. & $ 197. $ #*)# co-tang. B Ap— cos. c tang. B. Also, ($ 196.) sin. Ap— sin. B sin* e. And B Ap+ A=C A p. $e. Then in the right angled triangle Cp A, the parts C Ap & kp aft* known, and ($ 196.) cos. C— sin* O Ap cos. A p. $/. c— 36° 19' cos. —9.906204 B— 184° 17' tang.— 0.010866 Co-tang. B Ap— 9.917070— 60° M 15" c sin.- 9.772503 B sin.— 9.854850 Sin. Ap— 9.627353— 25° 5' 12" B Ap+A— C Ap-70° 7' 15" (§ a.) §£. CAp— 70° 7' 15" sin.— 9.973318 A p— 25° 5' 12" cos.— 9.956969 Cos. C— 9.930287— 31° 36" 10" $ h. To find the value of the third angle (C), with the help of auxiliaries. The angle B A p is auxiliary A'. Co-tang. A' (§ d.) —cos. e tang. B. Digitized by V^OOQlC OBLIQUE 8PHBRIC*. 109 r • a j re ino * , v COS. A f> COS. B . COB. Afi Coe.C Cos.C Cos. B . _ ^ ^ -r — / A , N ; therefore — : — ■- . 77? — - ' *; 5 •■* *y *««***• ■in. (A + A') sm. (A+A') sin A' J r ^ . . ^, « Cos. B sin. (A+A') sitkra, Cos. O— -■ t v B ^cos. B sin. (A + A') co- nn. A' CD 94c. A'. $j. Cos. Cssscos. B co-sec. A ; sin* (A+A') when kp falls with- out th* triangle. And, $ ft. C&s. Csacos. B co-sec. A' sin. (Aoo A') when A p falls within it Whence the rule. $/. The product of cos. the given side, and tang, of either angle (5 A.) 9 is co-tang, of auxl. A'. And, (5 1.\ § m. Cos. of the same angle, multiplied by the product of co-sec. of auxl. A' and sine of the sum ($,/.)» or difference (§ i.) of auxl. A' and the other angle, is cos. of the required angle. in. c- 36° 10' cos. =9.906204 B-»184° 17' tang. ^0.010866 cos. =9.843984 Cot. A'=9.917070=50° 26' 15" cosec. =0.1 12985 (A+A')«70° 1' 15" sin. ~9.978318 31° 36' 10" Cos. C-9.930287 To find the value of the two sides (a and b) with the help of auxiliaries. $ o. According to a train of reasoning similar to that shown under Case I, (§ 197. § t.) cot. &=cot. c cos. (A +A') sec. A' ; for Bad. Cot. c . Rad. Cot. b x — =■ 7-' > also : 1 — — tk . a/n 5 tne » tang. A p cos. A tang. A p cos. (A -f A ) Cot b Cot. c » ' — -« r# 5 and by transposition, cot. 0a* cos. (A + A') cos. A' J r CD Cot. c cos. (A + A') , I-; -sssCOt. C COS. (A+A') JCC. A'. COM. A' v « y $ j). By drawing the perpendicular from B upon its opposite Side, and calling the angle A B b auxiliary B', we obtain by a similar process of reasoning. Cot. a=cot. c cos. (B + B') sec. B'. $q. Cot B'=cos. c tang. A. Whence the rule for finding the value of either unknown side. $ r . The product of cos. the given side and tang, of the angle ($ A. & § qJ) opposite to the required side, is co-tang, of the required auxiliary which call A'. And ($ o. & $ ».), $ s. The product of cot. the given side and sec. of this auxl. A', Digitized by VjOOQIC HO TRIGONOMETRY. multiplied by cos. of the sum, or difference of A' and the angle ad- jacent to the required side, is co-tang, of the required side. § t. To find the value of b by this rule. B— 134° 17' tang.»0.010866 Cum 36° 19' cos. =9.906204 - - - cot.=0.133700 Cot. A , =9.917070=50° 26' 15" - sec.=0.195916 (A+A')«70<>7'15" cos.«9.581528 54°0'27" Cot. ft=9.861144 $ u. To find the value of a by the same rule. A-19°41' tang.=9.553548 c= 36° 19' cos. «9.906204 - - cot.=0.133700 Cot. A'=9.459752=73° 55' 15" - sec. =0.557576 (B— A')=60° 21' 45" cos.=9.694175 22° 22' 82" Cot a— 0.886451 $v. A triangle that has a side or an angle greater than 180° most never be used in the solution of trigonometrical problems. $ t*. Therefore in the solution of all cases (§ ti.) where the sum, or difference of an auxiliary, and an arc or angle, is to be brought into calculation, if the sum would exceed 180°, the difference is the proper quantity to be used. § x. The two unknown sides may also be determined by a me- thod of calculation differing from that above, but depending on prin- ciples analogous to those under § 77. for plane triangles. This method is the most common in practice. $y. The sine of i the sum of the two given angles (^, B) ; Is to the sine of 4 their difference; As the tang, of i the given side (c) ; Is to the tang, of i the difference of the two required sides (a, ft,). And, $ z. Cos. of the same J sum; Is to the cos. of the same J difference ; As the tang, of J the given side ; Is to the tang, of 4 the sum of the two required sides (a, b.) Digitized by VjOOQIC OBLIQUE SPHERICS. Ill $za. i (A+B)=76° 59' co*ec. =0.01 1305 I (A— B)=57° 18' sin. =9.925060 i ea 18° 0' 30" tang. =9.515844 Tang, i (o o&)=9.452209=15° 48' 58" i (A+B) sec. =0.647365 i (A— B) cos. =9.732587 | c - tang.=9.515844 Tang, i (a+6)=9.895796=38° 11' 29" $z b. The greater side (6) is opposite (§ 139.) to the greater an- gle ; and (§77. $g.) 38° 11' 29"+15° 48' 58"=54° 00' 27" or b ; and a=(38° 11' 29"— 15° 48' 58"=), 22° 22' 31". § z c. To determine the value of the third angle (G) with the help of an auxiliary arc a'. %z d. The sine of I the turn > of the two given angles Is to i the sum of the sines) (A & B) ; As the sine of £ the given side (c) ; * Is to the sine of auxl. a'. Then, $ z t. The product of cos. of auxl. a* and sine of J the sum of the two given angles, is cos. of £ the third angle (C). $ zf. B=134° 17' sin. =9.854850 A= 19° 41' sin. =9.527400 2)19.382250 9.691 125=4 sum of the sines of the two given angles. i c =18° 9' 30" sin. =9.493659 i (A+B)«76° 59' co-sec. =0.01 1305 - sin. =9.988695 Sin. auxl. a'=9. 196089=9° 2' 12" cos.=9.994576 15° 48' 5" Cos. i 0=9.983271 2 C— 31° 36' 10' Digitized by VjOOQ l€ lie TRIGONOMETRY. CASE IV. $ 200. Given two sides and the angle they include, a=109 o 30' 6« 60° 00' C— 27 p 06' To find the other parts (A, B, c). This is the converse of Case III., for we have to find here what is there given. § a. If the perpendicular A p fall within the triangle, the sum of the segments (C p+p B) is equal to a ; and the sum of the auxiliary angles, G kp+p AB=A. § ft. Any one of the unknown parts of the triangle proposed, be- ing found, the two others are determinable from the relations (§ 144.) of sides to their opposite angles. £ c. To find B, by the Catholic Proposition. By Case II., Cos. C (§ 171. § c.) tang. Cpss q . =(§ 101. § 6.) cos. C tang. 6; also (§ 171. § d.) sin. A />=sin. b sin. C. Then (§ a.) *~ € p**p B ; and the value of An, and of B/>, in the triangle kp B, being known, that of B ($ 155.) is determinable ; cotang. B « ($ 172. § &.)«- Sin./>B f — j-» 8m .^B cotang. A p. §d. C=27° 6' cos. =9.949494 6=00° 0' tang. =0.236661 Tang. C/>= 0.168065=57° 2' 4" C sin.: b sin. =9.658531 =9.937531 Sin. A p =9.596062= 23° 14' 8' 109° 30'— 57° 2' 4" (§<*.)=/> B =52° 27' 56." Digitized by VjOOQIC OBLIQUE SPHERICS. 113 § e. p B=52° 27' 56" Sin. =9.899267 Ap=23° 14' 8" Cotang. =0.367204 Cotang. B=10.266471=28° 25' 54" §/. To find the value of each of the unknown angles (A, B), with the help of an auxiliary arc (a'). A perpendicular drawn from either of the unknown angles (A, B) fulfils the conditions of § a. (§ 184.) ; suppose the perpendicular drawn from B to the fall with- out the triangle. § g. Let the distance (Cp or C A) of the given angle from the per- pendicular be auxiliary a\ Then whether the perpendicular fall within or without the triangle, the difference (§ d.) between the side upon which it falls and the auxl. a' is the other segment of that side. $ A. First, to find the value of B, the arc Cp being auxl. a! ; tang, a' ($ d.)s=cos C tang. b. Rad. Cot. C §t\ According to Case II. ($ 198. ^O^^^-g^ - Cot. B , t . . ^ . Cot. C Sin. (am a') Sin. (a Ma') ; md ** *™W»««* Cot - B : SihT*. sscot. C sin. (a co a') cosec. a'. §j. To find the value of A. In the triangle C A B, C A is auxl. a'; and tang. a'=cos. C tang. a. ^, Rad. Cot. C Cot. A **' lb0 * Tang. B A^SinT^Sin. (b « a') ; ^ V transposi- tion, €ot A S5 Cot.CSin.(6«) a 9 ) mmeoL c sin< (6w a , } ^^ fl , Sin. a' Whence the general rule for finding either angle. §/. The product of cos. of the given angle (§ A. and §j\) and tang, of the side opposite to the required angle, is tang, of auxl. a'. And, § rn. The sin. of the difference between auxl. a! and the side ad- jacent to the required angle, multiplied by the product of the cosec. pf.jauxl. a 1 and cotang. of the given angle (§ t. and § A.), is cotang. of the required angle. §». J=60° 0' tang.==*0.238561 C=27° 6' cos.=9.949494 - - cot.=0.290963 Tang. auxl. a'=0.188055=*57°2'4" cosec. «0.076240 (a' cc fl)=52° 27' 56" sin.=9.899268 28° 25' 54" Cot. BsO.266471 Digitized by VjOOQIC 114 TRIGONOMETRY. § o. Or, to find the value of A ; a«100°'30 / tang=0.450851 C= 27° 6' cos. ==9.949494 - - - cot.=0.290963 Tang. ^=0.400345=111° 41' 32" cosec. =0.031898 (&)= 51° 41' 32" sin.«9.894699 148° 47' 10" Cot A=0.217560 %p. The value of the third side (c) can be found with the help of the same auxiliary a'. Cos. A © § q. When the perpendicular falls within the triangle, p A , N Cos. 6 Cos. c .. *■*• ($ 198. § ^)-c5s7? g Cos.(aa a') ; ^ *™*?°* l *<>» Co8 - «■ - Ooi.tCoi.(q»«0 d ( } Cos. a' v ' $ r . And when the perpendicular (B A) falls without the triangle, Cos. B A Cos. a Cos. c T^"c5S~Co..(6 »«') ; b 7 *"■***». cos. c= Cos. a Cos. (&w a') ,* fV " \ i«cos. a cos. (6 w a ') sec. tf. Cos. a' v J N. B. (am «0—p B, and (6 »a') s =A A. Hence the general rule for finding the third side, § *. The prQduct of cos. of the given angle, and tangent of either given side, (§ A. & $y.), is tang, of auxl. a'. § U Then (§?.&§ r.) cos. of the same given side, multiplied by the product of sec. of auxl. a', and cos. of the difference between auxl. f . .. . Is to cos. of £ the difference, 5 ot me tw0 Sldes ' As co-tang, of £ the given angle ; Is to tang, of £ the sum of the required angles. $ za. The sine of £ the sum, > f , ., . Is to the sine of £ the difference, 5 ot me two 8iaes ' As co-tang, of £ the given angle ; Is to tang, of £ the difference of the required angles. § zb. £ (a+&y=84° 45' sec.=s 1.038571 £ (a— b)=*24° 45' cos.s 9.958154 £ C =13° 33' cot.= 0.617980 \ Tang. £ sum (A & B) =1.614705=88° 36' 32" £ (a+b), co-sec.= 0.001826 £ (a—*), sin.= 9.621861 £ C cot.= 0.617980 Tang. £ diff. (A & B>=0.241 667=60° 10' 38' § x c. 88° 36' 32"+60° 10' 38"=A=148° 47' 10" > ,*„ c , x And, 88° 36' 32"— 60° 10' 38"=B= 28° 25' 54" } U".j*.; %z d. The following method of finding the value of the third side (c) with the help of an auxl. a', is useful and of frequent oc- currence in nautical calculations. § z c. Half the product of the sines of the given sides, and twice the sine of half the given angle, multiplied by the co-sec. of £ the difference between the two sides, is the tang, of auxl. a'. % zf. Then the product of co-sec. of a' and said half product of the sines of the three said quanttties, is the sine of half the required side. Digitized by VjOOQIC 116 TKIGONOMETRY. 10- 109° 30' sin. » 9.974347 60° 00' sin. = 9.937531 13<> 33' sin.x2=»18.739522 2 ) 38.651400 19.325700 i(a»&)«24 45'co-sec.= 0.378139 19.329700 Tang. auxl. a'= 9.703839=26 o 49'22"cosec.:=0.345600 27° 58' 42" 2 c=55° 57' 24" Sin. i c« 9.671300 CASE T. §201. Given the three sides a«66° 6«=44° c«30° To find the angles. § a. Neither in this, nor in the pre- ceding case, can g the value of any one of the unknown parts he determined by the Catholic Proposition; for the proposed triangle cannot be so divided into two right angled triangles, that two of the given parts shall be contained in either of them. § 6. This, and the case that immediately precedes it, are particu- larly useful to the navigator. Some of the most important problems, and those which are of most frequent occurrence in navigation, come under one or both of these cases for solution. The problems, for finding azimuths and the time of day at sea, fall under this case. This and the preceding case are both involved in the calcula- tions for finding the true, from the observed, lunar distance. Both cases are also involved in finding the latitude by " double altitudes." And by Case IV, the lunar tables in the nautical almanac, are cal- culated. § c. In this, as under the other cases, there are several methods for finding the value of the required part In all cases the methods, which are the best adapted to practical purposes, are given. § rf. To find one of the angles (A.). The product of the co-sec. of the sides that contain the required angle, multiplied by the pro- Digitized by VjOOQIC OfiLfQUft ftPHBATCS. Uf duct of the sine of half the sum of the three sides, and sine of .that half turn, less the side opposite the required angle, is double the cos. of £ the required angle. $ e. 7tatce the tang, of i the required angle, is the product of co-sec. of i the sum of the three sides, and cc~*ec. of said i sum, less the side opposite the required angle, multiplied by the product of the sines of the difference between said half sum and each of the sides that cdntain the required angle. $/. «« w(s *»*"" s v the three angles, ' x s v A=114° N. B= 39° n / \* C— 49° / X To find the value / v of the sides. \ § a « This pro- \ blem is but of lit- c£- ——————— y..,^^ "•— -*^ \ ^ e Poetical utility *^"^""*«*,A to the navigator, B for problems in which the three angles of a triangle are the data, seldom occur. But there are several methods by which the side required may be found ; one of which, being general in its application, is thought sufficient. § 6. The product of cos. of the difference between half the sum of the three angles, and each angle adjacent to the required side, multiplied by the product of co-sec. of each of said angles, is twice the cos of i the required side. § c. To find the value of a. (A+ B+C) B _ 620c(H , ne = 9.671609 (A+B+C) 2 -C =s 52° co-sine = 9.789342 B =39° co-sec. C =49° co-sec. wice cos. of £ a= = 0.201128 » 0.122220 T :2)19.784299 Cos. i a 1— 9.892149= *38° 43' 50" a= 2 =77° 27' 40" §rf. The value of one side being known, that of the others is determinable. Digitized by VjOOQIC NAUTICAL ASTRONOMY. Digitized by VjOOQIC 1 Digitized by VjOOQIC NAUTICAL ASTRONOMY. § 203. That part of astronomy which treats of the motions and ef the positions of the heavenly bodies, is an important branch of navigation. A knowledge of these motions and positions is highly essential to the navigator ; for it is by understanding them, that methods have been devised for determining latitude' and longitude at sea, by means of observations made upon the heavenly bodies. $ 204. The figure of the earth is that of an oblate spheroid. It resembles that which would be described by the revolution of a semi-ellipse about its minor axis. It is flattened in at the poles, and elevated towards the equator. $ 205. To suit the common purposes of navigation, the earth may be considered as a perfect sphere ; the sun as the centre of the uni- verse, and the centre of motion in the planetary system ; the fixed stars may be considered to be almost stationary, and immeasurably distant from the earth and from each other; from every part of the earth's orbit, they are seen in the same relative positions, with re- gard to each other. $206. The earth has two rotary motions ; one about its axis, which produces day and night; the other in its orbit, and around the sun, which causes the seasons. $ a. The latter is called the earth's animal, and the former its diurnal, motion. $ 207. In its annual revolution around the sun, the earth describes the periphery of an ellipse. $ a. The centre of the sun is in the plane, and at one of the foci of this ellipse, and the centre of the earth moves on its circumfer- ence. $ 208. The axis of the earth is inclined, from a perpendicular to the plane of its orbit, nearly at an angle of 23° 28'. $ a. If the earth's axis were perpendicular to this plane, there would be no change of seasons, or variation in the length of day and night; and at either pole there would be continual day. $ b. It is this angle of inclination which causes the declination of the sun. $ c. In a northern winter, the earth is nearer to the sun than it is in summer ; but owing to the sun's declination, or the inclination of the earth's axis to the plane of the earth's orbit, the south pole is turned towards the sun daring the former season, and the sun's rays striking the northern hemisphere more obliquely than they do in R Digitized by VjOOQIC 122 NAUTICAL ASTRONOMY. summer, are in consequence, spread over a greater surface, and are therefore less effective in producing heat. $ 209. The earth revolves from west to east. It completes one revolution on its axis in a day, and one around the sun in a year. $ 210. The periphery of the earth's orbit, like the circumference of every re-entering curve, contains 360°. $ a. The earth completes one revolution in its orbit, in 365(Z, 5A, 48m, and 48*. § b. Therefore, the motion of the earth in its orbit, in one day, is, as 365 Cancer (25), Leo (aj, Virgo (nj), Libra (a), Scorpio (m,), Sagittarius (/), Capricornus (yfy, Aquarius (»), and Pisces (x). § b. The first six being north of the equator, are called northern eigne. $ c. The other six are south of the equator, and are called eouth- ern eigne. $ 225. The points in which the ecliptic ($ 223. $ a.) crosses the equator, are called the equinoctial points; because, when the sun passes through these points, the days ind nights are equal. $ 226. The sun crosses the equator, and enters the first point of Digitized by VjOOQIC 124 NAUTICAL ASTRONOMY. Aries, about the 21st of March. The son then pastes through Aries* Taurus, and Gemini, towards the north ; and about the 21st of June, it reaches its greatest northern declination at the first point of Cancer, where it appears to be stationary for a while ; it is then said to be in the summer solstice. $ a. The first point of Cancer, is a solsticial point. $ b. Returning thence, towards the south, the sun passes through Cancer, Leo, and Virgo, and completing its tour, or the north side of the equator, it arrives, about the 23d of September, at the intersection Qf the ecliptic with the equator, when the day and night are again equal, and the sun is in the autumnal equinox. § c. Recrossing the equator then, the sun enters the first point of Libra, and continuing on towards the south, it descends through Libra, and the succeeding signs, and re?.ches its greatest southern declination, about the 22d of December; then it is at the first point of Capricorn, and again appears to stand still. § d. The sun is now in its winter solstice ; and returning towards the north, it ascends through Capricorn, Aquarius, and Pisces, and entering the first point of Aries, completes one annual revolution, and goes on to renew the seasons. $ 227. The time from the sun's passing the first point of Aries, until its return to that point again, is about ($210. § a.) 365DGZ) would show the altitude of Z from his sensi- ble horizon. — iC § a. When the eye is elevated above the level of the sea, (as at A,) the line of vision A B to a point B in the sensible horizon, cuts the plane C D of the rational horizon at an angle, DEB, which angle is called the dip. Consequently, when the eye is above the surface of the plane on which we stand, the sensible horizon is be- low the rational horizon. $ b. The poles of the rational horizon are the zenith and nadir. $ 276. The zenith is the point in the heavens which is directly over head. $ a. Being a pole of the horizon, the zenith is 00° from the horizon. $ 277. The nadir is the other pole of the horizon ; it is in the lower part of the heavens, directly under our feet, and diametrically opposite to the zenith. $ 278. Azimuth circles are secondaries ($ 127.) to the horizon; cutting it perpendicularly, they intersect each other in the zenith and nadir. $ a. They are also called vertical circles. $ 279. The azimuth circle which cuts the horizon in the east and west points, is called the prime vertical* $ a. The prime vertical of every observer, is secondary to his meridian. $ 280. The altitude, and zenith distance of a heavenly body, are measured on its azimuth circle. Digitized by VjOOQIC NAUTICAL ASTRONOMY. 131 §281. The zenith distance of a heavenly body is its distance from the zenith of the observer ; thus, Z s (§ 275.) is the zenith dis- tance of the star at *. § a. It is measured on the arc of the azimuth circle, which lies between the centre of that body and the zenith. § b. The zenith distance is north when the body is south of the observer. $ c. And south, when the body is north of the observer. 5 282. The altitude of a heavenly body, is its distance above the horizon. § a. The arc of the azimuth circle which is contained between the centre of a body and the horizon, measures the altitude of that body ; thus, D s (§ 275.) is the altitude of the star at 8. $ b. The complement of the altitude of a body, gives its zenith distance. § 283. The altitude which is taken of the sun or moon, with a quadrant or sextant, is the observed altitude of one of the edges, called a limb. § a. The apparent altitude of the centre is found by applying the corrections, (which are laid down in the Nautical Almanac,) for the semidiameter of the body, to the apparent altitude of its limb. $ b. And the true, is obtained from the apparent altitude of the centre, by applying to the latter, corrections for the parallax and refraction, which are also known by previous calculations. $ c. The apparent and the true altitude of a body, are always measured on the same azimuth circle. § 284. The rays of light coming from the heavenly bodies strike the atmosphere obliquely, and entering from a rarer into a denser medium, are refracted, or bent downwards ; this causes the body whence they emanate to appear higher up in its azimuth circle than it really is. Suppose # e (§ 275.) be a ray of light from *, and A o to represent the atmosphere ; when this ray strikes the atmosphere, it will be reft acted so as to reach the eye of the observer at a, in the direction a e, which makes * appear at 8, above its true place. § a. Hence the apparent altitude of the sun or a star is always ^ greater than the true altitude, unless the body be in the zenith. • $ 285. Parallax has a contrary effect ; it acts in a direction oppo- site to that of refraction, and causes a body to appear lower down in its azimuth circle than it really is. $ a. But the effects of parallax and refraction, though acting in contrary and opposite directions, seldom counterbalance each other, so as to make an object appear in its true place. $ 286. The parallax of the moon is always greater than the re- fraction; and the moon always appears below its true place. § a. Hence the apparent, is always less than the true altitude of the moon. $ 287. The horizontal parallax of a body, is the difference be- tween the true and apparent place of that body, (supposing there be no refraction), when it is in the horizon. $ a. The horizontal parallax is equal to the angle at the body, Digitized by VjOOQIC 132 NAUTICAL ASTRONOMY. which is subtended by the distance of the observer, from the centre of the earth. $ b. The angle which this distance, or semidiameter, subtends, is greatest when the body is in the plane of the rational horizon ; thus, the parallax of a body at D, (§ 275.) is the angle G D a; and the parallax of the same body, when at s, is G * a. § c. As the object rises above the horizon, the angle which this semidiameter subtends, is called parallax in altitude $ it gradually decreases until the object reaches the zenith, when it vanishes. § d. The nearer the object is to the earth, the greater will this angle be at the centre. Hence the moon's parallax is greater than the sun's, and this greater than that of the fixed stars. § 288. The parallax of a body decreases from the horizon to the zenith, in the proportion of sine of the zenith distance (J 281.) to radius. $ 289. Owing to the effects of parallax and refraction upon the heavenly bodies($ 285. $ a.)* they are never seen in their true places, except when in the zenith. $ a. The places in which the heavenly bodies are seen, are called their apparent places, § 290. The true place of a heavenly body, is that place in which it would appear, if seen from the centre of the earth. § 291. The azimuth of a celestial body is the angle which is con- tained at the zenith, between the meridian of the place, and an arc of the azimuth circle, which passes through the centre of that body. §a. In north latitudes, the angle on the north side, and in south latitudes, the angle on the south side, of the arc of this azi- muth circle, is called the azimuth. § b. Before a body crosses the meridian of the observer, its azi- muth is east, and west afterwards. $ c. Thus, in north latitude, an azimuth is said to be north, so many degrees east, if the body be east of the meridian ; or N 9 so many degrees west, if it have passed the meridian. § d. And in south latitude, the azimuth is reckoned in the same manner from the south point, to the east or west. § 292. The amplitude of a celestial object, is the arc of the hori- zon that lies between the east or west point, and the centre of that object when it is rising or setting. VARIATION OF THE COMPASS. $ 293. The variation of the needle, is determined by means of azimuths, or amplitudes. § 294. The needle does not always point to the north and south poles. At some places it points to the east, and at others to the west, of the true north and south points. § a. Even at the same place, the polarity of the needle does not remain constant $ b. As to the direction in which the needle points, it is subject to certain periodical changes, which do not follow any known laws. Digitized by VjOOQIC NAUTICAL A8TR0N0MY. 133 At some places, after having pointed, for several years, to the east- ward of the true north, it has gradually pointed nearer to the north point, until its position lay due north and south ; then crossing the direction of the meridian, the needle has continued to turn more and more to the westward of the true north, until it has attained the maximum of its deviation for that place, when, after having remained stationary for a time, it commenced its return towards its former position. $ 295. Variation of the compass is the deviation of the needle, from pointing to the north and south poles. $ 296. The points to which the needle tends, are called the mag- netic north and south points. § 297. When the northern point of the needle, or the N point on the compass card, points to the eastward, or to the right, of the true north, the variation is easterly. § a. And westerly when the same point points to the left, or to the westward of the true north. $ 298. The true direction of the magnetic north point, is found by applying the variation, when it is easterly, to the right of the true north ; and to the left of the true north, when the variation is westerly. § a. Thus, when the variation is one point easterly, the north point of the needle, or the N point on the compass card, points N. by E. And it points N.N. W. when the variation is two points westerly, 5 6. Wherefore, knowing the magnetic bearing of any object, its true bearing may be determined, by applying the variation, when easterly, to the right of its compass bearing; and to the left, when the variation is westerly. $ c. The true bearing of an object, that bears east per compass, is E. by S. if the variation be one point easterly ; but E. by N. if the variation be one point westerly. $ 299. The cause of variation, as well as of the attraction of the needle, towards the poles, is unknown. $ 300. The needle is subject to the influence of another power equally mysterious in its nature ; it is called local attraction. § a. This attraction operates on ship-board, and with different effects in different latitudes, as well as in the different directions in which the vessel may be heading, $ 6. Its effects upon the needle become obvious by taking the bearing of a fixed point on shore, then swinging the ship entirely around, and observing at several different points of her heading, the bearing of said fixed point. § c. The effect of local attraction upon the compass, is not often . taken into consideration by navigators, although on board of vessels I J\rQ' in some latitudes, (as in the English channel), it is said to cause 1 the needle to deviate several degrees. The loss of fleets has been ' ascribed to the neglect of this attraction, on the part of navigators. % d. In conducting surveys particular attention should be paid to the effect of local attraction upon the needle. $ 301. A magnetic meridian is a great circle that passes through the magnetic north and south points, and through the zenith of the observer. Digitized by VjOOQIC 134 VARIATION. V: § a. The needle always lies in the direction of this meridian. 5 b. Magnetic meridians cross each other in the magnetic poles. § 302. The magnetic equator is a secondary to all magnetic meri- dians. § 303. The magnetic prime vertical is a secondary to the mag- netic meridian of the observer. § a. It passes through the zenith and the magnetic east and west points of the horizon. § 304. The magnetic azimuth of a celestial body, is an angle at the zenith, that is contained between the magnetic meridian of the observer and the zenith distance of the object, when its bearing is taken. § a. The magnetic azimuth should always be reckoned from the nearest pole, around towards the east, when the object is on the east side of the meridian of the observer ; and to the west, after the object has crossed the meridian. § b. The advantage of reckoning the magnetic azimuth in this way, consists in having the true and magnetic azimuth always of the same name ; i. e. either both east, or both west. $ 305. The magnetic amplitude of a celestial body, is that arc of the horizon, which lies between the centre of the body, when the body is in the horizon, and the magnetic east or west point, accord- ing as the body is rising or setting. § 306. Upon the magnetic equator, the needle assumes a horizon tal position. § a. To the north or south of this equator, it points downwards 9 inclining towards the nearest magnetic pole. § 307. The angle of this inclination of the needle, below the plane of the horizon, is called the dip of the needle. § a. The maximum of the dip is at the magnetic poles, and the minimum at the equator. § b. The ratio of the increment in dip, from the equator, towaids the poles, has never been satisfactorily established. § 308. The variation of the compass is found by ascertaining the true and magnetic azimuths, or amplitudes, of any celestial object at the same moment. § a. The difference between them is the variation. § 300. The magnetic azimuth, or amplitude of a celestial object, is found by taking its bearing with an azimuth compass. § 310. The true azimuth or amplitude of a celestial object is de- termined by trigonometrical calculations. § a. The usual data for this operation, are the co-latitude of the observer, and the zenith, and polar, distances of the object §311. In North Latitude ; the variation is easterly, if the magnetic, be less than the true, azimuth, when the object is on the east side of the meridian ; or the variation is easterly, if the magnetic be the greater azimuth, when the object is west of the meridian. § a. And in South Latitude ; the variation is easterly, when the magnetic is the greater azimuth in the former, and the less in the latter case. Digitized by VjOOQIC Digitized by VjOOQIC tlatt V. Digitized by VjOOQIC NAUTICAL A8TR0N0MY. 185 $ 312. In each case, mutatis mutandis, the variation is westerly. § 313. Stereo graphic projection is the most useful, and being the most natural, is the most simple mode of representing a sphere, or circles of a sphere, upon a plaue. $ 314. In stereographic projection the eye is supposed to be at some point on the surface of the sphere, and to see one half of the sphere. § a. The circle which terminates the vision is called, in projec- tion, the primitive circle, $ b. The eye is the centre of this circle, and is the projecting point. § 315. The diagrams for the purposes of nautical astronomy, in this treatise, are projected upon the plane of the horizon. § 317. This Fig. is a stereographic projection upon the 7 plane of the horizon, in lat. 40° north. 5 " § a. A, the projecting point, represents the centre of the horizon W N E S, as well as the zenith and the eye of the observer ; P, the pole of the observer; P N (§ 251.) the elevation of the pole ; W Q E (§ 232.) the equator ; A Q (§ 248. § b.) the latitude of the observer ; and A P the complement of his latitude ; W A E (§ 279.) his prime vertical ; N P S (§ 248. § c.) his meridian ; A B / (§ 278.) the azimuth circle of the body whose altitude is taken ; B / and A B (§ 280.) its altitude and zenith distance ; dec (§257.) the paral- lel of its declination ; P B (§ 258. § a.) its polar distance, and P B H (§ 256. § a.) is an arc of its circle of declination ; A P B (§ 263.) is the horary angle at which the body is ; B A P (§ 291 .) is its azimuth ; N, E, S, and W, (§ 272.) are the cardinal points of the horizon ; and W P E (§ 263. § a.) is the six o'clock hour circle. § 6. It is easily conceived how it is, that, of all circles which cut the primitive circle of a projection, only that part of their circum- ference which is above the primitive, can be seen from the project- ing point ; and that 180° of every arc of these circles, that are great circles, is above (§ 125. § a.) the horizon or plane of projection. § c. And consequently that all of these arcs will appear in the projection to be more straightened out, or of less curvature than the primitive circle ; and this curvature will be in proportion inverse to the obliquity with which their planes cut the plane of the primitive. § d. The less obliquely these planes cut the plane of the horizon, the more obliquely the observer at A looks upon them, and conse- quently the less their arcs appear to be curved, until, looking upon the edge of the planes of those which pass through his zenith, they appear as straight lines. § 318. In these projections, every great circle (N P S, W A E,) which passes through the zenith, is represented as a straight line. § a. And the length of every line (A N, A /, etc.) included be- tween the projecting point (A) and the circumference of the primi- tive, measures 90°, and is considered as the quadrant of a circle. § 319. All of those circles which cut the plane of the primitive obliquely, and whose arcs (W Q E, P B, etc.) appear in the pro- Digitized by VjOOQIC 136 VARIATION. jection, to be of less curvature than the primitive, are called oblique circles. C § 320. And those circles, whose arcs (N P S, W A E,) Plate 2. £ p^g t j ir0U gj 1 t h e ze nilh (§ 318.) are called right circles. § a. With the horizon as the primitive circle ; the meridian, (§ 248. § c.)t prime vertical, (§ 279. § a.), and azimuth circles (§ 278.), pass through the zenith, and appear upon the plane of projection (§ 318.) as right circles. § 321. In lat. 40 N., the sun's declination being 20° S. ; its mag- netic azimuth was N. 119° 25' E. in the morning, when its true altitude was 16° 48' 25"; required the sun's true azimuth, and the variation of the compass. § 322. W N E S, (§ 316. § a.) represents the horizon of the ob- server; A, the centre of it, his zenith, and the place at which he stood to take the observation; n A *, the magnetic (§301.) me- ridian ; and (§ 308. § a.) N A n is the variation. § a. The co-lat. (A P), the zenith, and the polar distance, (A B, P B) (§ 317. § a.), are the sides of the triangle A P B, and (§ 321.) are the given parts; and the azimuth P A B, is the required part; the value of it is determined according to Case V, ($201. §rf.) § b. In the formula? for calculation, P D, stands for polar distance. Z D, " zenith distance. Co-lat. " complement of the latitude of the place of obser- vation. §c. The complements of what is given (§321.) constitute the data of the proposed triangle. § d. b= 50° - «Co-lat p= 73° 11' 35"=Z D a«110° - =PD To find the azimuth P A B, (§ 201. §/.) §e. a, orPD «110° />, or Z D — 73° 11' 35" co-sec.s 0.018959 6, or Co-lat. =* 50° - co-sec. «= 0.115746 Sum 2)233° 11' 35" i Sum=116° 35' 47" sin.« 9.951426 i Sum qdP D= 6° 35' 47" sin.= 9.060224 2)19.146355 Cos. iPABa 9.573177«68° 1' 16" P A B (the true azimuth, § 291. § c.)— N 136° 2' 32" E B A n (the magnetic do. (§ 304. § a.)»N 119° 25' E N A n» Variation ($ 311.) — 16° 3T 32" £. Digitized by VjOOQIC NAUTICAL ASTRONOMY. l$f $/. The difference between the true and magnetic azi-> W1 _ muths (§ 808. § a.) (N A B— n A B-N A n) is the varia- 5 Phte * tion. $ g. The true, being greater than the magnetic azimuth, the varia- tion ($311.) is easterly. $ 323. Bearing in mind, that the co-sec. sine, etc., of an arc (§ 99.), is the sec, cos., etc., of the complement of that arc, the process by which the subjoined formula is deduced from (§ 322. § e.) the one above, becomes manifest. § a. Calculation by this formula operates more directly upon the data, and is, perhaps, preferable in practice on account of its greater readiness. $6. P.D.— 110° Alt.— 16° 48' 25" sec— 0.018959 Lat.— 40° sec.— 0.115746 2)160° 48' 25" i Sum— 83° 24' 12" cos.— 9.060242 (i S. ooP.D.)=~26° 35' 48" cos.— 9.951425 2)19.146372 Cos. i tr. azim.— 9.573186— 68° 1' 15' Tr. azimuth— N 136° 2' 30" E. $ c. This difference of 2" in the result of the two methods, arises from the fraction of a second in i sum; which, in either case, is not taken into computation. $ d. Whence (§ 323.) the rule for calculating an azimuth. Take the difference between the P.D., and i sum of the lat. alt. and P.D. ; then the product of the cos. of this i sum and of this difference, multiplied by the product of the sec. of the lat. and of the alt, is double the cos. of i of the true azimuth. AMPLITUDES. $ 324. When the magnetic, and true amplitudes of a body, are both north, or both south, the difference between them is the va- riation. § a. But when one of the amplitudes is north and the other south, they are of different names ; and their sum is the variation. $ 325. If the amplitudes be of the same name (§ 324.), and the true be the less northern, or the greater southern amplitude, the variation is easterly when the object is rising ; and, $ a. The variation is also easterly, when the object is setting, and the true is north and the greater, or south and the less, of the two amplitudes. Digitized by VjOOQIC 138 VARIATION. § 326. If " magnetic 19 be read for " true 19 in the conditions above, the variation becomes westerly. § 327. If the amplitudes be of different names (§ 324. § a.), and the tnte be the northern amplitude, when the object is rising, or the southern amplitude when the object is setting, the variation is westerly. § a. The converse of these conditions makes the variation easterly. § 328. The true amplitude and declination of a body, are always of the same name. § a. Therefore it is known by inspecting the declination, whether the true amplitude be north or south. § 329. Every object in the heavens, always rises and sets to the north, or to the south of the east and west points, according as its declination is north or south ; § a. The equator (§ 272. § a.) cuts the horizon in the east and west points; and a parallel of north of south declination, being (§257.) parallel to the equator, must therefore cut the horizon, (if at all), to the north or south of the east or west points. § 330. A body (say the sun), rises and sets in the points, in which the parallel of its declination cuts the horizon. C § a. Thus the sun's declination being 20° S., it rises * I and sets in the points (c & d) in which the parallel (*rf e c) of that declination cuts the horizon. §331. To an observer who is on the equator, the sun's declina- tion at the time of its rising or setting, is its amplitude ; for, § a. The equator is then the prime vertical, and that arc of the horizon which (§202.) measures the amplitude, coincides with the arc of the circle of right ascension, which (§ 255. § b.) mea- sures the declination. § 332. The sun rises in the east, and sets in the west, point, onty twice in the year. § a. This happens at the moments in which the sun enters the first point of Aries, and the first point of Libra, for (§226. and § 226. § c.) the sun is then crossing the equator. § 333. To an observer at either pole, the horizon and equator coincide, and the sun does not set, while it is on that side of the equator, which is next to the observer. And, § 334. If the observer approach any point of the equator, that point will rise above, and the one diametrically opposite, will sink below i the horizon as many degrees as the observer advances from the pole. And, § a. The observer will not see the sun go below the horizon, until his distance from the pole is greater than the sun's declination. § 335. When the latitude and the sun's declination are of the same name, the sun is not seen to set as long as its declination is greater than the co-latitude. § 336. To find the sun's true amplitude, and thence the variation. § 337. At sun-rise in lat 40° N., the sun's declination being 20° S. t its magnetic amplitude was E. 9° 53' 32" South ; required the true amplitude, and the variation. Digitized by VjOOQIC NAUTICAL ASTRONOMY. 139 $ 338. The place of the sun at the time of its rising ($ 330. $ &) is at the point (c) in which the parallel of its declination intersects the horizon ; w A e (§ 303.) is the magnetic prime vertical ; > the arc E c ($ 202.) is the true, and e c (§ 305.) the mag- 5 netic, amplitude of the sun ; and P A e is the triangle of the pro- posed problem, of which the sides are given, and P A c is the part required. The triangle (§ 142.) is quadrantal, of which the quad- rental side is A c, the zenith distance. §a. Now ($150. $ a.), calling the quadrantal side (Ac) radius, and the legs (P A, P e) angles, and the angle P A c a leg, the pro- blem is an example under Case IV. ($ 173. § &.). $6. PAorco-lat.» 50° cosec. =0.1 15746 PcorZ.D. =110° cos. =9.534052 Cos. PAc«=9.649798=116° 31' 4' § c. Now ($ 133. § a.) the arc N E e is the measure of the angle P A c ; and the arc E c (§ 52. § a.) is the complement of N E c, and ($ 292.) the sun's true amplitude. §<*. E c, the sun's true amplitude«E 26° 31' 4" S t c, the sun's magnetic do. »E 9° 53' 32" S The variation«16° 37' 32" E (§ 324.)- § «• The amplitudes are both south, and the true is the greater ; wherefore (§ 325.) the variation is easterly. $ 339. By recurring to § 323. it is evident that the process of cal- culation ($ 338. $ 6.) for determining the amplitude, may be simplified, and rendered more convenient in practice, by a similar artifice. §a. Lat. =40° sec. =0.1 15746 Dec. =2G )° sin. =9.534052 :26° 31' Sin. ampl.=9.649798= 4" Magnetic ampl.= i 9° 53' 32" Variation=16°37'32"E $ b. Whence the general rule in practice, for finding an ampli- tude. The sine of the amplitude is the product of sec. of the lat. and sine of the dec. See Table VII. SUNRISE. $ 340. When the latitude of an observer, and the sun's declina- tion, are either both north, or both south, the sun always rises be- fore, and sets after, six o'clock. § 341. When the latitude and declination are of different .names, the sun rises after, and sets before, six o'clock. Digitized by VjOOQIC 140 TIMS. $ 343. When the sun rises in the east, or sets in the west* point of the horizon, the sun is ($272. $ a.) on the equator, and (§ 263. put* a. 5 $ a * n * te s * x °' c l° c k h° ur circle ( W P E) ; and therefore ^"^ I rises and sets at six o'clock. $ 343. The time of sunrise subtracted from 12 o'clock, gives the time of sunset, when the points in which the sun rises and sets, are equidistant from the point at which it crossed the meridian. § a. This happens when the declination at sunrise, and at sunset, is the same. § 344. When the sun ($ 342.) rises and sets at six o'clock, it is also in the first point of Aries, or of Libra; § a. As the sun's declination increases, its right ascension (§ 250.) becomes greater, and the first point of Aries farther from the east point of the horizon, when the sun is rising ; and, § b. The interval between sunrise and 6 o'clock, also increases. TIME. $ 345. The time between sunrise and 12 o'clock, in any latitude, may be determined by knowing the sun's declination. § a. This operation consists in finding the value of the horary angle A P c, which the circle (P c) of declination, in which the sun rises, makes (§ 263.) with the meridian (N P S) of the place. § 340. The value of this angle, (A P c), like that of every other, is expressed in degrees ; but may be converted into time, in the pro- portion of 360° to 24A, which ($218. $ a.) is the mean time in which the earth performs a diurnal revolution. 360° § a. — — =15° ; therefore the sun describes an horary angle of 15° in 1A ; — - or — — =4tn ; wherefore the sun describes an horary 15 10 angle of 1° in 4m, of 15' in \m, and of 15" in Is. § b. Whence the rule for converting longitude, degrees, etc., into time, and the reverse. § 347. Divide the degrees by 15, for hours, the product of 4 and the remainder, is minutes, (m) ; the quotient of the minutes (') by 15 is also minutes, (m) ; and the product of 4 and the remainder to this quotient, is seconds («) ; also the quotient of the seconds (") by 15 is seconds («) of time. § 348. The product of hours by 15, and the quotient of the mi- nutes (m) by 4, are degrees ; the product of the remainder of the minutes (m) by 15, and the quotient of the seconds («) by 4, are minutes (') ; and the product of the remaining seconds («) by 15, is seconds ("). § a. The two first and two last columns of Tables II., show (with the hours at the bottom or top,) the value in time of the de- grees and minutes which stand nearest to them. $ b. And these columns may be used for finding the logarithmic ralue of hours, minutes, and seconds, as well as for converting de- Digitized by VjOOQIC NAUTICAL ASTRONOMY. Hi greet, etc., into hours, etc., and vice versa. Therefore in the solu- tion of problems, in which a given or required part consists of hours, etc., these need not be commuted in the process of solution, into degrees, etc. ; but may be operated with in calculations, under the denomination of time, and thus save the trouble of substituting their value in degrees, etc. § c. Substituting hours, etc., for degrees, etc., the logarithmic va- lue of a horary angle may be taken from Tables II., according to the directions given under § 102. for degrees, etc. Thus, to take from the tables the log. of 4A, 20m, 40* ; 4h is found at the right hand bottom corner of the tables ; 20m is found in the right hand (m) column ; and above 20m, 40* is found in the (*) column on the same side ; opposite to 40*, and in the column which has the re* quired precept at the bottom, is the required log. ; thus, log. sine 4A 20m 40*«9.957863. $ d. The time corresponding to any log. is taken from the tables according to the directions under § 103. given for taking out the de- grees, etc., for a log. sine, etc. Thus, the value in time of log. sin. * 9.618004«1A 38m 4*. The log. 0.618004 is found in the column marked (sin.) at the top. In the left hand column (*) of the page, and opposite to 9.618004, is 4* ; above 4* in the (m) column is 38m, and at the top of the page on the same side is \h. $ e. The small columns marked (diff.) show the difference which 1*. or 15" make in the log. sine, etc. of an arc or angle. §/. To convert 33° 10' into hours, etc.; in juxta-position with 33° is 2A ; and in the left hand columns, 10' is opposite to 40* ; and above 40*, is 12m; then 33°10'»2A 12m 40*. §£• To convert 5A 20m 28* into degrees, etc.; 5A is found at the bottom, and 20m 28* in the right hand columns, In juxtapo- sition with 5A is 80°, and above 20m, but opposite to 28*, stands 7' in the (') column ; theft 5A 20m 28*=80° T. § 349. To find the time of sunrise in lat. 40° N., the declination being 20° south. $ a. The triangle of the problem proposed, is the qua- > piate 2 drantal triangle A P c with the same data, and a similar) process, which were used (§ 338. § b.) for finding the amplitude ; $6. P c, or P. D.«110° cot.=9.561066 P A, or Co-lat.= 50° cot. =9.923813 Cos. A P c (S 348. § d.)=9.484879=4A 48m 62*. § c. 4A 48m 52* <» 12A (§ 341.)=7A 11m 8*, the apparent time of day at sunrise. § Y'mi to find the true altitude of the sun's centre. i b. Obs. alt. Sun's L. L. -29° 29' 60" Sun's semi-diam. ■■ 15' 47" Sun's app. alt.— 29° 45' 37" ft 283. $ a.) Refraction (§284.)= 1' 37" (Table IX.) Dip - 4' ($275.$ a.) Sun's true alt.— 29° 40' ($ 283. $ 6.) $ c. To find the time of day. B A, or Z, Dist.= 60° 20' P A, orCo-lat. — 70° 00' co-sec— 0.027014 (§ 201. $/.) P 8, or P. Dist— 100° 20' co-sec. —0.007 102 2)230° 40* i sum— 115° 20' sin. —9.950089 (I sum" Z. Dist.)— 55° 00' sin. —9.913364 2)19.903569 Cos. i A P B-9.951784-1A 46m is Horary angle A P B— Bh 32m U This time ($ 383. $a.) is P. M. $ 386. The data of the problem may be operated upon, more directly, by using the lat. and alt., instead of their complements. $ a. Alt. - 29o 40' Lat — 20° 00' sec. —0.027014 P. D.— 100° 20' co-sec— 0.007102 2)150° 00' i sum— 75° 00' cos. —9.412996 (i sum odAU.)— 45° 20' sin. —9.851997 2)19.299109 Sin. i A P B— 9.649554— 1 A 46m is 2 Horary angle A P B— 3A 32m 1* Digitized by VjOOQIC NAUTICAL ASTRONOMY. 147 $ 387. Whence the general rule for practice. Take the difference between the true alt., and half the sum of the lat, P. dist., and alt. ; then the product of the sine of this difference, and cos. of said half sum, multiplied by the product of sec. of lat.> and co-sec. of P. dist., is the sine of half the horary angle. § 388. The time thus found being apparent time, may be con- verted into mean time (§ 217.), by applying to it the equation of time, according to the precept given with the equation of time in the Nautical Almanac. $ a. App. time (* 385. $ c.) 3A 32m 1* P. M. Equation of time — 13m 50* Mean timess3A 18m lis $ 380. By comparing the mean time thus found, with the time shown by a chronometer, or other time-piece, when the altitude was measured, the error of the time-piece is obtained. $ a. If this time-piece be regulated for a prime meridian, which is the case with chronometers; the difference between the true chronometrical, and the mean, time found by observation, expresses in time the difference in longitude between said prime meridian and the place of observation. $ 6. This difference of time being converted (§ 348. § g.) into degrees (°), minutes ('), etc., expresses the longitude of the ob- server. LONGITUDE BY CHRONOMETER. $ 390. The whole doctrine of determining longitude, consists in] knowing the time of day at any two places at the same instant. § a. This is what is determined by every practicable method of finding longitude ; whether it be by means of rockets, eclipses, oc- cultations, lunar observations, or chronometers. $ 391. The time of day at the prime meridian when an eclipse, occultation, or distance, occurs, is set down in the ephemeris ; and the time of day at any other place when the same eclipse, etc., occurs, is known, either by well-regulated time-pieces, or by ob- servations. $ a. And the difference between these times, (§ 389. $ 6.), gives » the longitude of the observer. S b. The longitude is west, when the prime meridian (Green- wich, § 252. $ c.) time is in advance of the time of day at the ob- ' server. $c. But if the observer's time of day be in advance of the Greenwich time, his longitude is east ; for it is evident that the sun must cross his meridian, before it does that of Greenwich, and con-, sequently, that Greenwich must be to the westward. i 392. Chronometers are generally regulated so as to show the mean time of day at Greenwich. § a. But they are subject to variations from change of tempera- Digitized by VjOOQIC U& LONGITUDE BY CHRONOMETER. ture, etc., and from other causes, and cannot be regulated so as UP show at all times, the true time of day at Greenwich, or at any other prime meridian. r § 393. The difference between the time shown by the face of a chronometer, and the mean time of day at Greenwich, is called " the error of chronometer." § a. The daily variation of this error is " the rate of chrono- meter." § 394. The rate of chronometer is found by noting the difference between mean time, and the time shown by the face of the chro- nometer, and after several days, noting again the difference between i the mean and the chronometer time. § a. The difference between these two differences, (called " com- parisons"), shows the time which the chronometer has gained, or / lost, from the first to the last comparison. § b. And the quotient of this gain or loss, by the number of days that elapsed between the two comparisons, is the daily gain or loss, or rate, of the chronometer. § 395. The error (§ 393.) being applied to the chronometer time, with the precept of plus or minus, according as the chronometer be slow or fast, of Greenwich time, gives the mean time of day at Greenwich. § a. And the rate of the chronometer being applied to the chro- nometer's error yesterday, with the precept +; or — , according as the rate is increasing or decreasing, gives the chronometer's error for to-day. § 396. Before the chronometer is rated, the mean time of day at Greenwich for rating it, is found by turning the longitude of the ob- server, (§ 347.) into time ; and, § a. Adding this time to the observer's mean time of day, if he be in west long. § b. And subtracting it from his mean time of day, if he be in east longitude. $ 397. Ten or twelve days previous to the sailing of the vessel, will generally serve for keeping her chronometer under comparison, in order to find its error, and ascertain its rate. § a. But after sailing, the rate should be compared, (and correct- ed if necessary), as often as opportunities for making comparisons occur. $ 398. To find the error and ascertain the rate of a chronometer, the observer being in lat. 40° 42' N. and long. 74° 00' W. § a. Aug. 4th, A. M., 1834. Chro. 12A 58m. App. alt. Sun's L. L. 30° 17' 20" Sun's semi-diam. =* 15' 47" App. alt. Sun's centr.=30° 33' 7" Refraction - « l'37' i Sun's Tr. alt.^30 31' 30" Digitized by VjOOQIC NAUTICAL ASTRONOMY. 149 lb. Sun's tr. alt. = 30° 31' 30" (§ 387.) Lat. = 40° 42' 00" sec. =0.120254 Sun'sP.dist.= 72° 40' 30" co-sec. =0.020 164 2)143° 54' 00' i sum= 71° 57' 00" cos. =9*491147 (Alt w i sum) = 41° 25' 30" sin. =9.820621 2)19.452186 Sin. i Horary angle= 9.726093=2A 8m 37*+ 12A00m00*(§383.) Horary angle= 4A 17m 14* - =4A 17m 14* 7A 42m 46* App. time Equation + 5m 47* (§388.) Ih 48m 33* Mean time, A. M. Chron. 12A 58m 00* (§ 398. § a.) 5A 9m 27* 1st comparison, (§ 394.) $c. Aug. 15, A. M. Chron. 12A34m25*. App. alt. Sun's L. L. 24° 2' 10" Sun's semi-diam. 15' 49" App. alt. Sun's centr. 24° 17' 59" Refraction - 2' 9" (Table IX.) %d. Sun's tr. alt. 24° W 50" % Lat - 40° 42' $' sec. =0.120254 Sun's P. dist 75° 51' 10" cosec.=0.013376 2)140° 49 / 00" i Sum - 70° 24' 30" cos. =9.525452 (isumcoAlt) 46° 8' 40" sin. =9.857989 2)19.517071 Sin. J Horary angle=9.758535-2A19m58j* Horary angle=4A39m57* Digitized by VjOOQIC 150 LONGITUDE BY CHRONOMETER. 12A 0m 0* Horary angle 4A 39m 57* 7 A 20m 3* App. time Equation . + 4m 15a 7A 24m 18a Mean time, A. R|. Chro. 12A 34m 25a 5A 10m 7a 2d comparison. S e. 2d Compr. 5A 10m 7a 1st do. 5A 9m 27a (§ 394. $ a.) Chro. gains 40a in 11 days. $/. 40a-$-ll a =a&a (§394. $ ftj the daily gain, or rate. $ g. Long, of the observer 74° W. = 4A 56m Time of (§ d.) last. obs. - = 7A 24m 18a f$ 396. $ a.) Greenwich time do. =12A 20m 18a Chro. (§c.) - - =12A34m25a Error (§ 393.) of chro. Aug. 15th, »14m 7a (fast.) § A. To find long, by chronometer ; Time per watch 3A P. M.=15A 0m 0a do. chron. - «HAl5m22a Diff.= 3A 44m 38a Chr. slow. Time of obs. per W. 15A 2m 30a Chro. slow of W. 3A 44m 38a Chro. time of obs.=llA 17m 52a Digitized by VjOOQIC NAUTICAL ASTRONOMY. 151 Formula for calculation. Sun's Alt. 31° 18' (corrected) Lat. 36° 19' sec. =0.093796 P.D. 104° 9' co-eec.=0.013381 Sum«2)171° 46' I sums 85° 53' cos. =8.856049 RemV.= 54° 35' sin. =9.911136 (Alt.w i Sum.) 2)18.874362 Sin. i App. time=9.437181=lA3m31£* 2 App. time of obs. =2 A 7m 3* P. M. Equation - + 4m 16* Mean time of obs. 2h 11m 19* P. M. Time of obs. per chro. HA 17m 52* Chro. slow of Gr. time 1A 3m 8* Greenwich time 12A21m 0* Time of obs. - 14A 1 lm 19* Long, in time (§ 391. $ c.) 1A 50m 19*=27° 34' 45" E. § 399. By inspecting the triangle (P B A) of the pro-? p blem for finding the apparent time of day, it becomes evi- 5 dent, that if, of the lat., time of day, dec, alt., and azimuth, of the sun, or any other body, any three be known, the two others are de- terminable. $ a. The azimuth gives the angle P A B ; and the apparent time of day gives the angle A P B ; the altitude (B /) determines the ze- nith distance A B ; the latitude A Q, determines P A, the co-lat., and the declination k B, determines the polar distance P B. LATITUDE BY MERIDIAN ALTITUDES. § 400. The most common method of determining latitude at sea, is by means of an altitude of a celestial body, measured when the body is on the meridian. § a. Then the circle of the body's declination, coincides with the meridian (N AS) of the observer. $401. Suppose the body be a star; the zenith distance (Ac') ($ 282. § b.) expresses the number of degrees, etc., from (A) the zenith to the star. § a. And the declination Q e' (§ 255. § b.) gives in the same mea- sure, the distance of the body from the equator. Digitized by VjOOQIC Plate 3. 152 LATITUDE BY MERIDIAN ALTTTUDE8. C § b. Wherefore the difference between the declination t (Q e')and the zenith distance (A e') gives A Q the latitude. § 402. The sun being south of the observer, and its declination 10° 20' south, its meridian altitude (corrected) was 59° 40'. To find the latitude of the observer, $ a. "The sun's altitude (§ 282. $ a.) is e S ; 90°— e S=A e (§ 282. § 6.) the zenith distance. $6. The observer being at A, north of the sun, makes ($281. $ 6.) the zenith dist., A e, north. § c. The dec. Q c, being taken from the zenith dist. A e, leaves A Q« the required latitude. $ d. Sun's Z. D. (§ a.)=*30° 20' N. (§ b.) Sun's dec. =10° 20' S. Lat. =20° 00' N. § 403. Suppose the object to bear south, but its dec. to be 0° 3' N. and its meridian alt. 79° 3'. To find the latitude, $o. The stars alt. is e' S ; A S — d S=A e? the *'s zenith dist. § b. The dec. Q e' being added to e' A the zenith dist., makes A Q, which is the latitude. §c. *'s Z. D.=10° 57' N. #'s dec. = 9° 3' N. Lat. =20° 00' N. $ 404. Suppose the star to be north of the observer, its declina- tion 60° 5' N., and its meridian alt as 49° 55'. To find the lat. of the observer, § a. N e" is the *'s alt. The zenith dist. (§ 281. § c.) is south ; N A— N e"=A e", the *'s zenith dist. § b. The dec. Q e"— A c" (the zenith dist.), gives A Q, the lat. |c. *'s dec. =60° 5' N. #'s Z. D. =40° 5' S. Lat. =20° 0' N. § 405. Wherefore, when the dec, and the meridian zenith dist. are both north, or both south, their sum is the latitude. § 406. And, when one is north, and the other south, their differ- ence is the latitude. $ 407. When the body is in the zenith, there is no zenith dist., and the dec is the lat. Digitized by VjOOQIC Digitized by VjOOQIC Itote J. Digitized by VjOOQIC NAUTICAL ASTRONOMY. Jfij| LATITUDE BY DOUBLE ALTITUDES. $408. The sun, (and every other celestial object), is frequently obscured by clouds, so that a meridian alt. cannot be measured. § a. Under such circumstances, data sufficient for determining the lat may be obtained by taking at two different hows of the day the sun's alt., and noting the time that elapses between the two obser- vations. $ 409. The time, expressed in degrees, or hours, etc. (§ 348. § o.) constitutes, with the zenith and polar distances, the required data. $410. This method of finding the lat. is called "by Double AU titudes." $ a. The process of calculation is tedious, but the result wilt give the latitude as correctly as It can be obtained through any other process of oosertatkjft and caWlatkm* § 412. For determining the lat- by " double altitudes," ? B D represents the declination, and B / the alt. of the sun, 5 at the first observation; asd & D / r and B' /' the dec. and alt., at the second observation. $ a. A P & is the sun's horary angle at the first, and A P B', its horary angle at the second, observation. § o. The difference (B'PB) between these two angles, is the angular value of the time that elapses between the observations. § c. B B' is the arc of the great circle, which passes thfdugh the points, in which the centre of the sun was at each observation. $ d. The other circles, arcs and angles, of the Fig., afg explained under § 317. ($«,). $ 413. The problem of " double altitudes'' involves three triangles (B' P B, A B B, & A P B') in the process of solution. $ a. The side B' B is common to the first and second triangles ; P B' to the first and third; and A B' to the second and third. $ 414. The parts that are given in the first triangle (B' P B), are the two sides, P B and P B'(§ 412.), which are the P.dist (§ 286.) at the first, and the seeond observation ; and (§412. § b,) their con* tained angle B' P B«Elapsed Time. $ o. And the parts required are, the third side B' B, and the angle PB'B. $ 415. The value of P B' B and B' B being determined by calcu- lation, the parts that are then known in the second triangle ABB', are B A and B'A(§412.); which are the zenith dist. (§ 281.) of the sun at the first and the second observation ; and the common side B' B. § a. The part here required, is the angle A B' B. § 416. The difference between the* angles A B' B, and PB'B ($414. § a.) gives the value of the angle A B' P, in the third trian- gle A P B'. §417. Then in the third triangle, the two sides AB', P B' and their contained angle A B' P, are the given parts; and PA is the part required, and the co-lat. X Digitized by VjOOQIC 154 LATITUDE BY DOUBLE ALTITTJDEa $ 418. In north latitude, at 7 A. M. by a watch* Sun's true alt 24° 68' 12" Sun's dec. 22° 25' 00" N. C $ a. And at the 10A 15m by the same watch, *** 4 ' I Sun's true alt. 62° 49' 20" Son's dec. 22° 24' 00 N. $ b. The elapsed time is Sh 15m. 5419. P B (1st P. D.)=67° 35' PB / (2dP.D.)= s 67°36 / AB(lstZ.D.)=65° 1'48" A B' (2d Z. D.)=27° 10' 40" B' P B (E. time) — Bh 15m. ($ 409.) §420. To find the side B'B and angle P B'B ($414. $a.)in th© first triangle B'PB. $ a. 1st. To find the Talue of V B ($200. $«. & $ *.). B' P B (E. T.)«3A 15m cos. =9.819113 (§348.§c.) P B' (2d P. D.)«67° 86' tang. =0.384923 Tang. aux. a»0.204036s57° 50' 23" P B=67° 35' (dooPB)- 9° 36' 37' P B> (2d P. D.)« 67° 36' cos.«9.581005 Auxl. a»57° 59' 23" sec.=0.275666 (an 1st P. D.)»9° 35' 37" cos. =9.993884 Cos. B'B»9.850555»44 o 51' 30" § 6, To find the value of P B' B (§ 144.). B' B »44° 51' 30" co-sec.»0.151591 BTBfE. T.) =3^ 15m sin. =9.876125 P B (1st P. D.)=67 Q 35' sin. =9.965876 Sin P B' B=9.993592=80° 10' 53" Digitized by VjOOQIC NAUTICAL ASTRONOMY. 1(5 § c. In the second triangle, to find the value of the an- ? t>, _ A gle A B'B($ 201. $<*.). 5 AB(lstZ.D.) «65° 1'48" AB' (2d Z. DO =27° 10' 40" co-sec. =0.340319 B' B (§41.) =44° 51' 30" co-sec.=0.151501 2)137° 3' 58" i Sum=68° 31' 50" sin. =0.068776 (I S. « 1st Z. D.)= 3° 30' 11" sin. =8.786063 2)10.246730 Cob. dJL?=0.623360= 660 0' 2 2 AFB =130° 18' 58" PB'B (§&.) = WltfW AB'P = 60° 8' 5" $ d. In the third triangle, to find the value of the third side A P; or to find the latitude (§ 200. §*. & $*.) AB'P=50°8'5" cos. =0.806848 P B (2d P. D.)=67° 36' tang. =0.884023 Tang. auxl. a=0.101771=57° 15' 20" 1^=27° l(f 40" (o»AB')=30° 4' 40" P B' (2d P. D.)=67° 36' cos.=0.581006 Auxl. a=57° 15" 20" sec.=0.266018 (a»2d Z. D.) =30° 4' 40" cos. =9.937 178 Cos. AP=0.785101 sin.=lat. 37°33'50"N $ 421. In the example last quoted, the two observations are taken at the same place ; but in practice, this cannot always be done, es- pecially at sea, when the vessel is changing her place during the time that elapses between the taking of the observations. §o* Therefore the 1st altitude must be corrected, in order to know what it would have been, had it been taken at the same time per watch, but at the place where the 2d obs. was made. % 422. When the first observation is being made, note the bear- ing of the sun and the course of the ship ; and after the second ob- servation has been taken, find in a traverse table (Table IV.), the Digitized by VjQOQIC 1(6 LATITUDE BY DOUBLE ALTITUDES. course end distance from the place where the first, to that where the second, observation was taken. § a. The angle, which this distance makes with the bearing of the sun, being used in the traverse table, as a eourse, the correction which is to be applied to the first alt., is found under this coarse, and opposite to said distance, and in the column marked " d. lot." $ 423. If this angle be less than 90°, the correction thus found is addative. $ 424. If it be greater than 90°, its supplement is the course ; and, $ a. The correction is subtractive. § 425. If the ship sail on the line of the sun's bearing, the dis- tance sailed in miles, is the correction in minutes (') of a degree. $ a. It is addative when the ship sails towards the sun ; and, $ 6. Subtractive when she sails from the sun. § 426. The corrections are found as geographical miles, but are to be applied to the altitude as minutes (') of a degree. $ 427. When the angle between the bearing of the sun, and the comae which the ship makes, is 90°, there is no correction. • § 428* The corrections thus obtained and applied, do not show exactly what the 1st altitude would have been at the place of the second observation ; but the approximation is sufficiently clpse to answer the purposes of common navigation. § 429. The time that elapses between the taking of die observa- tions, should not be less than 30m, or more than 6A, if avoidable, especially if the observer be at sea. $ a. If the body under observation do not change much in decli- nation during the " elapsed time," the mean of its declination at the twp observations may be used as the body's declination at each ob- servation. $ 6, This " mean" declination is found by taking out the declina- tion for half of the " elapsed time," plus the time of the first ob- servation. m Z 5 c * ^*en the mean declination is used, P B«PB'; Fhto 4# 5 and the first triangle B' P B (§ 140.) is isosceles. $ 430. The latitude at the time and place of the first observation, may be found, if required, by making A P B the third triangle, and using the angles P B B', A B B' and A B P, instead of P B' B, A B' B and A B' P (§ 420. %b. & § c). $a. But generally, in navigation, the latitude of the time present, is most desirable to be known ; and usually, when the problem is •solved, the vessel is nearer to the place of the second, than she is to the place of the first observation. € b. A formula for practice in finding the latitude at sea by " double altitudes ;" the mean declination being used. Under the example $418. Sun's mean dec.«22° 24' 30", P. D. =67° 35' 30" «un*a 1st alt. «24° 58' 12", 1st Z. D.=65° 1 ' 48" Sim's 2d alt. «62° 49' 20", 2d Z. D.=27° 10' 40" £. time - 3A 15m Digitized by VjOOQIC NAUTICAL ASTRONOMY. 157 ft. Thft lint triangle ($420. $ e.) is isosceles ; wherefore ($900. $**, $ze. & §r/.) P. D. «67° 85' «0" sra.»9.965903 see.^0.418842 (i E. time)«lA 8Tm 30* sin. =~ 9. 61 5642 cot. =0.3438 12 11' D . ' »' Tl »■ f ■■»■*'< 1 111 I ABS-r-a^fi'W" Sin,-9.581545 2 1st Ang. 80° 12' 2" Tang.«0.762654 ArcB'B«44 51'32" coHsec.=0.151587 (§420. $c.) 34Z,P.=27°10'40" co-sec. =0.340319 1st •• =65° 1'48" 2)137° 4' 0" i S.=68°32' 0*' sin. =9.968777 (J8.«Z.D.)3°30'12" sin. =8.786087 2)19.246770 Cos. h 2d Angle« 5 =9.623386= 65° 9' 25" 2 2d Angles 130° 18' 50" 1st " =* 80° 12' 2'' 3d " = 60° 6' 48" J (3d Angle) =25° 3' 24" sin. x2= 19.253736 (§ 200. $ */.) P. D. - =67° 35' 30" sin. =9.965903 2d Z. D. =27° It/ 40" sin. = 9.659681 2)38.879320 ( P.D. «2dZ.D.)=40° 24' 50" 19.439660 PP ' C0 y Z ' P '=20 o 12 25" co-*ec.=0.461662 Tang. a=9.901322=38°32'46" a. co-sec. =0.205412 Sin. i co-]at.=9.645072=26° 12' 32'' 2 Lat.=37° 34' 56" or co-lat.=52° 25' 4" § d. The result by this method differs 57" from the truth. Like every other trigonometrical calculation, in which true data are not Digitized by VjOOQIC 158 LATITUDE BY DOUBLE ALTITUDES. operated upon, it brings an error into the result ; but the result is an approximation, which oscillates about the truth, and within limits that depend upon the correctness of the assumed data. $ e. Some navigators solve the problem of " double altitudes" by the method proposed by a Mr. Douwes ; but the correctness of the result by his method, depends upon repeated calculations, or the proximity of a supposed, to the correct, latitude.* $ 431. Latitude by " double altitudes" may also be determined by taking, at the same instant, the altitudes of any two bodies, whose right ascension and declination are given. § 432. The method of solving this problem consists in a process of operation, precisely similar to that (§ 420.) for finding the lati- tude by means of two altitudes of the same body, taken at different times. Plate 4. 5 $ * 33, ^ ie diff erence m right ascension of the two bo- £ dies gives an angle, which corresponds to the angular value (R' P B) of the " elapsed time," between the two observations. § 434. When the difference in right ascension of the two bodies, exceeds 180° or 12A, the greater right ascension, subtracted from the less plus 24A, gives the angle corresponding to B' P B. § 435. In this method of finding latitude, the altitude of the moon, unless the Greenwich time be known, cannot be used with cer- tainty of success. For the moon's variation in declination and right ascension, is so rapid, that unless the Greenwich time of day, when the observations are made, be known, the proper value of the angle corresponding to B' P B, cannot be obtained. § 436. The stars afford the greatest facilities for the application of this problem to practice. § a. Their variation in declination and right ascension, being for the most part, not very rapid ; consequently when the horizon is well defined, the data requisite to the solution of the problem, can be obtained by means of the stars, with sufficient accuracy. $437. In north lat. June 2, 1834, Jupiter being east, and Mars west, of the meridian; their altitudes were taken at the same, in- stant; 49* 0' 40" N 27m 36* 9m 20* 54' 20" N 29' 12" Plate 6 5 $ a ' Difference in right ascension is 2A 18m 16*. ' I § 438. B f and B D are Jupiter's altitude and declina- • Mr. Douwes' method is both supported and questioned by high authority. Bowditch has adopted it in his Pbactical Natioatob. And there is a paper from M. Delambre, showing that the result by this method is not always an ap- proximation, but that, in some cases, if repetitions be made, the result will re- cede from the true latitude. J.'s alt. 71° " dec. 18° " rt. asn. dh M.'s " 1A " dec. 6° " alt. 70° To find the latitude. Digitized by VjOOQIC Digitized by VjOOQIC Hat* .J. Digitized by VjOOQIC NAUTICAL ASTRONOMY. 159 tion ; and B> t, and B' D' are Mars* alt. and dec; and B' P B ) piate 5 is the angular value of their difference in right ascension. 5 $ 440. B P B' is the first triangle in the problem, that is brought under calculation ; B' B and B' B P, are the required parts. § a. B'AB is the second triangle, and A B B' is the part in it, that is required; §b. ABB'* B'BP«ABP. $ c. A P B is the third triangle, and A P is the part required to complete the problem. §441. PB(J.'sP.D.) =71° 59' 20" PB'(M.'sP.D.) =84° W 40" B'PB (diff. R. A.) = 2h 18m 16* AB(J.'sZ.D,) =18° 11' 0" AB'CM.'sZ-D.) =19° 30' 48" $a. To find the value of B'B(§ 200. §*.&§*.) B' P B (diff. R. A.) 2h 18m 16a cos.»9.915646 P B (J.'s P. D.)c*71° 59' 20" tang.=0.487937 Tang. auxl. a=0.403683=68° 27' 15" M.'s P. D.=84° 5> 40" M.'s P. D.«a»15° 38' 26" P B (J.'s P. D.)=71° 59 / 20" cos. =9.490243 Auxl. a=68° 27' 15" sec.»0.435044 (am PB (M.'s P. D.)=15° 38' 25" cos. =9.983614 Cos. B' B=9.908901=36° 49' 42" %b. To find the value of the angle PBB'(§ 420. §6.) B B' 30° 49' 42" co-sec. =0.232578 B P B' (diff. R. A.)=7A 18m 16a sin. =9.753862 P B' (M.'s P. D.)=84° 5' 40" sin.=9.997689 Sin. P B B'«9.984129= 105° 23' 52" Digitized by VjOOQIC 160 LATITUDE BY DOUBLE ALTITUDES. Plate 6. | § c . To find the value of AB B' (§201. €/) A B' (M .*s Z.D.) =19° 3W 48" A B (J.'s Z. D.) -18° 11' 00" cosec,*=0.606*e4 B'B - • - —35° 49' 42" " a0.232678 2)73° 31' 30" i Sum —36° 45' 45" sin. -»9.77706S (iSQDAB',M. , sZ.D.)=17° 14' 67" " =9.472066 * - ■- - - 2)19.987471 ABB' — — — Cos. ^?- =9.993735«9° 42' 30" 2 - 2 ABB* ±=i 19* 25' 00" PBB' *=105°S3'52" ABP = 85° 58* 52' $rf. To find the value of A P or co-lat. (§ 200. § ti.) A B P=85° 58' 52" cos. =8.845627 P B=71° 59' 20" tang.=0.487937 Tang. Auxl. a= 9.333564^12° 9' 62" A B (J.'s Z. D.>*18« 11' 00" (a odJ.'sZ. D.)= 6° 01' 8" P B (J.'s P. D.) =71° 50' 20" cos.=9.490243 Auxl. a= 12° 9' 52" sec. =0.009864 (arc A B, J.'s Z.D.^6 1" 8" cos.=9.997599 Cos. A P (co-lat.)=9.4977b6S.— Iat.l8°«/4' , N. § 442. The data for determining latitude by " double altitudes 9 * may be obtained also by taking the altitude of two objects, each at a different time of the day. $a. This method may sometimes be found useful in cloudy weather, when the two objects cannot be seen at the same time, and when it is highly important to know the latitude. $ 443. When the first object (say a star) is seen, let its altitude be taken, and the time, per watch, when the observation is made, noted down. $ a. The bearing of the star at the same time, must also be ob- served, in order that the angle may be known, which is contained between this bearing, and the rhumb line, upon which the ship sails until the second observation may be made. § b. This angle, and the distance sailed during the interval that elapses between the taking of the two observations, are to be used Digitized by VjOOQIC ri,itt £ ligiti J byi-jOC Digitized by VjOOQIC NAUTICAL ASTRONOMY. 181 in finding the correction (§ 422. $ a.) which must be applied to tfre first altitude, to make it what it would have been, had it been taken at the place where the second observation was taken. § 444. The right ascension and declination of this star must be taken out of the Nautical Almanac, also for the time at which its altitude was measured. § 445. When the second object (say the sun) is seen, its altitude also must be taken, and the time of its being done noted down, in order to know the time which has elapsed since the first observation. § 446. The right ascension and declination of the sun, when its altitude is measured, must also be found, in order to obtain the dif? ference in right -ascension of the two bodies when their altitudes were taken. § u. This difference is an angle formed at the pole, by the inter- section of the circle of right ascension, in which the star was, when its altitude was taken, with the circle of right ascension which passed through the centre of the sun, when the alt. of it was mea- sured. J 447. This angle corresponds to B'PB; and with the? p lato fl portion of apparent time that elapses from the taking of) ' the first, till the taking of the last, observation, it constitutes the angle which is contained between the P. distances of the two bodies; and with the polar and zenith distances of these bodies, it also con- stitutes the required data of the problem. § 448. The sum or difference of the difference of the two bodies in right ascension, and the portion of mean time from one observa- tion to the other, give the required contained angle. § a. If the sun be the second object, the apparent instead of the mean time, from one observation to the other, must be taken. § 449. The sum of said two quantities is the value of this angle, when the first object is to the eastward of the second. $ 450. But when the second is the more eastwardly object, the difference of the two in right ascension, minus the elapsed time, gives the value of the required polar angle. §451. If, when the second is the eastern object, the elapsed time exceed the difference in.right ascension of the two bodies, the second will have crossed the hour circle (§ 263. $ c.) which coin-i cides with the circle of declination, in which the first object was, when its altitude was measured. $452. The excess of the elapsed time above this differ-) p]at0 6 ence in ascension, is the value of the required polar angle ) (B'PB). § 453. B represents the place of Venus (the fivst object), when its altitude was taken. $ a. Venus was then the morning star, and consequently to the westward of the sun, (which is the second object). § b. Venus' altitude was taken in the morning, when the sun was below the horizon. $ c. P b is an arc of the circle of right ascension in which the sun was, when Venus' altitude was taken. Y Digitized by VjOOQIC 162 « LATITUDE BY DOUBLE ALTITUDES. Plate 6. 5 § <*• B P 6, is the angular value of the difference in ( right ascension of the sun and Venus, when the altitude (B I) of the latter was taken ; it is about 2h 36m 54*. $ 454. The sun's altitude, B' ?, was taken 4A 29m 45s after Ve- nus' was measured. $ 455. The sun had then crossed over the hour circle P B ($ 263. $ c.) in which Venus was, when its altitude was taken. § a. The sun was at B', to the westward of this circle, when its altitude was taken. § 456. B' P b, is the horary angle, in apparent time, which the sun described during the interval between the taking of the alti- tudes. $ a. Consequently the difference (B P b) of the sun and Venus in right ascension, when their altitudes were measured, subtracted from (B' P b) the angular value of the apparent time between the observations, gives the value of the angle B'PB. § 457. If the portion of time that elapses, between the observa- tions, be given in mean time, it may be converted into apparent time, by applying to it the fraction which during the elapsed time, the second object's equation of time gains or loses, on mean time. § 458. In surveying expeditions the elapsed time should be cor- rected and changed into apparent time, in order to determine the latitude with exactness. § 450. But upon the open sea, this nicety in operation may be omitted, for it only advances, by a very small fraction, the accuracy of the result. § 460. If the altitude of the more easterly object, be taken last, and the elapsed time be equal to their difference in right ascension, the same hour circle (§ 263. § c.) will pass through each object when its altitude is taken ; and the process of deducing the latitude will be confined to the simple operation of finding an angle with the three sides of a triangle as data ; and thence in deducing, from the two sides and their contained angle, as data in a second triangle, its third side, which is the co-lat. § a. The three sides of the former of these two triangles, would be the zenith dist. of each body, and # the difference between their polar distances. $461. Feb. 25, 1832. Venus being the morning star, and the observer being in south latitude when he made his observations. § a. Venus' Alt. 24° 50' (True.) " Dec. 20° & S. " Rt. Ascen. 19A 59m " bearing E.{S. ($443. § a.) Time per watch Sh 16m 19* $6. The ship then sailed N. E. i N. 18 miles, when the sun' seen, and its altitude taken. Sun's Alt. 43° 44' (Correct. $385. $ A.) Sun's Dec. 9° 16' S. Sun's Rt. A. 22A 30m 69* Time per watch Ih 46m 8* Digitized by VjOOQIC NAUTICAL ASTRONOMY. 163 § 462. The angle between the bearing of Venus (§ 461. $ a.) 9 and the ship's course, is five points, which (§ 422. § a.) with the dis- tance sailed, (18 miles), gives l& (§ 426.) in the column (d. lot.) of the traverse tables ; which 10' ($423.) being added to Venus' altitude, makes it 25°, (what it was at the time of its being taken, but at the place where the sun's alt. was observed.) $ 463. The watch kept mean time. The elapsed time ($ 457.) must therefore be corrected, in order to obtain the portion of appa- rent time, that elapsed from the first, until the second observation was taken. $ a. During this interval there were 2* less of apparent, than of mean time, which being subtracted from the mean time elapsed, gives the elapsed apparent time. $ 464. This correction is obtained from the ephemeris. It is the quantity which the equation of time gains or loses from the first to die second observation ; and it must be applied accordingly. § 465. The triangulation, through which the process ) piato 6 of finding the latitude by means of the data in this pro- J blem is conducted, is represented in the triangles B' P B, A B' B and AB'P. $ 466. A B (star's Z. D.)=65° 0' P B (star's P. D.)«69 56' A B' (sun's Z. D.)=46° 16' PB'(sun , sP.D.)=80°44' Elapsed mean time = Ah 29m 49* Correction ($ 463. $ a.) 2* Elapsed app. time - »4A 29m 47* Diff. in R. A. of sun and star=2A 31m 59* B' P B=1A 57m 48* (§ 456. $ a.) To find the latitude. $ a. In the triangle B' B P, to find the value of B' B. ($ 200. B'PB«lA57m48* cos. «= 9.939911 PB'(Sun'sP.D.)=80°44' tang.= 0.787389 Tang. auxl. «= 0.727300=79° 23' 15" PB=69°55' 0" (aa>star'sP.D.)= 9° 28' 15" P B' (sun's P. D.)= 80° 44' cos. =9.206906 Auzl. a»79° 23' 15" sec. =0.734791 (aooP B) - =9° 28' 15" cos. =9.994040 Cos. B' B=9.935737=30° 24' 24" Digitized by VjOOQIC -\ 154 LATITUDE BT DOUBLE ALTITUDES. « * a * $ *. To find the value of PB' B. FWa I B' B =30° 84' 24" conse* =0.295734 B' P B - —I* 57m 48* sin. =9.691668 P B (star's P. D0=69° 56' 0" sin. =9.972755 Sine P B' B =9.9601 67 =65° 49' 50'' Cc. To find A B' fc (§ 201. §/.) A B (star's Z.D.)=65° A B' (sun's Z. D.)=46° 16' co-sec.=0.141 123 B' B - =30° 24' 24" co-sec* =0.295734 2)141° 40' 24" i snm=70° 50' 12" sin. =9.975241 (JS.* star's Z.D.)= 5° 50' 12" sin. =9.007291 2)19.419389 Cos. ^5=9.709694=59° 10' 10" 2 ^ 2 AB'B=118°2(K20'' PB'B= 65° 49' 50" A B' P= 52° 30" 30* § i. to find A P, the co-lai. AB'P=52°30'30" cos. = 9.784365 P B' (Sun's P.D.)=80° 44' tang.= 0.787389 Tang. auxL a= 0.571754=74° 59' 37" AB'=46°16' C (a»AB')=28"43'3r P B' (sun's P. D.)= 80° 44' eos.=9.206906 Auxl. c=74° 59' 37" sec.=0.586823 (<•» sun's Z. D.)=28° 43' 37" cos.=9.942959 Sin. Complement A P, or laL=9.736688=33° 2' 59" South.* • This difteta 1" frtoa the train. Digitized by VjOOQIC NAUTICAL ASTRONOMY. LUNARS. 5 467. The problem of finding the true distance between th6 sun, or a star, and the moon, for the purpose of thence determining the longitude, is one of great importance in navigation. $ 468. The necessity for the circuity of calculation in finding the longitude by lunar observations, arises from the circumstance that the two observed bodies are not seen ($ 289.) in their true places. $ a. They always appear, each in its proper azimuth circle, but higher up, or lower down in it (§283. § c), than its true place, $ b. Aiid consequently (§ 283.) they appear either nearer to, or farther from, each other, than they really are, which makes the dif- ference between the true, and apparent lunar distance* $ 469. Only two triangles are involved in the process of finding, by trigonometrical calculation, the true from the observed lunar dis- tance. $ a. Of the first triangle, the three sides are given ; and the angle required is that which is contained at the zenith, between the zenith distance of the moon, and of the other body. $ b. Of the second triangle, this angle and its adjacent sides, are the given parts ; and the third side, or true lunar distance, is the part required. $ e. The three sides of the first triangle are the apparent lunar, and the app. zenith distances of the two bodies. $ d. And the three sides of the second triangle, are the true lu- nar and zenith distances. $ 479. The lunar, or the true lunar distance of the sun, or a star, is an arc of a great circle, contained between the centres of either of those objects, and the moon. §471. The distance between the perfect limb ($283.), or the round edge, of the moon and the near limb of the sun, is the dis- tance usually measured with a sextant. § 472. The apparent is obtained from the observed distance, by applying, with proper signs, the corrections for the error of the sex- tant, for the semidiameters of the two bodies, and for the augmenta- tion of the moon's semidiameter. § a. The sun and moon's semidiameter is given in the ephemeris ; the sun's for every 24A, and the moon's for every noon and mid- night. $ b. The correction for augmentation is found in Table X* § 473. Augmentation of die moon's semidiameter, is the differ- ence between the visual angle of the moon's semidiameter at the centre, and its visual angle at the circumference, of the earth. $ 474. The difference between these two angles, is proportional to die ratio between the length of the semidiameter of the earth, and its distance from the moon. § 475. On account of its great distance from the earth, the sun's semidiameter has no augmentation. $ a. As the earth's semidiameter measures more in proportion to Digitized by VjOOQIC 166 LUNARS. the moon's geocentric distance, than to that distance of the sun, or of any other heavenly body, the difference of the moon's semi- diameter, when seen from the circumference and from the centre of the earth, is greater than that of any other body, when seen from the same positions. § 476. The semidiameter of the moon when it is in the horizon, appears under nearly the same visual angle (barring refraction) that it does from the centre of the earth. § 477. The moon appears larger when it is in the horizon, than it does when in the zenith. This though is an optical delusion, for the moon actually subtends the largest visual angle when in the ze- nith ; as it is then nearer to the observer than it is when in the ho- rizon, by a little more than the semidiameter of the earth. Plate 7 I § * 78 ' B' A B represents a diagram of the lunar problem. ' J b' b is the apparent, (§ 472.), and B' B the true ($ 470.) lunar distance. § 479. The three apparent distances, (b' 6, b 1 A, A 6), are the given parts ($469. §a.) of the first triangle b' A 6, and the angle V Ab is the part required in it $ 480. The angle V A b is common to the second triangle B' A B, of which the true zenith distances A B, and A B' are the given, and the true lunar distance B' B is the required part § 481. The apparent Z. D. of the sun, or of a star, ($ 284. $ a.) being less, and the app. Z. D. of the moon (§ 286. § a) being greater, than the true Z. D.; it appears from the diagram, that, when the moon's is the greater of the two Z. D., the true is always less than the apparent lunar distance. $ a. And when the moon's is the less Z. D., the true is some- times greater, and sometimes less, than the app. distance. § b. The true is the less, when the lunar distance exceeds 90°. | c. And it is generally the greater, when the distance is less than a quadrant, and the ratio of cos. moon's Z. D. to cos. sun or star's Z. D., is greater than the ratio of rod. to cos. of the lunar distance. $ 482. The reason why the difference between the app. and the true L. dist, appears to be governed by the moon more than by the other body, is, that the moon being nearer to the earth, has the £ eater parallax, and is generally seen further from its true place in e heavens, than any other body, from which lunar distances are measured, appears from its true place. $ 483. In N. lat, Aug. 27th, 1834. Obs. Dist sun and moon —89° 51 ' 40" Obs. Alt sun • =34° 4' 60" Obs. Alt moon's upper limb«64° 27' 50" $ a. Obs. dist sun & moon =89° 51 ' 40" Sun's semidiameter - 15' 51" Moon's " - - 15' 1" Moon's augmentation - 13" ($ 472. § 6.) Error of sextant - +6" App. lunar dist =90° 22' 51" Digitized by VjOOQIC Digitized by VjOOQIC tlatf 7. Digitized by VjOOQIC NAUTICAL ASTRONOMY, tflT7 §k Ban's obs. nit. p 34° 4' 50" Sun's seui .diameter * 15' 51" ♦Dip (§ 275. § a,) - — 3' 31" Sun's app. alt - - 34° 17' 20" §c. Refraction for sun's alt- — 1' 20" (Table IX.) Sun's P U. in alt 8" (Table XL) Sun*s true alt. - - 84° Iff 8" $ d. Obs. alt moon'* XL L. 54* 27' 5 p ktB r triangle. S 4' 6 (app. lunar di*t.) =00° 22' 51 " 6' A (moon's app. Z, D,)=35 Q 50' 45" co-see,=0.232394 Kb (sun's app. Z. D.) =55° 42' 40" co-sec. = 0*0829 11 2)181° 56' 16" I mm 90* 58' 8" sin. ^0,999938 (i S.« app. lunar diet.) = 0° 35' 17" sin. ^8.011288 2)18.326531 Cob. 81° 37' 34" (=^-^) 9-168885 ©'A 6=163° 15' 8'' • The dip , when the eye is 9 feet above the water, is about # ; and 4', when the height of the eye is 1 7 feet, On hoard ship 4' is generally allowed for dip. \ When the nicest accuracy ia required, corrections may be applied for the difference in the effects of refraction ou the upper and tin* lower lkiib of the sun and moon; for the moon 1 a parallax in different latitudes, supposing the equato- rial to be ftreaier than the polar diameter ; and also a correction for the actual barometrical, and therm oroelrical state of the atmosphere ; but at sea, greater er- ror* are unavoidable* hence these corrections are of minor importance* Digitized by VjOOQ l€ 168 LUNAR8. § h. To find B' B (§ 200. § v.) the tr. lunar dist. (§ 480.) o' A 0=163* 15' 8" cos. = 9.981176 ABCSun'str.Z.D.)=55°43 , 52 ,/ tang.= 0.166625 Tang. auxl. a= 0.147801 = 125° 26' Moon's tr. Z. D.= 35° 19' 12" 90° 6' 48" A B (Sun's tr. Z. D.)=55° 43' 52" cos. =9.750567 Auxl. a=125° 26' - - sec. =0.236755 (aw Moon's tr.Z.D.)=90°6'48" cos.=7.296235 Tr. lunar dist.=89° 53' 24" Cos. B' B=7.283557 § 484. By referring to the Nautical Almanac, page xvli., of the ephemeris for Aug. 1834, it will be observed, that it was near noon of the 27th at the Greenwich observatory, when the moon was 89° 53' 24" from the sun. § a. If the latitude of the place at which the observation (§ 488.) was made, be known, the time of day at that place, and when the observation was taken, may be found according to the rule § 387. § b. And the difference (§ 391. § a.) between the time of day thus found, and the time in the ephemeris, which corresponds to the cal- culated lunar distance, is the longitude in time. § 485. Distances for determining longitude are always measured from the moon, because the change of the moon's position in the heavens is more obvious than that of any other heavenly body that is visible to the naked eye. § 486. The moon (§ 360.) has a daily motion of about 13° 10' in the heavens ; owing to which the moon rises, culminates, and sets, later and later every day, until, having passed through all its phases, it crosses the circle of the sun's altitude, gets to the eastward of the sun, and presents the appearance of a new moon. § 487. At a mean, an error of 2' 12" in the lunar distance, will produce an error of 1° in the longitude. § 488. The moon changes its distance from those bodies, which lie directly in its path, more rapidly than it does from those to- wards or from which it moves more obliquely. § a. Therefore the stars from which the change of the lunar dis- tance for the time being is the most obvious, should be preferred in taking lunar observations ; for the more rapidly the distance changes, the less will the longitude be affected by a small error in the ob- servation. § 489. In the Nautical Almanac ; pages xiii. to xviii., of the ephe- meris for each month, contain at intervals of three hours, the dis- tance of the moon from the sun, from four of the planets, and eight of the principal fixed stars. § a. The small column, marked P. L. contains the proportional Digitized by VjOOQIC NAUTICAL ASTRONOMY. 169 logarithm of the quantity, which the distance preceding it in the left hand column, varies during the three hours between which the P. log. stands. § 6. Table III. of this volume, contains the proportional log. for every second from 1" to 3° ; or for every second of time from 1 * to 3 h. § c. Proportional logarithms are nothing more than the difference between the log. of 3, and the log. of the given number less than 3. Thus, the log. of 3 - - - =0.4771 + Log. of 12' ; (12' reduced to the decimal of a de- ? Q Qm ft ■ greeis0.20.) Log. 0.20 - - J W, * U1U+ P. log. of 12', or 12m=1.1761 § d. This Table (III.) is always used for finding the Green- wich time when a given lunar distance occurred. Thus, to find the time af Greenwich when the sun was distant from the moon 84° 17' 10" L. Dist. at 0. 83° 56' 19" " at 9. 85° 16' 28" ^Diff. - 20' 51" P.L.=9362 Diff. for 3A=1° 20' 9" P. L.=3514 46m49«=5848 And 46m 49* added to 6A, shows the time (67k 46m 49*) at Green- wich, when the sun was distant from the moon 84° 17' 10". § e. This is a much shorter way than that of arriving at the same result by common logs. ; thus, As 1° 20' 9"=1.336(decm'lsof adeg.) Ar.co.=9.874193 Is to 3A - - Log. =0.477121 So is 20' 51"=0.3475 (do. of a deg.) Log. =9.540955 (§ 90.) To46m49#=0.7803 " " Log. =9.892269 (§93. §£.) § 490. In selecting a star to measure a lunar distance from, that one should be fixed upon, whose lunar distance at the time has the least p. log. after it in the ephemeris ; for, as the greatest variations in the dist. are represented by the smallest p. logs., the lunar dist. of those bodies, which has the smallest p. log. after it, is increasing or decreasing, in a greater ratio, than that is which has after it a greater p. log. ; consequently, (§ 488. § a.) those bodies are the most favourably situated for determining longitude. §491. When practicable, the distance of the moon should be measured from two stars ; one to the east, the other to the west of it ; and the mean of the longitude resulting from the observations should be taken as the long, of the place. § a. If the sextant have an unknown error, the error will partially Z Digitized by VjOOQIC 176 LUNAR8. correct itself by its own counteracting effects in distances measured to the east and west of the moon. $ 402. Latitude by " double altitudes" may also be determined by means of the data in the lunar problem. pi * 5 493 ' By inspecting the lunar diagram, it is seen that riate 7. ^ ti^ j^g ( P B> p B /) of tne circleg of declination of the sun and moon, join the extremities of the true lunar distance (W B), forming thereby the triangle B' P B, of which the three sides axe known. . § a. Then the value of the angles P B B', and A B B' being found, ^their difference gives the value of A B P, which, with B A, and B P in the triangle P A B, constitutes data requisite for determining A P, the co-latitude. $ 494. The lunar problem is one of the most useful and most beautiful problems in navigation ; for besides his longitude and lati- tude, the navigator may deduce, from the principles involved in it, data for the solution of almost any problem in nautical astronomy* § 495. The three parts A P, P A B, A P B, in the fourth triangle, are determinable from the data obtained by a lunar observation. § a. A P is the co-lat. of the place of observation. $ 6. A P B is the horary angle, which (§ 382. § a.) shows the app. time of day at the place of observation when the latter was made. And, $ c. The difference between this time converted into mean time, and the Greenwich time in the N. A. that corresponds to the lunar disk, expresses, in time, the longitude of the place of observation. $ cf. P A B is the sun's true azimuth at the time and place of ob- servation ; the difference between it, and the sun's magnetic azi- muth, (§ 308. § a.) is the variation of the compass. $ 496. By increasing the triangulation, and extending the opera- tions, other quaesita may be added to the problem ; and the length of the day and night ; the time of the sun and moon's rising and set- ting ; the hour of the moon's passing the meridian ; the hour when each object bears east or west; the duration of twilight ; and the am- plitudes of the two objects on the day, and at the place of observa- tion, may all be determined by means of the parts involved in the common lunar problem. $ 497. Therefore when, on account of unknown drifts, and of gales during several days in succession of thick or cloudy weather, a ship has lost her reckoning, it may be successfully restored by a single lunar observation. $ a. If the variation of the compass be required also at the same time in addition to the lat., time of day, and longitude, the calcula- tion, after being conducted into the fourth triangle BAP, should be conducted by a process different from that for evolving the value of A P, the co-lat., alone. $ 6. In the latter case, the value of A P would be determined by the rule § *. and § /., under Case IV. (§ 200.) $ c. And in the former case, the proportion between the sines of opposite sides and angles, would evolve it ; for, when the three un- Digitized by VjOOQIC NAUTICAL ASTRONOMY. 171 p^ 7 C known parts of this triangle (BAP) are required, the * { most direct method of arriving at the required results, consists in applying the rules § z. and § z a., Case IV., (§ 200.) to calculation, in order to determine first the value of the horary and azimuth angles (A P B, & P A B.) $ PIato 7 when the ohe. was made, 12/k 00m 17# P.M. J Time (§ c.) at the place of observation, Sh 16m 38* A.M. Long, of the obsr. (§ 391. $ 6.) W. 3A 43m 41s— 55° 55' 15" $603. If the latitude and time of day, without the variation, be required from a lunar observation, the process of calculation may be varied from that above for finding the azimuth, time, and latitude; and may be made more direct § a. but in either case, the order and method of calculation are the same, in the process of arriving at the value of A B P in the fourth triangle. $ 504. The true lunar distance (B' B) must always be determined, before the correct P. distances, (P B, P B') and the difference (B' P B) in right ascension (§ 408. § a.) of the two bodies, can be known. § a. These parts must always be taken from the Ephemeras, and for the time in it, which corresponds to the true lunar distance. $ 505. Having found, in the second triangle, the required angle ABB'; then having taken (§ 498. § a.) from the Ephemeris, the proper P. D., etc., and calculated ($ 502. § a.) the value of the angle (P B B') required in the third triangle ; the value of A B P is ob- tained , and the lat. and time of day may thence "be deduced by the following formula. $ 506. Formula of calculation for finding the latitude and time of day by a lunar observation. To find the lat. (§ 200. § n.) Contd. Angle (A B P) cos. =*.****** Sun's Z.D. (A B) cos. ac*.****** tang. =*.****** Auxl. a seers*. ****** Tang. auxl. a— *.****** (a » Sun's P. D.) cos.— ••—— Cos. co-lat. (A P) „♦.♦***** To find the time of day, (§ 144.) Co-lat. (AP) co-sec.—*.****** Contd. Angle (A B P) sin.=*.****»* Sun's Z. D. (A B) sin.-*.****** Sin. Horary Angle (A P B) =♦.♦••**» $ 507. If the second and third triangles fall on opposite 7 piat0 8 sides of the lunar distance B' B, then the sum of the an- 5 gles (ABB' & PBB) of the second and third triangles, gives the value of the required angle (P B A) of the fourth triangle. $ 508. When the polar distance of each body is greater ? than the co-latitude of the observer, then the second and 5 ^ ate T ' third triangles fall upon the same side of the lunar distance B' B, Digitized by VjOOQIC 174 U7NA8& C and the difference between the angW* (A B B', P B B') is £ the value of the angle (A B P) sought in the fourth triangle. § 509. It may always be known, whether the sum or difference of the angles of the second and third triangle, will give the angle required to be known in the fourth triangle, by observing the incli- nation of the plane in which the sextant is held to bring the sun and moon in contact. $ a. If the sextant be inclined to the plane of the, horizon, to- wards the pole of the observer, then his co-lat is greater than the P. dist of either body, and the second and third triangles fall upon different sides of the lunar distance, and the sum of the two angles is the required angle of the fourth triangle. $ WO. May 16, (P. M.), 1834. Obs. dist. sun & moon 07° 16' 28" Obs. alt. sun's L. L. —41° 9'59" Obs. alt. moon's V. L.=37 Q 68' 24" Required the latitude and longitude of the place of obseiration f § a. To apply the preliminary corrections. 1st. Obs. lunar dist. 07° 16' 28" Sun's semidiam. - - W 60" (N. A., p. ii., M. E.) Moon's « - 1* 6" ( « iii. " ) Moon's augmentation - 10^ App. lunar dist -97° 48' 84" 24* Obs. alt sun's I*. I* 'Sun's semidiameter Sun's app. alt 3d. Sun's refraction Sun's plx. in alt - 41° 3' 58" WW 41°19'49" App.Z.D. 48°40'11" —I'll" Sun's true alt 41° 18' 46" 4th. Obs. alt moon's U. L. 37° 68' 24" Moon's semidiameter Moon's augmentation Moon's app. alt Moon's hor. plx. - Moon's plx. in alt M oon's refraction — le' 6" —10" 37° 42' 8" 46' 44" —I' 14" Z.D. 48° 41' 16" cos. -9.898286 69' 4" sin. -8.236047 Sine— 8.18883* Moon's true alt 88° 27' 88" Z. D. 61° 32' 22" Digitized by VjOOQIC Plate A Digitized by VjOOQIC Digitized by VjOOQIC NAUTICAL A8T10N0MY. 175 $ ft. To find the tr. taiar dist 1st To find b A 6' in the first triangle, (§ 201. 5/.) > __ 4 b 6' (Ap. lunar dist) -97° 4g' 34" £ Plato * A 6 (sun's ap. Z. D.) -=48° 40' 11" co-sec. «0. 1244 10 A V (moon's ap. Z. D.) -=52° 17' 52" co-sec. =0.10 17 14 2)198° 46' 37" i Bum=99° 23' 18" sin. =9.994144 (J S^b b f ) =* 1° 34' 44" fiin. =8,440173 2)18.660441 Cos, *A£=77° 38' 55"= 9.330220 2 2d. To find BB'? ($200, so J bkb t =i^nrm it cob. =9.953319 AB- 48°41'15" cos— 9 819653 - - tang=0.056056 AuxL a - B ec.=0,157822Tang.al34 a 3' 7" =0.014375 51°32'38" (M,'b Z, D.) (a«M/sZ.D.) cos.=0.1H977 - 82°30'45" (A B' «a) Cos. B B =9.092452 = 97° 6'25" (Tr. ft dist.) When this distance (97° 6' 25") occurred, it was 9 P. M. at Greenwich of the given day (N. A. p. xv., Monthly Ephemeris.) § c. To take ($498. § a.) the other requisite data from the ephe- mera. Moon's dec. 14° 59 / 6" N. P. D. 75° 0" 54" (N. A. t p. viii. M, E. Sun's dec. 19 Q 8' 28" N. P. D. 70* 31' 32" ( » ii. Moon's Rt A. 10A25ml5s - ( viii, « Sun's *• 3A52m25* - ( m H. " Polar angle =6fc 52m 50* =B P 11 '. $ d* To find the required angle B' B A of the second triangle. B B' (lunar dist) =97° 025" coaec. =0.003350 BAB' - 155°L7'50 " sine =9-621084 A B' (moon's Z. D,) =51°32'22" sine =9,893782 Sin, B'BA=9.51821G=19*lft'18' Digitized by VjOOQIC 176 LUNAB8. « ». » S $ «• To find the required angle B' B P of the third Plato 8. « tri^gfe BF (lunar dist.) -= 97° 6' 25" co-sec. =0.003350 B'PB (pl'r. angl.) — 6A 52m 50" sin. =9.988356 P B' (moon's P. D.) = 75° 0' 54" sin. «9.984975 Sin. B' B P«71°23 / 30" =9.976681 5/ 4th triangle B A P ; > B' B A-19°16'18" ($ 506.) nd the co-lat. $ P B A— 90°38'48" cos. =8.052549 AB«48°4i'15" cos.=9.819653 - tang. =0.056056 Y to fin Auxl. a - sec.=0.000036 Tang, a 179° 15'51" -=8.108605 70°51'32"(S.'sP.D.) (a od sun's P.D.) cos. =9.499325 108°24'19" (A Boo a) Cos. A P, or sin. lat.«9.319014— 12°1'55"N. see.»0-009647 To find the Hr. > P B A=90°38'49" sin.»9.999973 angle A P B. J A B (sun's Z. D.)=48°41'15" sin.»9.875710 Sin.APB 3&20m41*=9.885330 Equation= 3m 56* Mean timenSA 16m 45* P. M. Gr. time (§ 6.)=9A P. M. W. Long. (S 391. $ 6.) 5A43ml6*=85°48'4G" $511. Examples under $ 483. and § 510. are drawn oat in the solution, in order to familiarize the problem to the student. But such a process of calculation as is there shown, is not desirable in practice ; especially that part of it which has been made to come under Case IV., (§ 200. § n.) on account of the perplexity in deter- mining whether the value of the auxl. a be greater or less than 90°. § a. Therefore, in practice, those methods of calculation are ge- nerally preferred, which give the trigonometric function of half the value of the required pait; such as § a. (§ 386.), for half the value of a required arc or angle should never exceed 90°. $ 512. The learner has now become familiar with the triangula- tion, which is brought under calculation in the process of finding longitude, etc., from a lunar observation ; he will therefore readily comprehend the manner by which such an operation is simplified, and reduced to the following methods and formulae for practice. § 513. The process of correcting the obs. distance and altitudes is fully shown under § 483. and $ 610. This part of the operation Digitized by VjOOQIC NAUTICAL ASTRONOMY. 177 is the same in every method for calculating the true from aa obs. lunar distance. . $ 514. An improved method for finding the trod from an-observed lunar dist«* $ a. Aug. 27th, 1834. App, dist. sun & moon— 88° 26' 52" Sun's app. alt. Sun's refraction - Sun's pl'z. in alt. «47° 52' 12' — 53" 7" Sun's tr. alt. 47°51 v 26" Moon's app. alt. - Moon's nor. pl'x. 40° 52' 58" cos. s *9.8?855a 55' 0" sin.«8:2(Ht070 Moon's pl'z. in alt. 41' 35" sine=8:082620 Moon's refraction - —1' 7" Moon's true aft. =4t»3&'3t6*' $b. App. lunar D. S«n's app. sit. Moon's " 88° 26' 52" 47° 52' 12" sec.tttO.178897 40° 52' 58" see»~(U21449 2)177° 12' 2" isnm=88°36' 1" cos. =8.387876 (iS. qo app. lunar D.) « 0° 9' 9" co8.=9.999998 Sun's tr. alt. Moon's " 47° 61' 26" cos.«9.826710 41° 33' 26" cos.-s9.874073 Sun's + Mon's alt. Sun's + Moon's Alt. 2 2)38.383503 19.191751 -44° 42' 26" cos.-9.851693t Sin. auxl. a»9.340058«12 o 38 / 20" Auxl. a cos.=9.989847f ftin. Tt - lunaT dia1; --9.841040-43 o 54'25 T ' 9. — 2 True lunar dist.»87°48 / 50" • Vide KjaLi'i Sphkbics, p. 105. Aa Digitized by VjOOQIC 178 LATITUDE BY THE NORTH 8TA&. $ & (N. A. f p. xvu., M. E;) 8A P. M. Sun's lunar dist. 98° 2tf 8" P. L.»3277 True lunar diat. =87° 48' 50" 40° 18" P. L.=6500 Bh P. M. 3223=lA25m42* Greenwich time =*4A 25m 42*P.M. LATITUDE BY THE NORTH STAR. * $515. In northern latitudes, the latitude may be found at any time of the night, by an altitude of the north star. § 516. If the north star were situated in the pole of the world, its altitude would always show the elevation of the north pole ; and ($251. $ a.) consequently to the observer, his latitude. $ 517. But as this star revolves in a very small circle around the pole, the elevation of the pole may always be determined by apply- ing to the star's altitude at any time, the corrections opposite to that time in the subjoined tables (A & B). $ 518. The corrections in Table A, and those after ( *'s alt. +) in the hour columns of Table B, are always to be added to the star's alt. They are expressed in seconds ("). $ 519. And the other corrections in Table B, must be applied to the star's altitude, according to the precept, which is at the head of the hour column in which the sidereal time is found. $ 520. To find the lat. by an alt. of the north star; the altitude being corrected for dip, refraction, etc. $ a Subtract 1' from the star's alt. § o. For the supposed time of night when the observation is made, take the corresponding sidereal time ; the correction found in Table B and opposite to this time, being applied, according to the precept (§ 519.) at the head of its column, to the star's alt., gives the approximate latitude. $ c. - And the corrections under the hour in Table B, and opposite the hour, but under the " approximate latitude," in Table A, being added to the approximate latitude, give the lat. of the observer. $ 521. May 4, 1834, long. 85° W. the altitude of the north star, at 7h P. M., was 35° 29' 43". To find the lat. $ a. Supposed time - - 7h Qm Of P. M. Longitude in time 5A 40m Os Time at Greenwich - - 12A40m 0* (§ 396. $ a.) Sidereal time, May 4 - - 2h 47m 34s (N.A.,p.ii.,M.E.) Supposed time 7h Acceleration of S. T. for 12A 40m 2m 59 ($ 213. $ b.) Sidereal time of obs. - - =»9/i49m39i Digitized by VjOOQIC NAUTICAL ASTRONOMY. 179 ib. Star's alt. 35° 29' 43" 1' (§530. § a.) 35° 28' 43" Oppos. 9A 49m 39* (Table B) correction + 1° 3' 38" Apprx.lat. 36° 32' 21" Under 9A, *'s alt.+(Table B) - 66" Oppos. 9A 49m 39* and under 40° (Table A) 32" Latitude 36° 33' 59" N. § 522. Jan. 14, 1834. Long. 45° East 9A P. M. ; the altitude of the north star was 41° 11'. To find the lat. $ a. Supposed time 9A Longitude in time Sh Time at Greenwich - - 6A ($396. §6.) Sidereal time, Jan. 14 - I9h 33m 53* (N. A., p. ii., M.E.) Supposed time of obs. - 9h Acceleration of S. T. for 6A 59* (§ 213. 5 b.) Sidereal time of obs. - - 28A 34m 52*— 24A=4A 34m 52* § b. Star's altitude - - - - 41° 11' 1' 41° 10' Opposit. 4h 34m 52* (Table B) Cor. —56' 15" Appro*, lat. - - ... - 40° 13' 45" Under 4*, *'s alt.+(Table B) Cor. 56" Oppos. 4h 34m 52*, and under 41° (Table A) 41" Latitude 40° 15' 22" N. 5 523. Aug. 8, 1834, longitude 150° East. The alt of the north star at 4 A. M. was 49° 33'. To find the latitude. § a. Supposed time 4A A. M. -16A* (§ 221. § b.) Longitude in time - - =10A Time at Greenwich - - « 6A Sidereal time, Aug. 8 - 9A 6m 3* Supposed time of obs. - - 16/k Acceleration of S. time for 6A 59* Sidereal time of observation - 2bh7m 2*— 1 A 7m 2*. Digitized by VjOOQIC 180 LATITUDE »Y TO£ NORTH 8TAR. $ b. Star's altitude Oppos. Ih7m2e (Tabfe B) Cor. 51° 84/ 1' 51° — 1° 33' 41'**" 50° r 6" 58" 0" \ 60° 2' 4" Approx. latitude «... Under lh, *'s alt. + (Table. B) Cor. Oppos. lh and under 50° (T. A) " $ 624. An error of several degrees in the longitude, and of several minutes in the time of taking the star's altitude, brings only a small error into the latitude, therefore die ship's time, and longitude by dead reckoning, may always be used for finding the latitude at sea by the polar star. Tables fbr finding the Latitude by the alt. of the North Star* Table A. Sidereal Time* APPROXIMATE LATlTCDC * BMenei Time. 15° 30° 40° 50° 60° 65° 70° A m it It // . it n ti it A m 0. I 3 4 9 9 12 *? 12 30 1 1 2 2 3 4 30 1. 13. 30 p 1 1 2 2 2 3 30 30 \ 3 4 6 9 11 14 14. 7 9 13 1 13 24 31 30 3. 5 11 16 23 34 42 53 15. 30 7 17 24 34 60 62 79 30 4. 10 22 33 46 07 83 106 16. 30 13 28 41 58 85 108 134 30 5. 16 34 49 70 101 128 160 17. 30 18 38 56 79 115 145 182 30 6. 19 42 61 87 126 159 199 18. 30 30 44 65 91 133 168 210 30 7. 21 45 64 93 135 170 214 19. 30 61 44 64 91 133 168 211 30 a. 20 42 60 87 127 159 200 90. 30 18 38 50 79 116 146 183 30 9. 15 44 43 70 102 129 161 91. 30 13 28 32 59 86 109 136 30 10. 10 23 29 47 69 84 108 99. 30 8 17 27 35 50 62 80 30 11. 30 5 3 11 7 17 10 23 13 34 20 42 35 54 32 23. 30 19. 1" 3" 4" 6" 9" 12" 15" 94. SUetMl Time. 15° 30° 40° 50° 60° 65° 70° SUerttl Time. A pproxii CAT! hi ITITUDI • Vide N. A. for 1334, p. 483. Digitized by VjOOQIC NAUTICAL ASTRONOMY. Table B. 181 SUmalTims. Correction*. Sidereal Time. Correction!. ri M H H M H _ + _ + 12 1° 31' 12" 6 18 0° 24' 43" • 10 • 32 12 • 10 • 20 44 £ r 20 30 t 33 1 33 39 • is r 20 30 r 16 41 12 36 + 40 \ 34 7 + 40 + 8 31 * 50 34 24 % 60 1 4 24 1 13 1° 34' 30" 7 19 0° • 01' 6" 3 10 J 34 25 19 10 7 3 61 t r 20 30 fc r 34 10 33 44 • m 3 20 30 • Oft* + 7 58 12 4 + 40 + 33 7 40 16 8 1 50 % 32 19 50 20 11 t 14 1° 31 / 21 // 20 8 0° 24' 12" ,? 10 • SO 13 • 10 • 28 9 • r 90 30 r 28 54 27 25 20 30 fc r 32 4 35 55 + 40 + 25 46 + 40 + 39 41 1 50 % 23 57 1 50 % 43 23 S 15 1° 21' 59" 91 9 0° 4r 1" 5 r 1* V 19 51 ♦ 10 • 50 33 9ft 30 I 17 34 15 8 OB 20 30 r 53 59 57 19 + 40 + 12 34 + 40 + 1° 32 5 50 o> 9 52 S 50 S 3 38 4 16 i° r i" 33 10 1° 6' 38" • 10 • 4 3 J 10 • 9 29 • 20 • it r 57 OB t r 20 OB it r 12 13 30 0° 57 45 30 14 48 + 40 + 54 26 + 40 + 17 15 * 50 1 51 50 19 33 < 5 17 0° 47'29"| 23 11 1° 21' 42" • 10 • 43 53 • 10 # 23 42 so 20 9 40 11 09 £ 20 SB 25 32 30 36 25 30 27 12 + 40 + 32 35 + 40 + 28 42 1 50 % 28 41 '* 50 3 30 3 6 18 1° 24' 43" 24 12 1° 31' 12" H M H Camctfanf . H M H Corrections. Digitized by VjOOQIC 182 TIDES. TIDES. $ 525. The flux and reflux of the waters, known under the name of Tides, are caused by the attractive forces of the sun and moon exerted upon the ocean. §£526. The moon being nearer to the earth than the sun is, has a greater effect than the sun upon the tides. § a. The action of the moon upon the tides, is about three times greater than that of the sun. § 527. When the attractive forces of the sun and moon act in con- junction, they produce the highest tides. § a. When this is the case, the moon (§ 367.) is in syzygy. § b. And the tides caused about this time are called spring tides. § 528. The tides have the least rise and fall, when the attractive forces act perpendicularly to each other. § a. And this is the case, when the moon (§ 369. § 6.) is in quadrature. Then the tides are called neap tides. § 529. That portion of the ocean which is immediately under, and nearest to, the sun or moon, is more attracted by either than the centre of the earth is. This portion then, has a tendency to approach the attracting body, and rises up, until its tendency is counteracted by the attraction of gravitation towards the centre of • the earth. §,a. About twelve hours afterwards, this portion of the ocean, owing to the earth's diurnal motion (§ 206. $ a.), is at the furthest point from the sun or moon ; and the waters about it, owing to their tendency to restore the equilibrium, which is disturbed by the effects of the attraction of the sun or moon on the opposite side of the earth, rise up and make high tide again. § b. Hence, during the time in which the moon is performing one revolution around the earth (§ 362. § c/.),the tide rises twice, and falls twice, at the same place. § 530. The attractive forces of the sun and moon upon equal por- tions of the surface of the sea, being (§ 526. § a.) about 3 to 1 in favour of the latter ; if the solar tide at any place be 2 feet and the lunar 6, and the moon be in syzygy, the two tides will happen at the same time, and (§ 527. § 6.) make a spring tide of 8 feet. § a. .Then, as the lunar (§ 360. § a.) is longer than a solar day, the following solar will happen earlier than the succeeding lunar tide, by the difference between half a solar and half a lunar day. $ b. Thus, the lunar tide continues to retard upon the solar tide, until the moon quadrates; when the high lunar and low solar tides coincide in time, and ($ 528. § a.) we have a neap tide of four feet rise. § c. After this, the lunar still continues to retard upon the solar tide, until the moon arrives in the other syzygy ; when the two high tides again happen at the same time, and bring about other spring tides. Digitized by VjOOQIC NAUTICAL ASTRONOMY. 183 § d. At this second spring tide, the moon has completed half of a revolution in its orbit, and has lost one tide upon the sun ; there- fore, while the moon is completing one entire revolution through its phases, there are two more solar, than lunar, tides. $ 531. The attraction of the moon being more partial, and its ef- fect upon small portions of the earth's surface being more obvious than that of the sun, the combined tides are governed more by the moon than by the sun* § 532. The effects of the moon's attraction upon the earth, tend (§ 589.) to create high tide, both in that part of the ocean immedi- ately under, and nearest to, the moon, and in that part diametrically opposite ; and were not the motion of the waters resisted and ob- structed, there would be high tide at the moment when the moon crosses either the superior or the inferior meridian. § a. But, at some places, the passage of the moon across the me- ridian, precedes, by several hours, the time of high water. § b. This retardation of the tides might be explained, by attri- buting the retarding power to the effects of the resistance, which the shores, unequal depths of ocean, etc., offer to the mass of mov- ing waters, were it not, that the waters do not rise up into spring tides, when the moon is in syzygy, and when the attractive forces of the sun and moon are combined in their action upon the waters ; but the highest tides in every synodical month ($ 362. § c), is gene- rally about the third tide after the passage of the moon through either syzygy. § c. And the least neap tide, is generally the third tide after the moon quadrates. _ § 533. Observations show, that the tides require a little longer time to ebb, than they do to flow. § a. This difference observable at sea, becomes more obvious in rivers of strong currents. § 534. Upon the smaller seas v and sheets of water, such as the Lakes, the Mediterranean, etc., the effect of the lunar and solar attrac- tions, are partially counteracted by the circumscribed limits to their action ; and hence but little, or no tide is produced there. . § 335. There are a variety of causes, (and some of a local nature), which, acting together, tend, some to retard at one place, and others . to hasten at another place, the hour of high tide on the full and change days of the moon ; so that, there are no general rules for de- termining beyond certain limits of approximation, the time of high or low water at any place. $ 536. The greaiest interval between two consecutive tides, gene- rally happens about a day and a half after the moon has quadrated ; when the tides, (§ 532. § c.) being at the minimum of. their rise and fall, are the weakest. § a. And the least retardation of one tide after another, is the 2d upon the 3d, or the 3d upon the 4th tide, after the moon's latest passage through a syzygy ; the tides, having then (§ 532. $ b,) the greatest rise and fall, are strongest. Digitized by VjOOQIC 184 TIDES. (537. On an average, the tides rise and fall once, in about 12A 48m. ♦ §a. Consequently every tide retards, at a mean, about 24m, upon the one which it succeeds ; and each tide happens about 48m later than it did the day before. § 588. Were there not so wide a difference in the tides, between the minimum and maximum of their retardation, the* hour of high or low water, at any place and on any day, might be found by add- ing to the time of high water on full or change days, the product of 48m, and the number of days from the latest full or new moon, to the day proposed. § a. About the time of neap tides, there is sometimes a difference of more than an hour and three quarters in the time of high water, on two successive days. § b. And a similar difference about the time of spring tides, is frequently less than half an hour. § 589. The annexed table (G) shows the retardation of the mean tides, upon the hour of high tide on full and change days, for every day between the full and change of the moon. § a. Therefore, to find the time of mean high water/ on any day, we have only to look in the Nautical Almanac (page xii* M. Ephe* meris), for the day of the latest new, or foil moos, in order to find its age (in days) since the last change in syzygy ; the time, jn the annexed table (C), found opposite to this age, and added to the tone of high water at the place proposed, on full and change days, gives the time of mean high tide for the day when it is so required* § b. The .hour of high tide at any port, on full and change days, is called the establishment of the port* § c. And the establishment of the port for any one place is at ways the same; for on every full ana change day throughout the year, high tides are considered to take place there at the same hoar ' of the day. Digitized by VjOOQIC NAUTICAL ASTRONOMY. 185 Table C. $ 540. A table for finding the time of high or low water, at any place, the establishment of the port (§ 539. §6.) being known. $ a. To find the time of high wa- ter at Charleston, Aug. 29, 1S34. The establishment of the port being , 7A5m. $ b. The last change in syzygy (§ 367.) was full moon, Aug. 18th, . 20A (N. A., p. 12, M. E.); conse- quently the moon's age is 10 days. $ c. Opposite to lOrf, and in the column, from O to •, is Bh 10m 9 which, added to the establishment of the port, gives ISA 25m, the hour of high water on the day proposed. § a. To find the time of high wa- ter at Portland, Feb. 14, 1834; the establishment of the port being 10A 45m § e. The last change in syzygy was new moon February 3 ; conse- quently the age of the moon is six days. $/. Opposite to (W, and in the column, from #> to 6» is 4A 3m, which, added to 10A 45m, gives 14A 48m, the time of high water. § 541. This method does not show the precise hour of high wa- ter; but it approximates the true time of high water, within limits which will serve on all ordinary oc- casions. § a. The time of low water may be found by adding 6A 15m to the time of high water on ihe day pro- posed. * The arguments # to O* metn from .Yew to Full moon ; and O to •> fr°n Full to JSTew moon. From to O FromOtof * Daya. Correction*. Correction*. H M H M 21 i 20 41 1 41 1 1* 1 5 1 19 2 1 28 1 as ** 1 47 1 58 3 2 e 2 18 3* 2 26 2 88 4 2 46 2 58 4J 3 5 8 19 5 3 24 3 40 5* 3 45 4 3 6 4 6 4 28 *i 4 28 4 51 7 4 50 5 15 n 5 15 6 41 8 5 44 e 14 «* 6 14 6 53 9 6 48 7 80 »* 7 28 8 5 10 8 10 8 38 10* 8 47 9 7 11 9 20 9 29 11* 9 48 9 61 12 10 14 10 18 l*i 10 36 10 48 13 10 85 11 10 13* 11 16 11 30 14 11 38 11 51 14* 11 69 12 1 12 15 12 | 20 Bb Digitized by VjOOQIC Digitized by VjOOQIC NAVIGATION. Digitized by VjOOQIC Digitized by VjOOQIC NAVIGATION. $542. The geographical situation of places, is designated by their distance, norm or south, from the equator ; and by their dis- tance, east or west, from a prime meridian ($ 252. $ c). § a. These distances ($ 248. § b. & § 252.) are known by the name of Latitude and Longitude of the places. § 543. It has been shown in Nautical Astronomy, how the lati- tude and longitude of places may be determined by means of obser- vations made upon the sun, moon, or stars ; but in practice these means are not always at hand. § 0. It remains then to be shown, how the geographical .position of places may be determined, by knowing in certain respects, their relative situation with regard to each other. $ 544. Washington city is to the southward and westward of Bal- timore. The difference of latitude between them (§ 254. $ c.) is the meridianal arc, which is contained between Baltimore and the parallel of the latitude of Washington. € a. And the arc of this parallel which is between Washington and the meridian of Baltimore, ($ 254. $ &.), is the difference in longitude between the two places. € b. These two arcs are perpendicular to each other ; for the me- ridian of Baltimore (§ 248. $ a.) cuts the equator at right angles, and the parallel of Washington (§ 249.) is parallel to the equator. v § c. Now, if a line (W B) be drawn direct from Washington to Baltimore, it will connect their difference of longi- tude (W L) and of latitude (B L), and form a right angled triangle (W L B), of which the hypothenuse ( W B) is the distance, and the legs, the difference of latitude and of longitude, between Washington and Baltimore. § d. The two acute angles (W & B) show the bearings of each place from the other. The angle W is the course from Washington to Baltimore, and the angle B is the course from Baltimore to Washington. $ t. Hence if, of the Disk, Diff. Lat., Diff. Long., and Course, between two places, any two be given, the others are determinable. Digitized by VjOOQIC 190 NAVIGATION. § 545. Now, the section of a loxodromic curve, which a ship traces while she is sailing upon a given course, is the hypothenuse of a right angled triangle, and corresponds toWB. § 0. Then if the course and distance, which a ship sails in any given time, he known, we have the hypothenuse and an acute an- gle of a right angled triangle t given ; and the other parts are deter- minable. § b. Therefore, knowing the latitude and longitude of the place from which a ship takes her departure, and knowing the course and distance which she sails from that place, in a specified time, we may determine by right angled trigonometrical calculations, the lati- tude and longitude of the ship, at the end of that time. § 546. The sides of all such triangles are curved lines ; for the earth (§ 204.) is a spheroid, therefore all triangles upon its surface are spherical triangles, and are properly subject to the rules of spherical trigonometry, for investigation. § a. But the laborious operations of obtaining results from these triangles, when brought under calculation, as spherical triangles, would be inconvenient in practice ; and they are not necessary in the ordinary purposes of navigation. § b. Therefore all such triangles are considered in navigation. as right angled plane triangles, and are brought under calculation ac- cording to the rules of plane trigonometry. § 547. A degree (°) of all great circles, such as the equator, me- ridians of longitude, etc., whose radii and the earth's semidiameter are the same, consists of 60 nautical miles, or of about 60£ statute miles ; so that, calling the number of minutes ('), miles* which is contained in an arc of one of these great circles, we have the value of this arc considered as a straight line. § a. Wherefore, knowing the distance and the difference, of lati- tude between any two places, the difference of longitude between them, may be determined also in nautical miles, by right angled, plane trigonometrical calculations founded upon § 75. $ b. The difference of longitude thus found, is called departure. 5 548. Departure is the difference in longitude between any two places, expressed in miles. § a. And the departure in any latitude, may be converted into its corresponding minutes (') of longitude by means of the principles established under § 76. § 549. It is evident, that, if in mathematical calculations, curved lines be treated as right lines, there must be an error in the result ; and this error increases with the number of degrees contained in such curved lines. § 550. The result then, obtained by calculating the sides of a spherical triangle, as though they were the straight lines of a plane triangle, is only an approximation ; and the smaller the sides, the closer is the approximation. $a. This method therefore is particularly applicable in small distances, and short runs ; it is used for working up " dead reckon- ing", and for calculating the distance, the difference of latitude and Digitized by VjOOQIC NAVIGATION. 191 of longitude, and the course, from one place to another ; any two of which four quantities, being known, (§ 544. § e.), the others are de- terminable. §551. The diagram shows by a mere inspection, the> piate x solution of every problem which can occur in right angled 3 plane trigonometry, provided the hypothenuse of the triangle in- volved, do not exceed 300 miles, or 300 units of any measure. § a. This diagram may answer the purpose of Tables IV. & V.; and it also shows the principles upon which they are constructed ; for the number in the Dist. column of these tables, is the length of the hypothenuse of a right angled triangle, whose acute angles contain, one the number of degrees at the top, and the other those at the bottom of the page, and the value of whose legs is set down opposite to that of the hypothenuse, and in the columns marked Dep. and D. Lat. § 552. This diagram, then, shows the solution of every case, or problem in loxodromic sailing ; for it shows the dimensions of the triangle involved in every problem, provided the distance or hypoth- enuse do not exceed 300 miles. § a. If it exceed 300 miles, the solution may be obtained by dividing the given side or sides, by 2 or 3, or by any other divi- sor, which will reduce the triangle of the problem within the limits of the diagram ; then the value of the side or sides, obtained, by using said quotient in the diagram, being multiplied by the same divisor (§ 70.), gives the value of the required side or sides. $ 553. The angle B A D is 45°. § a. The acute angles of a right angled triangle (§ 32. § d.) being complementary to each other, the less must always be located'at A. $ b. And the leg adjacent to it, must be called the base, and be a part of A D. § c. And the leg opposite to it, must be called the perpendicular. § d. All the straight lines standing upon A D, are alluded to as perpendiculars. §e. B C is the greatest perpendicular in the diagram. Equal portions of it are transferred by means of the parallels b d, to the graduated arc B D, for admeasurement. §/l The graduated arc B D is thus made to answer the purpose of a graduated perpendicular, for the arc contains the same divi- sions which the perpendicular B C would have shown, had it been graduated to the scale of A B and A D. § g. The height of every perpendicular is therefore shown on that portion of the graduated arc, which is between the base (§ b.) and that parallel, under which the perpendicular stands. Thus the height of the perpendicular b C, transferred by the parallel b d, to the graduated arc, is D c?=11.3. § 554. The arcs in the diagram show the angular value of any course, provided it be not more than 4 Points, or 45°. § a. If the course be greater than this, they show the angular value of its complement. §6. The arcs, 3, 4, 5, etc., also show the length of the base and Digitized by VjOOQIC 192 NAVIGATION. Plato 1 \ -hypotiieiMwe of the triangle- proposed; while the scale on ' 5 the graduated arc (§ 553. $ g.) shows the value of the per- pendicular (6 c) in the several triangles. § c. The section of any arc? which is contained between the base, and the lines A e, shows the angular value of the courses which are marked upon these lines ; and the angular value of the complements (§ 553. § a.) of the courses, marked under these lines. § d. The marks on the arcs show the value of these arcs in de- grees. § e. The eyen numbers (2°, 4°, 6°, etc.) of degrees are marked on the concave side of the arcs ; and the odd numbers (1°, 3° 5°, etc.) are marked on the convex side. $/. The degrees (46°, 47°, 48°, etc.) that stand on the outside of the graduated arc, ere the complements of those (42°, 43°,- 44°, etc.) on the inside of the arc. § g. The entire length of every arc (§ 553.) is 45°. § 555. The dotted lines, A e', represent quarters of Points ; the broken lines A e, represent halves of Points ; and the continuous lines A e whole Points. § a. The distance on a given course is shown on the lines A e, at the end of which lines that course is found ; then the portion of that line (A e) which is contained between A, and the arc 3, 4, etc., which is marked with the distance proposed, is hypothenuse to the triangle required. § b. Thus 24 miles on a 2i Point course, is the distance A b on the broken line A e, at the end of which 2i is marked ; and A C b is the right angled triangle, of which the course and the distance proposed constitute an angle and the hypothenuse. § c. The two legs of this triangle are the boat A 0, and the Jier- pendicular b C which stands under the parallel b d. § d. The graduated scale On A D shows the value of A C**21.1, the D. lat.; and the portion (D d) of the scale on the graduated arc, between the base and the parallel b d (§ 553. § g.) 9 shows the height of the perpendicular b C =1 1.3, the Dep. § 556. Now as the distance which a ship may sail upon any loz- odromic course, is considered (§ 546. § 6.) as the hypothenuse of a right angled plane triangle, if the distance sailed upon such course can be found in the diagram, the departure and difference of lati- tude, which correspond to that course and distance, may be found by means of the graduated base and arc, A D and B D. § a. Or* if any two of these quantities; viz., Course, Dist., Dep., and Diff. Lat., be known, the other two are determinable by means of the diagram. § 557. A ship sails N.W.|N. 19 miles, What departure and dif- ference of latitude does she make ? $ a. The given course is found upon the dotted line A *'* *&d that portion (A b) of this line, which is between A and the 19th arc, is the hypothenuse of the triangle (A c b) involved. $ b. The perpendiculcr (b c) intersects the bate at 14.1, which is the difference of latitude. Digitized by G00gle NAVIGATION. 193 $ t. And the parallel, from the top of the perpendicular, £ intersects the graduated arc at 12.7, which is the departure. J ' $ 558. A ship sails N.W. by N. and makes 12.7 miles of depar- ture, What distance and diff. lat. does she make ? $a. The parallel from 12.7 on the graduated arc, intersects the N. W. by N. line, in the point, (nearly), where the 23d arc crosses it ; then nearly 23 (22.9) miles in the distance sailed. $ 6. And the perpendicular from this point of intersection, falls upon the base, and shows the difference of latitude required, to be 19.1 miles. § 559. A ship sails N. by W.|W. and makes 19.8 miles diff. lat., What departure and distance does she make ? $ a. The perpendicular at 19.8 on the base, being traced up, is found to intersect the N. by W.fW. line on the 21st arc; then 21 miles is the distance sailed. $ 6. And the parallel from this point of intersection, being traced to the graduated arc, shows the height of the perpendicular 7 miles, which is the departure required. $ 560. A ship, after sailing 18 miles, finds that she has made 16.2 miles diff. lat, What course did she sail, and what departure has she made I § a. The perpendicular from 16.2 on the base, intersects the 18th arc on the dotted line marked 2 J Points, which is the course ^required. $ 6. And the parallel from this point of intersection, shows, on the graduated arc, the height of the perpendicular to be 7.8 miles, which is the departure required. $ 561. A ship sails 28 miles, and finds that she has made 15.6 miles departure, What course and diff. lat. has she made ? § a. The parallel from 15j6 on the graduated arc, cuts the 28th arc, on the line marked 3 Points, which is the course sailed. $ 6. And the perpendicular from this point of intersection, falls upon the base at 23.3 miles, which is the diff. lat. required. § 562. The departure between two places is 8.7 miles, and the diff. lat between them is 28.6 miles, What is the course, and the distance from one place to the other? $ a. The perpendicular from 28.6 on the base, intersects the 30th arc on the broken line, l£, which shows the required course and distance to be 1$ Points, and 30 miles. $ 563. If the distance sailed be not more than a mile, or if the hypothenuse of the triangle proposed, be not greater than 3, the divisions on the scales must be decimated; then the figures 1, 2, 3, 4, 5, etc., stand for T ^, *fc, y' 5 , -^, -fa, etc., and the subdivisions stand for lOOths. §a. Wherefore, Nvhen the distance is not more than 3 miles, the distance from A, to the 10th arc, is 1 mile ; to the 20th, 2 miles ; and to the 30th, 3 miles ; and all the numbers in the diagram stand for lOths. $ 564. What departure and difference of the lat. would a ship make by sailing 2 miles N.W. IN. ? C c Digitized by VjOOQIC 194 NAVIGATION. C $ a. The parallel and perpendicular which would past Plate l. ^ trough tne point in which the 20th arc intersects the N. W.iN. line, measured by the eye, would cut the graduated arc and base in 12.7 and 15.4. § b. And using only one decimal place ($ 563.), the nearest would be 1.5 diff. lat. and 1.3 departure; but the exact is 1.54 and 1.27 diff. lat. and dep. $ 565. When the lines in the diagram do not pass through the point required by the conditions of the triangle involved, the ima- ginary lines required, may be traced by the eye with all the preci- sion which is necessary ; and after a little practice, with the utmost accuracy and facility. § a. Thus, the distance of one place from another, is N. by W. 27 i miles ; the triangle involved in this problem, being filled up by the eye, the imaginary parallel and perpendicular, cut the graduated arc and base in 5.3 and 27 ; which shows the departure between the two places to be 5.3 miles, and the diff. lat 27 miles. § 566. If the distance sailed on a single course exceed 30 miles, or the hypothenuse of the triangle involved, be greater than 30, all the numbers in the diagram must be increased tenfold. § a. Then the arcs must be reckoned as being 10 miles a part; the numbers 1, 2, 3, 4, 5, etc., will stand for 10, 20, 30, 40, 50, etc. ; and the distance between these numbers being divided, every one in 10 equal parts, every one of these subdivisions must be counted as 1 mile. § 567. A ship sails N* W. 240 miles ; what departure and diff lat does she make ? § a* The parallel and perpendicular from the intersection of the 24th arc (now counted ($ 566 ) 240), with the N. W.line, cuts the graduated arc and base ($41.) at equal distances, and the departure and diff. lat. (§ 14*) are the same. %b. Departure =169. 5. diff. lat =169. 5. This is -& of a mile less than the result by logarithmic calculation. This difference is owing to the smallness of the scale upon which the diagram is pro- jected, and not to any defect in the principles involved in the pro- jection of the diagram. $ 568. In the examples quoted above, the courses are on the lines, and the diff. lat., except (§ 567.) when the course consists of 4 Points, is always greater than the departure. § 569. The courses and figures under the lines, (§ 554. § e.) are the complements of those on the line above them ; and when the course is found under the line, the departure is the longest leg of the triangle involved, and must be read off upon the base A D ; and the diff. lat. is taken from the graduated arc B D. § a. A ship sails £. i N. 28 miles. What departure and diff. lat. does she make ? $ b. The parallel and perpendicular which pass through the point where the 28th arc cuts the dotted line, under which the given course is marked, meet the graduated arc and base in 1 .3 and 27.9+. § c. Then ($ 569.) the departure =27.9. and the diff. lat. =1.3. Digitized by VjOOQIC NAVIGATION. 195 §570. The four cardinal points of the horizon ($ 272.) £ divide it into four quadrants, each containing 8 Points. £ $ a. Wherefore a Point=ll° 15', the quotient of 90° by 8. $ 571. The Points, when expressed by numbers, begin at the north and south, and are reckoned in numerical order, to the east and west points. $ a. Hence, it is easy to conceive that a vessel that sails N. 3 Points W., or N. W. by N., would make more northing than west- ing, and that her diff. lat. would be greater than her departure. § b. And conversely, that if a vessel sail on any course between 4 and 8 Points, e. g., N. 5 Points W., or N. W. by W., she would make more westing than northing, and that consequently her de- parture would be greater than her cliff, lat. $ 572. From what has already been advanced in explanation of the diagram, it appears that the triangle involved in the trigonome- trical solution of any problem in loxodromic sailing, is a right an- gled plane triangle. $ a. Loxodromic sailing,* is so called from the sort of curve which the track of a ship forms, when she is sailing upon any course not exactly due east or west, north or south. f b. Loxodromic curves are spirals, which continually approach the poles, but can never reach them. § e. And any course, not due east or west, north or south, is called a loxodromic course.f $ 573. A number of formula;, varied in the trigonometric func- tions to be used, may be drawn up for the solutions of the several cases in loxodromic sailing. § a. The terms in these formulae depend upon the side of the triangle, whether it be the distance, the de- parture, or difF. lat., which is made radius. § 574. Baltimore is 35 miles N. N. E. i E. from Washington. The for- mula for finding by calculation the de- parture and diff. lat. between the two places, depends upon the trigonometri- cal construction which is given to the triangle involved. § a. If the hypothenuse be made ra- dius, to an arc B C, the dep. becomes (§ 54.) sine to the course, and the diff. lat. its co-sine. § 6. Then, (§ 75.), rad. : dist. : : sin. of course : dep. : : cos. course : diff. lat. • The subdivisions of the »ailing», m^ Plane, Traverse, Parallel, and Middle Latitude Sailing, are not here preserved. Theae distinctions are by no means necessary for the purpose of facilitating the navigator's calculations; they have therefore been generalized under the term of loxodromic tailing, f E. by N. is a loxodromic course. 8uppose a vessel could sail E. by N. Digitized by VjOOQIC 19B NAVIGATION. § e. Hence (§ 74.) are deduced the following formulae ; the three first being the given terms, and the fourth, the unknown and required term* of the proportion; § d. Sin; course : dep. : : rad. : dist. (§ 75. $ b.). § e. Dist. : rad; : : dep. : sin. course; §/. Cos. course : diff. lat. : : rad. : dist. § £% Dist. : rad. : : diff. lat. : : cos. course; § X. Cos. course : diff. lat. : : sin. course : dep. §t. Dist.=35. log.= - - - 1.544068 Course=2f pte. (§ 571.) sin. (Table D)=9.711049 Log. dep.=1.255117=18 miles. §7. Dist. 35. log.ce - - 1.544063 Course, 2| pts. cos.= - - 9.933350 Log. diff. lat.=l. 477418=30 miles. § 575. If the triangle be constructed upon the diff. lat. as radius of the arc A E, then the dfet. becoihes (§ 57.) secant, and the dep. (§ 56.) tangent, to the course. § a. And (§ 75.) sec. course : dist. : : rad. : diff. lat. : : tang, course : dep. $ b. Wherefore, the diff. lat. being taken as radius, the following formulae are derived either (§ 75. § c.) immediately from the con- struction of the triangle, or (§ 67. § e.) from the relation of the terms, as they are expressed in the proportion § a. $ c. Diff. lat. : rad. : : dist. : sec. course. § d. Rad. : diff. lat. : : sec. course : dist. § e. Diff. lat. : rad. : : dep. : tang, course. §/. Tang, course : dep. : : rad. : diff. lat. $ g. Tang, course : dep. : : sec. course : dist. §A. Course 2| pts. cos. =9.933350 (§101. $6.) Dist. 35mfles, log.sss 1.544068 Log. diff. lat.fel. 477418=30 miles. $*. Course 2} pts. cos.«9.933350 Dist. 35 miles, log. =* 1.54 40 68 Course 2j pts. tang. =-9.777700 Log. dep.=» 1.2551 18=18 toilet. without any obstruction, or without ever deviating from that course ; the N. pole would then be always one Print forward of her beam. It is difficult to imagine how a vessel could ever arrive at rach a point Digitized by VjOOQIC NAVIGATION. 197 »«*■ $ 576. Or if the triangle be construct- ed upon the dep., as radius of the arc A F, the dist. becomes secant, and the diff. lat. the tangent, of B, the comple- ment (§ 32. § d.) of the course. § a. Wherefore (§ 75. § c.) co-sec. course : dist : : rad. : dep. : : co-tang, course : diff. lat. $ b. Other formulae of proportion, similar to those under § 575., might be drawn out here, but these for the most part would be a repetition of those, as the expression 4x6 is a repetition of the form 6x4 of multiplication. Indeed several sets of the proportions under $ 574. & § 575., are similar repetitions of each other. $ c. Course 2| pts. sin.=9.711049 (§ 101. $ b.) Dist 35 miles, log. = 1.544068 Log. dep.= 1.2551 17=18 miles. id. Course 2| pts. Dist. 35 miles, Course 2£ pts. sin.: l0g.= co-tang. = =9.711049 =1.544068 =0.222300 Log. diff. lat. =1.4774 17 =30 miles. § 577. The principles of the above trigonometrical con-> p lfttc x struction are also developed in the solution of problems 5 by the diagram. $ a. Thus, to find the course and diBt. which correspond to 12 miles diff. lat., and 5 miles dep. § b. The perpendicular which cuts the base in 12, is tangent to the 12th arc, and A 12 is its radius. $ c. The parallel from 5, on the graduated arc, cuts this perpen- dicular on the 13th arc, at its intersection with the 2 Point line, and A 13 is secant to the course (2 Points) and the dist. required. $ d. If the dist. A 13, on the 2 Point line be called radius of the 13th arc, then the portion of the perpendicular, between the point of this intersection, is sine of the course, and A 12 on the base, is its co-sine. Digitized by VjOOQIC 198 NAVIGATION. § 578. Table of log. sines, etc., of the Points of the Compass. TableD. Points. Sine. CO-MC. Co*ln. Sec. Tang. Co-Tang. i 8.690795 1.309205 9.999477 0.000523 8.691319 1.308681 7* 4 .991302 .006698 .997904 .002096 .993398 .006602 74 t 9.166520 0.833480 .995274 .004726 9.171246 0.828754 7* 1 .290236 .709764 .991574 .008426 .298662 .701338 7 1* .385572 .614428 .986787 .013213 .398784 .601216 H H .462824 .537176 .980885 .019115 .481939 .518061 64 H .527488 .472512 .973840 .026160 .553647 .446353 H 2 .582840 .417160 .965615 .034385 .617224 .382776 6 2* .630992 .369006 .956163 .043637 .674829 .325171 *i 24 .673387 .326613 .945430 .054570 .727957 .272043 54 2} .711049 .288951 .933350 .066650 .777700 .222300 5* 3 .744739 .255261 .919846 .080154 .824893 .175107 5 3* .775037 .224963 .904828 .095172 .870199 .129801 4} 34 .802359 .197641 .888185 .111815 .914173 .085827 44 3} .827083 .172917 .869790 .130210 .957294 .042706 4* 4 .849485 .150515 .849485 .150515 o.oooood 0.000000 4 Co-sine. Sec. Sine. Co-sec. Co-tang. Tang. Points. § 570. In every case, except when the dep. and din*, lat. consti- tute the two given parts, the so- lution of the problem proposed, may be obtained by means of the proportion (§ 74.) between the sides of a triangle and sines of their opposite angles. § a. In the triangle ABC f § 74.) right angled at B, ($ 74.) dist. : sin. B=90° : : dep. : sin. course; but the sine of 90 (§ 62.) is radius, wherefore we have again the formula $ e>, (§ 574. \ viz., dist. : rad. : : dep. t sin. course, and a repetition of others under § 574. $ 580. Some one of the following formulae (rejecting or borrow- ing 10 for rad., (§ 197. $/.), in the index of the second member of the equation), may be used in every case where two of the four quantities, dist., course, dep. and diff. lat., are given. § a. Dep. (S 574. S &.Wdist.xsin. course. § 6. Dep. (S 575. § e.)~diff. lat x tang, course. § c. Diff. lat. ($ 574. $j.)»dist.xcoe. course. § W. Variation l Point E. § 000. The courses in the 1st column of the "traverse table" are the courses sailed per compass. § a. Those in the 2d column are those corrected (§ 398* ( b.) for variation, which is 1 Point E* § b. The diff. lat and dep. in their columns, answer to the diet and corrected courses to which they are opposite. § df. The diff. lat. 27'4 S. and the dep. 24.1 £. show that the ship, by sailing the several courses and distances in the table, went to the Southward and Eastward. § A The dep. 24.1 and diff. lat 274 are found opposite 80 (Table V.) and wider 42°, which shows the course and dist " made good," (§ 008. § A) to be S. 42° E., 80 miles. § e- Under 41° (Table V.) 24.1 in the d. lat. column, stands oppo- site to 32 in the dist. column; the diff. long, then is 32' East. Digitized by VjOOQIC NAVIGATION. 207 $ 610* The manner in which "dead reckoning," " days' ? PIate x works/' etc., are worked up, and kept at sea, whether by ) means of the Tables IV. and V., or the diagram, may be learned from the subjoined formulae. $ 6. Aug. 28, lat. and long., 62° N. and 47° W. $ b. Variation W. 14 Pt., which ($ 298. § b.) is to be allowed towards the left. Atro. 24. DiffLeL Sep. Compass Courses* Courses Corrected. Dirt. N. S. E. W. S.E. 8. E. by E. i E. 16 7.5 14.1 E. IN. E. N. E. 13 4.6 11.1 E.byN. N.E.byE.iE. 14 6.6 12.3 N.E. N.N.E.iE. 30 17.6 9.4 N. N. E. N.JE. 18 17.9 1.8 N. by E. i E. North 66 66 North. N.byW.JW. 40 38.3 1U S.W. 8. 8. W. i W. 36 23.9 18.8 Yesterday's lat ft*) 63° N. DhXlat - - 2° (X3e"N. 151. 30.4 48.7 23.9 Latin - - 64° O'Se"!*. Mid. lat - - 63° / 30.4 33.9 Yesterday^ long. 47° (K W. DuTlong. - 66' E. 120.6 24.8 Long, in - - 46° 6* W. Course and dirt. « made good" N. 13° E.133 miles. § c. Above 63°, the mid. lat. (Table V.) 24.8* in the d. lat. column, stands opposite to 55 in the dist. column ; the diff. long, then is 55' E. $ d. And the dep. 24.8 and diff. lat. 120.6 are found opposite to each other under 12°, (Table V.), and opposite to 123, which shows the course and distance made good. • In this and all similar cases, the tabular number which is nearest to the given number is always used, when the given number cannot be found. Thus, in the present example, the given number 24.8 cannot be found in the d. lat column over 63° ; 25 is the tabular number nearest to 24£ ; and W is opposite 26. Digitized by VjOOQIC 208 NAVIGATION. Aug. 25. Compass Courses. Courses Corrected. Dist. DUE Lat. Dep. N. 6. E. W. East E.S.E. 8.JE. S.S.W. S.W. by 8. W.8.W. W.JS. West W.N.W. E.jS. 8.E. by E.*E. South S.8.W.JW. S.W.*8. W.byS.JS. West W.JN. N.W.by W.JW. 30 18 16 19 25 22 17 30 29 4.4 14.9 4.4 9.3 18 16.3 18.5 5.3 29.7 15.4 9.8 16.8 21.3 17 29.7 24.9 Yesterday's lat 64° OWN. > miles. 19.3 69.8 19.3 45.1 119 Ji 45.1 Diftlat. - 6C 30" 8. Latin 63° 1C 6" 50.5 1 744 Mid. lat - Yesterday's lonj Difll long. - 64° 5 . 48° 5> W. 2° 50* W. Variation i Point B. Long, in Coarse and dist 48° 60 7 W. . sailed 8. 56° W. 9C 5/. To find the bearing and dist of a place in Lat 63° 20' N.» and long. 49° 10' W. c e Lat. of place 63° 20' J6 ' Lat. in 63° 10' Diff. lat 10 miles. Long, of place 49.10 Long, in 48 49 Diff. long. —21' § A. 21 being found in the dist. column (Table V.) over 63° the lat, shows opposite to it 9.5 in the d. lat column ; 9.5 then is the dep. between the ship and the place. § t. The diff. lat 10, and dep. 9.5 are found together under 43" (Table V.) and opposite 14 ; the course and dist then from the ship to the place, is N. 43° W. 14 miles. Digitized by VjOOQIC NAVIGATION. $J. April 9, lat 89° 50' N., long. 70° 10' W. ; bound to New April 10. CotnptM Coursta Cowmi Corrected. Dirt. DtttLst. Dep. h. W. W.N.W. W.byN.JN. W.byN.JN. W.byN. W.byN.JN. W.|N. W.JN. W.byN.JN. W.byN.JN. W.byN. W.JN. W.JN. W.JN. West 30 85 18 89 86 9 5 8.7 6.1 8.5 2.8 3.8 A .0 28.7 24.3 17.7 28.9 26.7 9 5 Yesterday's lat 89° W N. 26.3 139.3 Di£lat - W 18" N. Latin ' 10° 16* 18" Variation i Point W Mid. lat. 40° Yesterday's long DifElong. - . 70° 1C W. 3° * W. Long, in ' Course and disti 78° 1* W. ■ailed N. 80° W. 142 miles. $*. To find the bearing and diet of Sandy Hook Light House. S. L. House, lat. 40° 28' N. Lat ship - 40° 15' N. Diff. long. 18' Long. S. L. House, 74° 1' W. Long, ship - 73° 12' W. Diff. long. 49' 49' of long, in lat 40° lb equal to 37.5 miles. (Table V.) $ /. 13 and 37.5 are found together over 71° (Table V.), and opposite 40. The dist then of the Light House from the ship, is N. 71° W. 40 miles. E ■ Digitized by VjOOQIC % 10 MERCATOIK'6 6A1UNG. MERCATOR'S SAILING. § 611. Dep. : rad. : : diff. long. : sec. lat. (§587. $c). Upon the principles involved in this proportion, the charts, called Merca- tor's, are constructed. § a. In these charts, the meridians of longitude, after they cross the equator, instead of approaching each other* till they reach the parallel of any latitude, in the ratio (§ 486. $ 6.) of rad. to the cos. of that lat., are drawn parallel to each other. $ 6. And the parallels of lat., say at 1° a part, instead of being at equal distances from each other, are drawn in the ratio of rad. to the see* of their latitude* By which means, places on a sphere, are represented on a plane with their proper relative positions* § 612. In this manner of representing portions of the surface of a sphere upon planes, the parallels of latitude are lengthened out, and the meridians of longitude are expanded. fa* So that, if the 1st degree of lat-, from the equator, be divided on the chart into 60 equal parts, every degree as they succeed each other in numerical order will contain a greater number of these parts, than the 1st, or than that which precedes it; thus, the 61°st of lat. contains 126 of these parts, and the 31°st, 70 of the same parts. $ 613. These parts are called meridional parts. § a. Table VI. shows the number of meridional parts from the equator to any degree and minute within the parallel of the 84°th of lat. § b. The number of meridional parts between any two parallels, is called the meridional diff. lat of those parallels. $ c. Thus, the mer. diff. lat between 13° 10' and 18° 10', is 312. The mer. parts of 18° 10'=1109> rp . . VT do 13°10'=797 5 TaWeVL Mer. diff. lat= 312 § 614* No,w, if any section of the earth's surface be represented on a plane projected according to Mercator's plan, the true (nearly), instead (§ 550.) of the approximate, distance, etc., between any two places, may be determined by plane trigonometrical operations. § a. To do this, the Mer- diff- lat., as well as the actual diff. lat. between places, must be used. §615* Mercator's sailing is useful to the navigator, chiefly in enabling him to find, by plane trigonometrical calculations, the num- ber of miles between places that are at a great distance from each other. § a. The several cases in loxodromic sailing, may also be accu- rately solved, according to the principles of Mercator's sailing; but the Mer. diff. lat. must be used, as well as the actual diff. lat. § 6. Methods of applying the principles of Mercator's sailing to the solution of cases in loxodromic sailing, will be shown ; but the Digitized by VjOOQIC NAVIGATOR tn application of them to practice, will be left for the amusement of the learner. $616. ABO represents the relative position of Boston and New Orleans in fat. and long., according to the principles of Mercator's sailing. DUE Long. B-*42?23' N. M.pta.-?813 O-*0« 57' Mer. pta.»1885. § a. And the triangle a b shows the bearing, dist., etc., accord- ing to loxodromic sailing,- $ b. The meridional fat. of Boston is 2813, and that of New Or- leans, is 1885 (Table VL); and the difference between these (§ 613. $ 6/) is (O A) the Mer. dinv lat. ; and* A B is the diff. long. ; A B is the course from New Orleans to Boston, § c. According to the loxodromic plan of constructing the trian- gle, a O is the actual diff. lat. between the two places, and a b is the dep. $ d. Whether tits problem proposed be solved according to the loxodromic or Mercator plan, the actual diff. lat. between the two places is the same. $ «. But the dep. and disk determined by the former method (§ 550.) are- not the true dep. and dist. between the two places. § 617. As the angles a b O and A B O (§ 616. § d.) are equal, a b (§>30. § d.) is parallel to A B ; whence (§73. $ d.) arise the relation between the sides of a triangle in loxodromic sailing when com- pared with the sides of a similar triangle in Mercator's sailing. $a. Diff. lat. : dep. : : Mer. diffllat. : diff. long. ; also inversely and alternately. $6. The relations between the other parts of the two triangles may be established according to the principles derived from $ 72. & § 73. The learner may arrange them. § 618. If the Mer. diff. of lat. (O A) between New Orleans and Boston be made radius, several sets of proportions ($ 75.) will ap- pear among the different parts of the triangle involved* Digitized by VjOOQIC 213 MERCATOR'S SAILING. A Diff Long. B~3813. M. Parti. O- 1886. M. Parts. $ a. But the most useful proportion (and in fact almost the only one which occurs in practice), in Mercator's sailing, is that by which the true course and dist. between any two places are evolved. I shall give the terms of this proportion, and leave the others to be arranged by the learner. § 619. The Mer. diff. lat. (§ 618.*) being radius ; Mer. diff. lat. : rad. : : diff. long. : tang, course. § a. The diff long, thus used, must in all cases be converted into minutes, which must be used in the log. Table of Numbers, as miles. § b. To find the course from New Orleans to Boston. Boston lat. 42° 23' M. pts.— 2813 N. Orleans " 20° 57' " 1886 12° 26' 60 928— Mer. diff. laU Diff. Iat.a746 miles. N. Orleans, long. 90° 9' W. Boston " 71° 4' W. 19° 6' 60 Diff. long.— 1145 minutes ('). ^^^^^^^^ • Now, ($ 619.) 928 : rad. : : 1145 : tang, course. 928 log. (Ar. co.) -=7.032452 1146 log. (§6.) =-3.058806 Tang, course— 0.091258 N. 60° 68' 84" E. $ c. Then calling O A, the actual diff. lat., A B becomes dep., and retaining O A, as rad., we have ($ 574. § d.) rad. : diff. lat. : : sec. course : dist. Digitized by VjOOQIC SURVEYING. 213 Diff. lat. 746 miles log. =2.872739 Course N. 50° 58' 34" E. sec. =0.200906 Log. dist. =3.073645= 1184.8 miles. § d. Problems in Mercator's sailing may also be solved either by- Tables IV. & V., or by the diagram (Plate 1). Thus the mer. diffV lat, and the diff. long., being used on the diagram, or in the tables as diff. lat. and dep., show the course. Then with this course the dist. is found opposite to the actual diff. lat. § e. Philadelphia lat. 39° 57' N. M. parts - 2610 Washington city lat 38° 53' N. " - 2536 1° 4' M. diff. lat.— 83 60 Diff. lat.=64 miles. Washington long. 77° 2' W, Philadelphia " 75° 9' W. l°5a* 6a Diff. long. =113 minutes ('). 1 13 in the dep. column stands opposite to 83 in the d. lat. column; (Table V.) 54° is at the bottom of the page. The course then nom Philadelphia to Washington is S. 54° W. On the same page 64 in the d. lat. column stands opposite to 109 miles, which is the dist between the two places. SURVEYING. $ 620. In conducting the survey of a coast, harbour, etc., the first object should be to ascertain the geographical position of some point connected with the survey, and the next to establish a base line. $621. The most advantageous location for the base line, must be determined by the surveyor himself; and in this, he should be governed by circumstances, such as the nature of the ground about the place to be surveyed, and the place itself. § a. A level piece of ground should be selected for the base line, and the line should terminate at points, whence some of the promi- nent points, headlands, etc., of the place (say a harbour) under sur- vey can be seen. § 622. The length of the base line must be ascertained by actual measurement, and the direction in which it lies must be established by observations, and noted down. $ a. Then, knowing the length of the base line, it serves as a Digitized by VjOOQIC 214 SURVEYING. given side of a triangle, either for determining the length *f other lines, or for finding the distance between either end of it, anil any point visible from eaeh end of the base. § b. For if the bearing of sueh point be taken from each end of the base, a triangle may be formed, in which the angles and the base are known, wherefore ($ 106. $ «.) the two sides are deter- minable. Plate 9. 5 $ ° 23, '^ ie fig"™ ia &* annexed plate is ike prqfiU £ of a harbour, that is being surveyed. A B is the base line, A C B, A D B, etc., are triangles constructed npon H; the angles at A, B, C, D, etc., are measured with a sextant or a theo- dolite, and the length of the lines B D, B C, A C, etc., is determined by trigonometrical calculation. The principal triangles used, are represented by the broken lines A X, A D, etc. § a. So that triangles may be constructed from one line to an- other, until sufficient data are obtained for determining, by trigono- metrical calculation, the position of every point of the survey. $ b. The line (X Y) of verification is determined, as to its length, both by trigonometrical calculation, and by measurement, in order to establish the accuracy of the survey. $ 624. The position of the prom in e nt points C, D, E, F, etc., is determined to a greater degree of nicety in this way, than it can be by taking cross bearings, etc., and the intersection of lines. § 625. After the triangulation of the survey is completed, and the points C, D, E, F, etc., are laid down span ike chart to the requisite scale; the intermediate spaces, GL, L H, etc., of the shore, may be filled up by the eyev A little practice will enable one to sketch these intermediate spaces ^ \ K * These corrections are always subtracts. Digitized by VjOOQIC 216 SURVEYING. $ 629. The sort of bottom should also be noted down, i. e. mud, rock, sand, etc. $ 630. The position, extent, etc., of all the hidden dangers, such as rocks, reefs, shoals, banks, and of every other object of import- ance to the navigator, should be ascertained and laid down. § 631. Surveys of harbours are frequently taken by measuring first, a base line, then drawing this line upon the paper at the pro- portional length to the scale upon which the chart is to be con- structed, and then establishing the position of the principal points in the survey, by the intersection of the lines of their bearing from different points. § a. But the difficulty of measuring with accuracy the proper angles upon paper, makes this method of taking a survey more lia- ble to inaccuracies, than the triangulating plan. Digitized by VjOOQIC Digitized by VjOOQIC ftute ». Bast- Lint' Digitized by VjOOQIC TABLE I. LOGARITHMS OF NUMBERS Digitized by VjOOQIC Digitized by VjOOQIC TABLE L LOGARITHMS OF NUMBERS. N. Lof. N. Lo*. N. i* 1 W. Log. 1 0.000000 95 1.397940 50 1.098970 75 1-875061 S 0.301030 98 1.414973 51 1.707570 76 1.880814 3 0.477121 97 1.431363 j 1.447158 ' 59 1.711003 77 1.886491 4 oeoaotso 98 53 1.794976 78 1.8990*4 99 1.469398 54 1.739393 79 1.897697. 5 0.696570 6 0.778151 30 1.477191 55 1.740363 80 1.903090 7 0.8450*8 31 1491369 56 1.748188 81 1.906484 8 0.903090 39 1.505150 57 1.755875 89 1.913814 9 0.954949 33 1518514 58 1.763498 83 141L078 • 34 1.531479 59 1.770859 84 1.924979 10 1.000000 11 1.041393 35 1.544068 60 1.778151 85 1.999419 IS 1.07)181 36 155)309 61 1.785330 86 1.934499 13 1.113**43 37 1538909 69 1.7)9399 87 1.939519 14 1.146198 38 1.579784 63 1.799340 88 1.944483 39 1.591064 64 1.806180 89 1.949390 15 1.170091 IS 1.904190 4t 1.609060 65 1.819913 90 1.954943 17 1.930440 41 1.619784 66 1.819544 91 1951041 18 1.955379 49 1.693949 67 1.8Sf075 99 1.963788 19 1.978754 43 L633460 68 1.832509 93 1.968483 44 1.643453 09 1.838849 94 1.973128 90 1.301030 91 1399919 45 1.653919 70 1.845098 95 1.977794 99 1349493 46 1.669758 71 1.851958 96 1.989971 91 1.301798 47 1.6790P8 79 1.857332 97 1.966779 94 1.380811 43 1.681911 73 1J863393 96 1.991996 40 1690196 74 L869933 90 L995635 Digitized by VjOOQIC TABLE I, OF NOS. N. 1 8 3 4 5 6 7 8 9 ICO 00 0000 0434 0868 1301 1734 3166 8598 3030 3400 3891 01 4331 4751 5181 5609 6038 6466 6894 7331 7748 8174 03 8600 9036 9451 9876 01 0300 0734 1147 1570 1903 9415 03 3837 3359 3680 4100 4531 4940 5360 5779 6197 0616 04 06 7033 7451 7868 8284 8700 9116 9532 9947 0361 0776 105 1189 1603 3016 8438 8841 3853 3664 4075 4486 4896 CO 5306 5715 6134 6533 6943 7350 7757 8164 8571 8978 07 9384 9789 03 0195 0600 1004 1409 1818 8216 9019 3091 08 3434 3836 4327 4CJ8 5028 5430 5830 6330 7098 09 04 7437 7835 8333 8080 9017 9414 9811 0807 066S 110 1393. 1787 8182 3576 8989 3368 3755 4148 22 4933 11 5333 5714 6105 6495 6885 7275 7084 8053 8830 IS 93J8 9608 9993 05 0380 0766 1153 1538 1984 9309 9*84 13 3078 3463 3846 4330 4613 4996 5378 57bl 6149 0594 14 08 6905 7386 7066 8046 8486 8806 9185 9563 9949 0390 115 0698 1075 1453 1839 8806 3583 8958 3333 3709 4083 16 4458 4832 5208 5580 5953 6336 6699 7071 7443 7815 17 8186 8557 8928 9298 9668 07 0038 0407 0777 1145 1514 18 1883 3350 8P17 8985 3353 3718 .4085 4451* 4816 5lHi 19 5547 5913 6276 6640 7004 7368 7731 8094 8457 btio 190 9181 9543 9905 08 0366 0686 0987 1347 1707 9087 9496 31 3785 3144 3503 3861 4319 4576 4934 5891 5647 0004 S3 63C0 6716 7071 7427 7781 8136 8491 8845 9196 9552 83 9905 09 0258 0611 0983 1315 1667 8018 9370 9791 3071 34 3433 3773 4123 4471 4820 5169 5518 5867 6915 titS 135 10 6910 7357 7004 7951 8897 8644 8990 9335 9081 0096 36 0370 0715 1059 1403 1747 3091 8434 8777 3119 3449 37 3804 4146 4487 4828 5169 5510 5851 61fl 6531 6b71 38 11 7310 7549 7888 8237 8565 8903 9241 9578 9916 39 0590 0986 1863 1598 1934. 3210 8605 8940 3875 3009 130 3943 4277 4611 4944 5278 5610 5943 6276 6608 0940 31 13 7271 7603 7934 8265 8535 8986 9256 9586 9915 0345 33 0574 0903 1833 15f0 1888 8216 8543 9871 3198 3595 33 3P59 4178 4504 4830 5156 5481 5? 07 6131 6456 6781 34 13 7105 7489 7753 8676 8399 8733 9045 9368 9690 0019 135 0334 0F55 0977 1398 1619 1939 8260 8589 9TO 3919 36 3539 3*58 4177 4496 4814 5133 5451 5709 €086 6403 37 38 6731 9879 7037 7354 7671 7987 8303 8618 B934> 9849 9564 14 0194 0598 0829 1136 1450 1763 9077 93T0 9709 39 3015 3327 3639 3951 4863 4574 4885 5196 5507 5bl8 140 6138 6438 6748 7058 7367 7676 7985 6394 8603 6911 41 9219 9587 9835 15 0148 0449 0756 1063 1370 1676 198 43 8368 3594 9900 3305 3510 3815 4130 4494 «98 5039 43 5336 5640 5943 6346 6549 6853 7154 7457 7759 fcOU 44 10 8368 8664 8965 9866 9567 9868 0108 0409 0769 10GB 145 1368 1687 1967 8866 8564 8863 3161 3460 3757 4055 46 4353 4650 4947 5844 5541 5838 6134 6430 6796 7099 47 7317 7613 7909 8803 8498 6793 9086 9381 9074 9968 48 17 0368 0555 0848 1141 1434 1786 8019 3311 9003 9895 N. 1 3 3 4 5 6 7 8 9 Digitized by VjOOQIC TABLE I.— LOO. OF H08. n. 1 9 3 4 5 7 8 • 149 17 3166 3478 3709 4060 4351 4641 4932 5222 5512 &S02 150 0091 6381 6670 6959 7248 7530 7825 8113 8401 8089 si 8977 9305 9558 9839 18 0126 0413 0699 0986 1272 1558 59 1844 9139 3415 3700 2J85 3270 3555 3839 4123 4406 53 4001 4975 525J 5543 5825 6108 0391 6674 61/56 7239 54 7531 19 7803 8064 8360 8647 . , 8928 9210 9490 9771 0051 155 0333 0913 0893 1172 1451 1730 3010 3389 8568 2846 50 3135 3403 3681 3959 4238 4514 47i2 5069 5346 5693 57 58 5900 8657 6170 8932 6452 9260 672J 9481 7005 9755 7281 7556 7832 8107 8382 90 0039 0303 0577 0851 1124 50 1397 1070 1943 4669 3310 348S 2761 3033 3305 3577 3848 160 4190 4391 4934 5904 5475 5746 6016 6386 6556 01 6*30 70.16 7365 7034 7904 6173 8441 8710 8979 9347 08 9515 9783 91 0051 0319 0586 0853 1120 1388 1(554 1021 63 3188 3454 3730 2986 3252 3518 37d3 4049 4314 4579 04 4844 5109 5373 5038 5902 0166 6430 6694 6957 7221 165 7484 7747 8010 8373 8536 8798 9060 9323 9585 9846 00 S3 0108 0370 0631 0892 1153 1414 1675 1936 3196 3456 07 8717 2T76 3236 3496 3755 4015 4274 4533 4792 5051 08 5309 55'»8 5836 6084 6342 6 00 6858 7115 7372 7630 60 7887 S3 8144 8400 8657 8913 9170 9426 96d2 9938 0193 170 0449 0704 0960 1215 1470 1724 1979 3233 2488 3743 71 3990 3*250 3504 3757 4011 4264 4517 4770 5023 527.i 72 5528 5781 6033 62 J 5 6537 6789 7041 72;12 7544 77i»5 73 8046 34 0549 8397 8548 8799 9049 9300 9550 9800 0050 0300 74 0799 1048 1397 1547 1795 3044 3393 2541 37:4 175 3038 3386 3534 3782 4030 4977 4525 4772 5019 5366 70 5513 5753 6096 62J2 6409 6745 6091 7236 7482 7738 77 7973 85 0430 8319 8464 87U9 8954 9196 9443 9687 9932 0176 78 0664 CM» 1151 1335 1638 1882 2125 3368 3610 79 2853 3090 3338 3580 3822 4034 430V> 4548 47t»0 5031 190 5373 5514 5755 5996 6337 6477 6718 695? 7198 7433 81 7679 7919 8158 8398 8637 8877 9116 9355 95)4 9833 82 30 0071 0310 0548 0787 1025 12 a 1591 1738 1976 3314 83 3451 3lW8 2926 3162 33.19 3636 3*73 4101 4346 45-3 84 4818 5054 5290 5525 5761 5396 6333 6467 6702 0937 185 7173 74015 7641 7875 8110 8344 8578 8812 9040 9379 80 9513 IMS 9746 9980 0213 0446 0679 0913 1144 1377 1R09 87 3074 2303 253« 2770 3001 3233 3464 3696 3'27 88 4158 4339 4«.20 4&'j0 50 *\ 5311 5542 5772 6002 62:s 89 0463 6693 6921 7151 7380 7609 7o38 8067 82J6 8525 190 8754 98 1013 8982 9310 9439 9667 9995 0123 0351 0578 0806 91 12*1 1488 1715 1942 2169 23*16 3622 3849 3075 93 3301 3527 3753 3<»79 4205 4431 4656 4882 5107 5333 93 5557 57*2 6007 6232 6457 6681 6905 7130 7^54 7578 94 7802 8025 8249 8473 8690 8920 9143 9366 9589 9813 195 39 0035 2356 0357 0480 0702 0925 1147 1369 1591 1813 3034 90 3478 3600 2'20 3142 333 3584 3804 4025 4246 97 44R6 W5 49 9345 9531 47 2697 2873 3048 3234 3400 3575 375i 3936 4101 4377 48 4452 4627 4803 4977 5152 5336 5501 5676 fr-50 6935 40 6199 6374 6548 6722 68U6 7071 7245 7419 7542 7796 250 7940 8114 8287 8461 8634 8808 8981 9154 9337 9991 51 9674 9847 40 0020 0192 0365 0538 0711 0883 1059 1339 52 1400 1573 1745 1917 2089 226> 2433 2605 2777 3349 53 3131 3292 3464 3635 3807 3978 4149 4*21 4493 40*3 54 4834 5005 5176 5346 5517 5'I88 5858 6039 6199 am 255 6540 6711 6881 7051 7221 7391 7561 773! 7901 "» l N. 1 9 3 4 5 • 7 1 8 1 ' Digitized by VjOOQIC TAALK i -LOO. OF NOB. Jf. 1 9 3 4 5 6 7 8 9 956 40 8940 8410 8579 8749 8918 9087 6257 9426 9515 9764 47 9933 41 0103 0371 0440 0608 0777 0946 1114 1283 1451 n 1690 1788 1956 9124 3293 9461 2628 27«6 2964 3132 59 3300 3467 3635 3b03 3970 4137 4305 4472 4639 4608 960 4073 5140 5307 5474 5641 5808 5974 6141 6308 6474 •1 0640 6807 6L73 7139 7306 7472 7638 7804 75*70 8135 69 8301 8467 8633 8798 8964 9129 9295 9460 9625 97bl •3 9956 49 0191 0286 0451 0816 0781 0945 1110 1375 1439 64 1604 1768 1933 3097 3262 3426 2590 3754 2*18 3062 MS 3946 3410 3573 3737 3901 4064 4238 4392 4555 4718 66 4889 5045 5208 5371 5534 5697 5tC0 €023 6186 1349 67 6511 6674 6837 6999 7161 7324 7486 7648 7811 71.73 68 8135 8297 8459 8621 8783 8944 9106 9268 9429 65»1 60 9759 9014 43 0075 0236 0398 0559 0720 0881 1049 1203 970 1364 1535 1685 1846 2007 2167 2328 9488 9649 2809 71 9969 3130 33T0 3450 3610 3770 %30 40P0 4349 4409 73 4509 4738 4688 5048 5207 5367 5526 5C85 5844 €004 73 6163 6323 6481 6640 6799 6957 7116 7275 7433 7512 74 7741 7909 8067 8226 6384 8542 6701 8859 6017 9175 975 9333 9491 9648 9808 9964 44 0122 0279 0437 0594 0752 76 0909 1066 1224 1381 1538 1615 1852 2009 21t6 2323 77 2480 9637 2793 2i»50 3107 3263 3420 3576 3732 3889 78 4045 4201 4357 4513 4669 4*25 4981 5137 52*3 5449 79 5604 5760 5915 6071 6226 63b2 6537 6693 6848 7003 980 7158 7313 7468 7633 7778 7933 8088 8242 8397 8552 81 8706 45 8861 9015 9170 9324 9478 9633 9787 9941 0095 89 0949 0403 0557 0711 0865 1018 1172 1326 1479 1633 83 1786 1940 2003 2247 2400 3553 8706 2859 3012 31C5 84 3318 3471 3694 3777 3930 4083 4235 4387 4540 46S»2 965 4845 4997 5150 5302 5454 5608 5758 5910 6062 6214 66 6366 6518 6670 6821 6973 7125 7276 7428 7579 7731 87 7889 8033 8184 8336 8487 8638 8789 8940 6091 9242 88 9399 9543 9694 9845 9995 _ 40 0146 0296 0447 0597 0747 89 0898 1048 1198 1348 1499 1649 1799 1949 2038 2248 990 9308 9548 9697 3847 2997 3146 3296 3445 3594 3744 91 3893 4042 4191 4341 4490 4639 4787 4936 5085 5234 99 5383 5533 5680 5829 5977 6126 6274 6423 6571 t>719 93 6868 7016 7164 7312 7460 7C08 7758 7! 04 §052 8200 94 8347 8495 8643 8750 8938 9065 9233 9380 S528 9675 995 9899 9969 47 0116 0963 0411 0557 0704 0P51 0998 1145 98 1438 1585 1733 1878 2025 2171 2317 2464 2610 97 9756 9903 3049 3195 3341 3487 3633 3779 3 25 4070 98 4916 4369 4508 4653 4799 4944 5OT0 5235 5381 5526 99 5671 5816 5962 6107 6252 6397 6542 6687 6832 6977 30ft 7191 7966 7411 7555 7700 7845 7989 8133 8278 8422 01 8967 8711 8855 8999 9143 9287 9431 9575 9719 98C3 69 48 0007 0151 03P5 0438 0583 0725 0869 1013 1156 12T9 03 1443 1586 1739 1879 3016 2159 2302 2445 2588 3731 04 9874 3016 3159 3303 3445 3587 3730 3873 4015 4157 905 4300 4449 4585 4737 4869 5011 5153 5995 5438 5579 66 5791 5863 6005 6147 6389 6431 6572 6714 6855 6997 07 7138 7380 7421 7563 7704 7845 7986 8128 8260 8410 68 8551 8099 8833 6974 9114 9255 9396 9537 9677 9618 69 9958 49 0099 0940 0369 0590 0661 0801 0941 1081 1223 no - 1509 1649 1769 1999 9069 9909 9341 9481 9681 i* 1 • 1 9 1 • 4 5 7 a 9 Digitized by VjOOQIC TABLE I. LOO. OF NOS. N. 1 3 3 4 5 6 t' . 6 311 49 3760 3900 3040 3179 3319 3458 3597 8737 3816 4815 12 4155 4294 4433 4573 4711 4850 4989 5138 5967 5406 13 5544 5683 5833 5960 6099 6337 6376 6515 6653 6791 14 6930 7068 7306 7344 7489 7631 7759 7897 8035 8173 315 8311 8448 8586 8734 8863 8998 9137 8875 8418 8558 16 9687 9835 9968 50 0099 0336 0374 0511 8017 0785 0989 17 1059 1196 1333 1470 1607 1744 1881 3154 8991 18 3437 3564 3700 8837 3973 3109 3346 3383 3518 3654 20 3791 3937 4063 4199 4335 4471 4607 4743 4878 5014 390 5150 5386 5431 5557 5693 5898 5964 6098 6834 6378 21 6505 6640 6776 6911 7046 7181 7316 7451 7586 TI81 S3 7856 7991 8136 8360 8395 8530 8664 8798 8934 SIMS S3 9903 51 9337 9471 9606 9740 9674 0009 0143 0977 0411 34 0545 0679 0813 0947 1081 1315 1349 1488 1616 1750 385 1883 9017 3150 8384 3418 8551 8684 8818 9951 3884 SB 3318 3351 3484 3017 3750 3883 4016 4148 4888 4415 27 4548 4681 4813 4946 5079 5311 5344 5476 5609 *74J SB 5874 6006 6139 6371 6403 6535 6688 6800 6838 1864 89 7196 7338 7460 7593 7734 7855 7987 8119 8351 83B8 330 8514 8646 8777 8909 9040 9178 8303 8434 8566 9897 31 9828 9959 53 0090 0331 0353 0483 0815 0746 0876 1807 33 1138 1300 1400 1530 1661 1793 1983 9053 3183 8314 33 3444 3575 3705 3835 3966 3096 3396 3356 3486 3616 34 3747 3877 4006 4136 4366 4396 4586 4656 4785 4915 335 5045 5174 5304 5434 5563 5683 5883 5951 6081 6910 36 6339 6469 6598 6737 6856 6085 7114 7343 7373 7301 37 7630 7759 7888 8016 8145 8374 8403 8531 8680 8788 38 8917 53 9045 9174 9303 9430 9559 9687 8815 9843 0978 39 0900 0338 0456 0584 0713 0840 0968 1086 1983 1351 340 1479 1607 1734 1803 1990 3117 9345 8378 9500 8887 41 3754 3883 3009 3136 3363 3391 3516 8645 3779 3889 42 4036 4153 4380 4407 4534 4661 4787 4914 5041 5168 43 5394 5431 5547 5674 5800 5937 6053 6180 6306 6433 44 6558 6685 6811 6937 7063 7189 7315 7441 7567 7683 345 7819 7945 8071 8197 8333 8448 8574 8699 8835 8851 46 9076 54 9303 9337 9453 9578 9703 8889 8954 0079 0804 47 0330 0455 0580 0705 0830 0955 1080 1305 1330 1454 48 1579 1704 1839 1953 8078 8303 8337 8458 8577 8701 49 8835 3950 3074 3199 3333 3447 8571 8096 3880 3944 350 4068 4193 4316 4440 4564 4688 4818 4936 5060 5183 51 5307 5431 5555 5678 5803 5935 6049 6173 6886 6418 53 6543 6666 6789 6913 7036 7159 7388 7406 7588 9658 53 7775 7898 8031 8144 8906 8389 8513 863S 8758 8881 54 9003 55 9136 9349 9371 9494 8616 9739 8861 8884 0186 .355 0338 0351 0473 0595 0717 0840 0968 HH4 1906 1388 56 1450 157S 1694 1816 1938 8060 8181 8303 9485 8547 57 3668 3790 2919 8033 3155 3376 3398 3519 3840 8768 58 3883 4004 4136 4347 4368 4489 4610 4731 4859 4874 59 5094 5315 5336 5457 5578 5699 5890 5940 6061 6188 360 6303 6433 6544 6664 6785 6805 7086 7146 7867 7387 61 7507 7698 7748 7868 7988 8108 8988 6348 6468 8588 63 8709 8898 8948 9068 9188 9308 8488 8548 8667 8787 63 9907 56 0036 0146 0965 0385 0504 0634 0743 0863 8988 64 1101 1331 1340 1458 1578 1687 1817 1836 8055 9174 365 9899 8419 8531 8688 3768 8887 3886 3185 3844 3888 N. 1 3 3 4 5 6 7 8 8 Digitized by VjOOQIC TABLE I.— LOO. OF NO0. If. 3 8 3 4 5 6 7 8 9 a* 50 3481 3600 3718 3837 3956 4074 4113 4311 4489 4S48 67 4666 4764 4903 5031 5139 5257 5376 5494 5613 5730 68 5848 5966 6084 6802 6320 6438 6555 6673 6791 6909 m 7026 7144 7363 7379 7497 7614 7733 7850 7967 8084 379 8303 8319 8436 8554 8671 8786 8905 9033 9140 9357 71 0374 57 0491 9608 0735 9843 9959 0076 0193 0309 0436 78 0543 0660 0776 0893 1010 1136 1343 1359 14"<6 1513 73 1709 1835 1943 3058 3174 831 3407 3533 3639 3758 74 3873 3988 3104 3330 3336 3453 3568 36b4 3800 3916 375 4031 4147 4363 4379 4494 4610 4736 4841 4957 5073 76 5168 5303 5419 5534 5650 57C5 5880 5996 6111 6836 77 6341 6456 6573 6687 6803 6917 7033 7147 73c3 7377 78 7493 7607 7723 7836 7951 8066 81fcl 8395 8410 8535 79 8639 8754 8868 8983 9097 9812 9326 9441 9555 9669 360 0784 9898 58 0013 0186 0340 0355 0460 0583 0697 0811 81 0935 1039 1153 1367 13P1 1415 1108 1723 1*36 1950 86 3063 8177 3391 3401 3518 3631 3745 3fc59 8973 3085 83 3199 3313 3436 3539 3652 37t5 3879 %92 4105 4218 84 4331 4444 4557 4670 4783 4896 5003 5122 5335 5348 385 5461 5574 5686 5799 5913 6034 6137 6250 6363 6475 86 6587 6700 6813 6935 7037 7150 7363 7374 7487 7599 87 7711 7833 7935 8047 8160 8373 8384 8496 a 08 6730 88 8833 8944 9055 0167 9379 9391 9503 9615 9736 9638 80 0050 50 0061 0173 0384 0366 0508 0619 0730 0643 0953 390 1065 1176 1887 1399 1510 1631 1733 1843 1955 8066 01 3177 3388 8399 3510 3631 3733 3843 8954 30t4 ' 3175 03 3386 3397 3508 3618 3739 3840 3:50 40131 4173 4848 03 4393 4503 4614 4734 4834 4945 5055 5115 5376 5386 04 5496 5606 5717 5837 5937 6047 6157 63b7 6377 6487 395 6597 6707 6817 6987 7037 7146 7356 7366 7476 7586 06 7695 7805 7914 8034 8134 8343 8353 8463 8573 8681 07 08 8791 9863 60 8900 9993 9009 0119 9338 9337 9446 9556 9665 9774 0101 0310 0319 0488 0537 0646 0755 0864 00 0073 1083 1101 1399 1408 1517 1635 1734 1843 1951 400 9060 3169 8377 8386 8494 3603 3711 3810 8988 3036 01 3144 3353 3361 3469 3577 3686 3794 3603 4010 4118 03 4336 4334 4443 4550 4658 4766 4874 49b3 5KO 5197 03 5305 5413 5530 5188 5736 5843 5951 6059 6166 6374 04 6381 6480 6596 6704 6811 6910 7036 7133 7341 7348 405 7455 7563 7670 7777 7884 7991 8098 8805 8318 8419 06 8538 8633 8740 8847 8654 90C0 9167 9374 9381 9488 07 0594 0701 9808 9914 61 0031 0138 0334 0341 0447 0554 08 0660 0767 0873 0979 1086 11£8 13S8 1405 1511 1617 00 1733 1830 1936 8048 3148 8354 83€0 3466 8573 8u78 410 9784 8800 8996 3103 3307 3313 3419 3535 3630 3736 U 3843 3948 4053 4159 4864 4370 4475 4581 4686 4713 13 4897 5003 5108 5313 5319 5424 5539 5(335 5740 5845 13 5950 6055 6160 6365 6370 6476 6581 6686 6791 6815 14 7000 7105 7310 7315 7430 7535 7639 7734 7839 7943 435 8048 8153 8357 8368 6467 8571 8676 8780 8884 8989 16 0003 OS 0198 0303 9406 9511 0615 0719 9633 %38 0033 17 0136 0340 0344 0448 0559 0657 O7C0 0864 0968 1073 18 1176 1380 1384 1488 1593 1(95 1700 If 03 3007 8110 10 8314 8318 8481 8535 8638 8733 8636 8939 3048 3146 480 3849 3353 3456 3559 3663 3766 3969 3973 4076 4179 31 4888 43P5 4488 4591 46P5 47T8 4? 01 5004 5107 5310 S3 5313 5415 5518 5631 5734 5637 5i>30 6039 6135 6838 If. 1 3 3 4 5 6 7 8 9 Digitized by VjOOQIC 10 TABLS I.— LO0. OF HOS. w. 1 9 3 4 5 6 7 8 • 483 09 6340 6443 6546 6648 6751 6853 6956 7059 7101 7963 94 7306 7406 7571 7073 7775 7878 7980 80ri9 8184 8987 433 8389 8491 8593 8695 8797 6000 0009 9104 9300 9109 90 9410 03 9519 9613 9715 9817 9919 0091 0193 0994 0096 97 0498 0530 0631 0733 0835 0930 1038 1139 1941 00 98 1444 1545 1647 1748 1649 1951 9059 9153 9955 9359 99 9457 9559 9660 9761 9809 9963 3064 3165 3906 3357 430 3409 3569 3670 3771 3879 3973 4074 4175 4976 4377 31 4477 4578 4079 4780 4660 4961 5081 5189 5963 5383 38 5484 5584 5885 5785 5866 5986 6080 6167 6987 4386 • 33 6488 6568 6688 6789 6889 0089 7080 7160 7990 7390 34 7490 7590 7690 7790 7890 7990 8090 8190 8999 8389 ~*43S 8489 8589 8689 8789 8868 8968 9098, 9188 9967 9987 - 36 9487 64 9586 9686 9785 9865 9984. 0064 0383 6963 4069 87 0481 0581 0680 0780 0879 0978 1077 1176 1976 1375 38 1474 1573 1679 1771 1671 1970 9009 9168 9907 9306 30 9405 9563 9669 9701 9860 9959 3056 3157 3tt5 3354 440 3453 3551 3650 3740 3847 3940 4044 4143 4949 4340 41 4489 4537 4636 4734 4839 4931 5099 5197 5996 sm 49 5499 5591 5619 5717 5615 5913 0011 6110 6906 0906 43 6404 6509 6600 6096 6796 0894 6999 7069 7187 7995 44 7383 7461 7579 7676 7774 7879 7969 8067 8105 8999 445 6300 8458 8555 8653 8750 8648 8945 9043 9140 9937 40 9335 65 9439 9530 9697 9794 9898 9919 0010 0113 0UO 47 0307 0405 0509 0599 0090 0793 0690 0987 1084 U81 48 1978 1375 1479 1509 1600 1769 1859 1950 9053 9159 40 9946 9343 9440 9530 9633 9730 9690 9093 3019 3110 450 3919 3309 3406 3509 3598 3095 3791 3888 3084 0089 51 4177 4973 4369 4465 4509 4658 4754 4850 4940 9949 59 5196 5934 5331 5497 5593 5619 5715 5611 0009 58 6098 6104 6990 6386 6489 6577 0673 6769 6865 0900 54 7050 7159 7947 7343 7438 7534 7795 7891 7910 455 8011 8107 8909 8996 8393 8463 8584 8679 8774 6870 58 8065 9000 9155 9950 9346 9441 9536 9631 9796 9891 57 9916 06 0011 0106 0901 0996 0391 0486 0591 0076 •771 58 0886 0900 1055 1150 1945 1339 1434 1590 1693 1718 59 1813 1907 9009 9090 9191 9960 9380 9475 9599 480 9768 9859 9*47 3041 3135 3930 3394 3416 3513 3007 61 3701 3795 3B89 3983 4078 4172 4908 4360 4454 4549 69 4649 4736 4630 4994 5016 5119 5908 5999 5393 5487 63 5561 5875 5769 5669 5956 0050 6143 0937 6331 0494 64 6516 6619 6705 6799 0609 0966 7079 7173 7906 7300 465 7453 7546 7640 7733 7890 7990 8013 8106 8900 6993 60 8386 8479 8579 8605 8759 8859 8945 9036 9131 9994 67 9317 67 9410 9503 9596 9689 9789 9875 9907 0009 0153 66 0946 0339 0431 0594 0817 0710 0609 0695 0986 1080 09 1173 1965 1358 1451 1543 £638 1798 1891 1913 470 9098 9190 9963 9975 9467 9560 9659 9744 9837 9999 71 3091 3113 3905 3997 3390 3489 3574 3006 3756 3850 79 3949 4034 4196 4918 4310 4409 4494 4566 4677 4709 73 4861 4951 5045 5137 5938 5390 5419 5503 5595 5087 74 5778 5670 5969 0053 6145 6930 0398 0419 0511 475 6604 6785 0670 0968 7059 7150 7949 7333 7494 7510 70 7607 7606 7789 7661 7979 80*O 8154 8945 8336 8497 77 8518 660) 8700 8791 8689 6P73 9064 9155 9940 907 78 0498 08 0519 9610 9700 9791 9689 0973 0063 0154 0945 79 0380 0498 0517 0607 0698 0789 0879 0970 1000 1151 If. 1 9 3 4 5 6 7^ 8 • Digitized by VjOOQIC TABU I.— LOO. OF NQS. 11 N. 1 8 3 4 5 6 7 8 480 08 1041 1333 1483 1513 1003 1093 1784 1874 1065 8055 61 S145 8335 8336 3416 8506 8596 8086 8777 8867 8057 61 3047 3137 3337 3317 3407 3497 3587 3677 3767 3857 a 3047 4037 4187 4817 4307 4306 4486 4576 4666 4756 84 4843 4035 5085 5115 5305 5304 5383 5473 5563 5658 405 37a 5331 5031 6010 6100 6180 6879 6368 6458 6547 8S 0830 6788 6815 6004 6094 7083 7178 7861 7351 7440 87 7330 7618 7707 7796 7886 7975 8064 8153 8848 8331 88 8400 8500 6508 8687 8776 8865 8053 9049 8131 9830 80 60 0308 0488 0573 9664 9753 0841 9030 0010 0107 400 0106 0885 0373 0468 0551 0630 0738 0816 0005 0003 01 1083 1170 1858 1347 1435 1534 1618 1700 1780 1877 03 1065 8053 8148 8830 8318 3406 3494 8583 son 8750 03 sen 8035 3083 3111 3190 3387 3375 3463 3551 3639 04 3737 3815 3003 3091 4078 4166 4854 4343 4430 4317 400 4805 4603 4781 4868 4056 5044 5131 5310 5307 5304 06 5483 5560 5657 5744 5833 5019 6007 6004 6188 0309 07 6356 6444 6531 6619 6708 6793 6880 6088 7055 7148 08 7880 7317 7404 7491 7578 7665 7753 7830 7986 8013 80 8101 6188 8375 8363 8440 8535 8683 8700 8796 8683 300 8070 0057 0144 0331 0317 9404 0401 9578 0664 0751 01 0838 0034 70 0011 0098 0184 0371 0357 0444 0531 0617 08 0704 0700 0877 0063 1050 1136 iy» 1300 1395 1483 09 1568 1654 1741 1887 1913 8000 8086 8178 8858 8344 04 8430 8517 8603 8680 8775 8961 8047 3033 3119 3305 305 3291 3377 3463 3540 3635 3781 3807 3803 3979 4065 08 4151 4836 4383 4408 4404 4579 4665 4751 4837 4033 07 3008 5004 5170 5365 5351 5436 5538 5607 5693 5778 0633 08 5864 5040 6033 6180 6808 6891 6376 6488 6547 00 6718 6003 6888 6074 7050 7144 7830 7315 7400 7465 310 7570 7655 7741 7886 7011 7906 8081 8166 8851 8336 11 84S1 8506 8391 8676 8761 8846 8931 0015 0100 0185 10 0370 71 0355 0440 0584 0609 0604 0770 0863 0048 0033 13 0117 0303 0387 0371 0456 0540 0685 0710 0704 0870 14 0063 1048 1133 1317 1301 1385 1470 1554 1636 1783 313 1807 1801 1076 8060 3144 8389 8313 8307 8481 8566 10 8650 8734 8818 8909 8986 3070 3154 3939 3383 3407 17 3401 3575 3658 3748 3910 3004 4078 4168 4846 18 4330 4414 4497 4581 4665 4749 4833 4916 5000 5084 10 5167 5851 5335 5418 5303 5586 5660 5753 5836 5030 300 6003 6087 6170 6854 6337 6481 6504 6588 6671 6754 SI 6838 6031 7004 7088 7171 7354 7338 7481 7504 7587 OS 7670 7754 7837 7930 8003 8086 8160 8353 8336 8410 83 8503 8585 8088 8751 8834 8917 9000 0083 8165 9848 84 0331 78 0414 0407 0580 9663 9746 9838 0911 0904 0077 333 0150 0848 0385 0407 0400 0573 0855 0738 0831 0003 SO 0086 1068 1151 1833 1316 1308 1481 1563 1646 1788 87 1811 1893 1075 8058 3140 8333 9305 8387 8460 8553 88 8034 S7M 3798 8881 3063 3045 3187 3300 3291 3374 80 3456 3538 3090 3708 3784 3866 3048 4030 4118 4104 330 4876 4358 4440 4583 4003 4085 4767 4840 4031 5013 31 5004 5376 5358 5340 5483 5503 55B5 5687 5748 5830 33 5013 5003 6075 6157 6838 6380 6401 6483 6564 6646 33 6787 6800 6800 6078 7053 7134 7816 7897 7370 7460 34 7341 7083 7704 7785 7860 7048 8030 8110 8101 8373 335 8354 8435 8516 8507 8676 8750 8341 8383 0003 0084 33 0365 0346 0337 0408 0480 0570 0351 0733 0813 0603 37 0074 73 0055 0136 0317 0308 0370* 0450 0540 0681 0701 K. 1 3 3 4 5 6 7 8 Digitized by VjOOQIC IS TABLE I.— LOO. Of N0«. ». 1 9 3 4 5 6 7 8 • 538 73 07^9 0863 0J44 1034 1105 1186 1366 1347 1488 1506 39 15c9 1609 1750 1830 1911 1991 8073 3153 8333 1.313 540 9394 9474 3555 8635 3715 3796 3676 8956 3037 3117 41 3197 3878 3358 3438 3S18 3598 3679 3759 3*39 3M9 43 31)99 4079 4160 4340 4330 4400 4460 4560 4140 4799 43 4£00 48fa0 49110 5040 5130 5900 5380 5360 5440 5599 44 5599 5679 5758 5638 5918 5998 6078 6157 6837 6317 MS 6397 6476 6556 6636 6715 6795 6874 6954 7034 7113 46 7193 7979 7359 7431 7511 7590 7670 7749 7839 7106 47 7*87 80o7 8146 8835 6*05 8384 8463 8543 8199 6701 40 8781 8960 8939 9018 6097 9177 9856 9335 9414 9499 49 9579 74 9651 9731 9610 9689 9968 0047 0186 0905 9984 450 0363 0449 0591 0600 0678 0757 0636 0915 0994 1073 SI 1159 1930 1309 13d8 1467 1546 1634 1703 1789 1K0 S3 1939 9018 8096 9175 3354 8333 3411 8490 8647 S3 9795 9804 8889 8961 3039 3118 3196 3174 3353 3431 54 9510 3588 3667 3745 3833 3908 3986 4058 4137 4915 555 4993 4371 4450 4538 4606 4684 4763 4840 4919 4997 56 5075 5153 S31 5309 5387 54C5 5543 5631 5699 5777 57 5855 5933 0011 6089 6167 6845 6333 6401 6479 6558 56 6634 6719 6700 6868 6945 7033 7101 7179 7356 7334 59 7419 7490 7587 7645 7733 7800 7878 7955 6033 8111 560 8188 8966 8343 8491 8496 8576 8653 8731 6808 6665 61 8963 9040 9118 9195 9873 9350 9437 9504 95ta9 9659 68 9736 9614 9891 9968 75 0045 0133 0300 0977 0354 0431 63 0506 0585 0663 0740 0817 0894 0971 1048 1185 1989 64 1979 1356 1433 1510 1587 1664 1741 1816 18k5 1679 565 9048 8195 8903 3979 8356 8433 3509 8586 9663 9740 68 9816 2*3 8970 3047 3133 3800 3377 3353 3430 3907 67 3583 3660 3736 3813 3899 3966 4043 4119 41M 4879 68 4348 4495 4501 4578 4654 4731 4807 4883 49C0 69 511? 5189 5365 5341 5417 5494 5570 5646 5789 5799 570 5875 5951 6097 6103 6180 6356 6333 6408 6464 6560 71 6636 6719 6789 6864 6940 7016 7009 7168 7344 7399 79 7396 7479 7548 7634 7709 7776 7851 7937 6603 f979 73 8155 8930 8306 8383 8458 8533 8609 8685 6761 8836 74 6019 8988 9063 9139 9314 9390 9368 9441 9517 9SU 575 9666 9743 9819 9894 9970 76 0045 0131 0196 0979 0947 76 0499 0498 0573 0649 0734 0799 0*75 0950 1635 1100 77 1176 1951 1396 1409 1477 1553 1697 1709 1777 If 53 78 1998 8003 9078 9153 3338 8303 3378 3453 3539 9(04 79 9679 8754 8899 8-03 8979 3953 3138 3803 3878 586 3498 3503 3578 3653 3737 3603 3877 3953 4097 4101 81 4176 4851 4386 4400 4475 4550 4634 4699 4774 4N8 89 4993 4998 5079 5147 5331 5396 5371 5445 5590 5594 83 5669 5743 5817 58P3 5906 6041 6115 61! 6864 6330 84 6413 6487 6569 6638 6710 6785 6659 0933 7067 HK3 585 7158 7930 7304 7378 7453 7537 7001 7675 7749 1f83 86 7898 7979 8046 8130 8194 8968 8343 8416 84*0 6964 87 fi<38 8719 8786 8860 8934 9606 9689 9156 9830 9894 88 9377 77 9451 0535 9599 9673 9747 9830 9694 9966 0049 89 0115 0189 0963 0336 0410 0484 0558 0831 0705 0776 596 0859 0C96 0999 1073 1146 1990 1893 1367 1441 1514 91 1587 1661 1734 1808 1661 1955 8038 9108 3175 9946 99 9399 9395 9468 8549 8615 8688 9768 9835 3*08 9 61 93 9055 3188 3801 3974 3347 3431 3494 3567 3640 3713 94 9786 3869 9933 4006 4979 4159 4371 4444 595 4517 4590 4663 4736 4809 4869 4955 5986 5100 5173 W. 1 S 3 4 5 6 7 8 t Digitized by VjOOQIC TABLE I.— LOG. Of NOf. IS !f. 1 2 3 4 5 6 7 8 9 596 77 5346 5319 5393 5465 5538 5610 5683 5756 5629 5902 97 5974 6047 6120 611.2 6265 6338 6411 6483 6556 6629 98 6701 6774 6846 6919 6992 7064 7137 7909 72b2 7354 99 7497 7499 7573 7644 m 7717 7789 7862 7934 8007 8079 600 8151 8334 8296 8368 8441 8513 8565 8658 8730 8802 01 8875 8947 9019 9091 9163 9236 9308 9380 9452 9524 03 9597 76 9669 9741 9813 96e5 9957 0029 0101 0173 0245 oa 0317 0389 0461 0533 0605 0877 0749 0621 0893 0j65 0i 1037 1109 1181 1253 1325 1396 1468 1540 1612 1684 605 1755 1837 1899 1971 2042 2114 2186 2258 2329 2401 OS 2473 3544 2016 2668 2759 2831 2S02 2974 3046 3117 07 3189 aaco 3333 3403 3475 3546 3618 3689 3761 3832 06 3904 35.75 4046 4118 4189 4261 4332 4403 4475 4546 09 4617 4689 4760 4831 4903 4974 5045 5116 5167 5259 610 5330 5401 5473 5543 5615 5686 5757 5828 5899 5970 11 €041 6113 6183 1254 6335 6396 6468 6538 6109 6680 19 6751 6833 6803 6964 7035 7106 7177 7348 7319 7390 13 7461 7531 7t02 7673 7744 7815 7885 7956 8087 8098 14 8168 8939 8310 8381 8451 8522 8593 8663 8734 8b05 615 8875 8946 9016 9087 9158 9238 9299 9369 9440 9510 16 9561 79 9851 9723 9792 9663 9933 0004 0074 0144 0215 17 0285 0356 0426 0496 0567 0637 0707 0778 0848 0918 10 01188 1059 1129 1199 1270 1340 1410 1480 1550 1620 19 • 1691 1761 1831 1901 1971 2041 2111 2182 2252 2322 690 2392 3463 2533 2602 2672 2742 2812 2882 2952 3028 21 3092 3162 3331 3301 3371 3441 3511 3581 3t51 3721 32 37P0 38F0 3930 4000 4070 4130 4209 4279 4349 4418 23 4488 4558 4637 4697 4767 4837 4106 4976 5045 5115 94 5185 5354 5324 5393 5463 5532 5602 5672 5741 5810 625 5880 5950 6019 6088 6158 6227 6297 6366 6436 6505 26 6574 6644 6713 6782 6852 6921 69£0 7060 7129 7198 27 7a>7 7337 7406 7475 7545 7614 7683 7752 7*21 7*0 28 7960 8651 8039 8098 8167 8236 8305 8374 8443 8512 85£2 99 8790 8789 8858 8927 8996 S065 9134 £203 9372 630 9341 9410 9478 9547 9616 9685 9754 9823 0892 9060 31 80 0033 0098 0167 0336 0305 0373 0442 0511 0580 0648 33 0717 0786 0P55 0ti23 0962 1061 1129 1198 1266 1335 33 1404 1472 1541 1609 1678 1747 1815 1884 1952 2031 34 9989 3158 2236 2295 2363 2432 2500 2569 2637 3705 635 2774 2842 2911 2979 3047 3116 3184 3252 3321 3389 36 3457 3535 3594 3662 3730 3798 3867 3935 4003 4071 37 4139 4208 4276 4344 4412 4480 4548 4616 4684 4753 38 4831 4889 4957 5025 5093 5161 5229 5297 5X5 5433 39 5501 5569 5037 5705 5773 5841 5908 5976 6044 6112 610 6180 6248 6316 6384 6451 6519 6587 6655 6722 6790 41 6858 6926 6994 7061 7129 7197 7264 7332 7400 7467 43 7535 7T03 7670 7738 7806 7873 7941 8008 8076 8143 43 8311 8279 8346 8414 8481 8549 8616 8C84 8751 8818 44 8866 8953 9021 9088 9156 9233 9290 9358 9425 9492 645 9560 81 9627 9694 9762 9829 0896 9964 0031 0098 0165 46 0333 0300 0387 0434 0501 0568 0636 0703 0770 0837 47 0T04 0971 1039 1106 1173 1240 1307 1374 1441 1506 48 1575 1642 1709 1776 1843 1910 1977 2044 2111 2178 49 3345 2312 2379 2445 2512 2579 2646 2713 2780 2647 690 2913 2980 3047 3114 3180 3247 3314 3381 3448 3514 51 3581 3648 3714 3781 3848 3914 3981 4048 4114 4181 53 4348 4314 4381 4447 4514 4580 4647 4714 4780 4847 ,"■ 1 « 3 4 . 5 6 7 8 9 Digitized by VjOOQIC 14 f ABLE I.-— LOO. OF NO* N. 1 3 3 - 4 6 6 7 8 t 653 81 4913 4960 5046 5113 5179 5346 5313 5378 5445 5511 54 5578 5644 5711 6777 5843 6910 6976 6043 6109 •175 655 6841 6308 6374 6440 6506 6573 6639 0105 6771 6838 56 6004 6970 7096 7103 7169 7335 7301 7367 7433 7400 57 7565 7633 7698 7764 7830 7896 7963 8038 8094 8109 58 8386 8393 8358 8434 8490 8556 8693 8754 8880 59 8885 8951 9017 *063 9149 9315 9981 9340 9413 9478 660 9544 89 9610 9676 9741 9807 9873 9939 0004 •070 •no 61 0903 0367 0333 0399 0464 0530 0598 0661 0737 0793 68 0858 0934 0989 1055 1130 1186 1351 1317 1383 1449 63 1513 1579 1645 1710 1776 1841 1908 1973 3037 3109 64 3168 8334 3399 3364 8430 9495 8560 3636 3691 3750 665 3893 8887 8953 3018 3083 3148 3313 3379 3344 9499 66 3474 3539 3605 3670 3735 3800 3665 3981 3998 4061 67 4136 4191 4356 4331 4386 4451 4516 45B1 4646 4711 68 4777 4841 4907 4973 5036 5101 5166 5331 5896 5361 69 5436 5491 5556 5631 5686 5751 5815 5880 5945 0630 670 6075 6140 6304 6369 6334 6399 6464 6588 6593 0858 71 6733 6787 6853 6917 6981 7046 7111 7175 7340 7305 78 7369 7434 7490 7563 7638 7693 7757 7831 7886 7959 73 8015 8080 8144 8309 8373 8338 8403 8467 8531 8996 74 8660 8734 8789 8853 8618 8983 9046 9111 9179 98)9 675 9304 9368 9433 9497 9561 9035 9690 9754 9819 9863 76 9947 63 0011 0075 0139 0804 0968 0333 0396 0400 6534 77 0589 0653 0717 0781 0845 0909 0973 1097 1103 1M6 78 1330 1304 1358 1433 1486 1550 1614 1678 1748 1696 79 1870 1934 1998 3063 8136 3189 9353 3317 3361 9445 680 3509 3573 9637 3701 3764 8838 9898 8956 3090 3983 • 81 3147 3311 3275 3338 3403 3466 3530 3593 3657 3731 89 3784 3848 3»18 3975 4039 4103 4166 4339 4993 4357 83 4431 4484 4548 4611 4675 4739 4603 4866 4939 4993 84 5056 5130 5183 5346 5310 5373 5437 5500 5564 5637 685 5691 5754 5817 5881 5944 0007 6071 6134 6198 6961 86 6334 6387 6451 6514 6577 6641 6704 6767 6830 0894 87 6957 7030 7083 7146 7310 7373 7336 7399 7463 7335 88 7588 7633 7715 7778 7841 7904 7967 8093 6156 89 8319 8383 8345 8408 8471 8534 8597 8660 6733 8786 690 8849 8913 8975 9038 9191 9164 9337 9390 9353 9415 91 9478 84 0541 0894 9667 9739 9793 9855 9918 '9981 0043 99 0106 0169 0333 0394 0357 0430 0485 0545 6608 0671 93 073) 0790 0859 0991 0984 1047 1109 1173 1934 .H97 94 1360 1433 1485 1547 1610 1673 1735 1797 1860 1933 695 1965 8047 3110 3173 8835 8897 3360 9493 3484 9547 96 3009 9673 3734 8796 8859 3931 8983 3046 3108 3170 97 3933 3395 3357 3430 3483 3544 3607 3689 3731 3793 98 3855 3918 3980 4049 4104 4166 4939 4991 4353 4415 90 4477 4539 4601 4663 4796 4788 4860 4913 4974 50)6 700 5098 5160 5333 5384 5346 5408 5470 5533 5594 5956 01 5718 5780 5843 5904 5966 6038 0090 6151 6313 •375 03 6337 6399 6461 6533 65B5 6846 6708 6770 0838 •993 03 6955 7017 7079 7141 7303 7364 7396 7388 7449 9511 04 7573 7634 7696 7758 7819 7881 7943 8904 8906 •389 705 8189 6851 8319 8374 8436 8497 8559 8690 8698 8743 08 8805 8866 8938 8989 9051 9119 9174 9935 9306 9358 07 9419 9481 9543 9604 0665 0796 9788 9849 9911 9973 08 85 0033 0095 0156 0317 0979 0340 0401 0463 0394 •585 09 0646 0707 0769 0830 0891 0953 1014 1075 1136 1197 N. 1 9 a 4 5 • 7 8 • Digitized by VjOOQIC TABU I.' OF MOS. 15 N. 1 9 3 4 5 6 7 8 9 710 85 1958 1319 1381 1449 1503 1564 1635 1686 1747 1809 11 1870 1031 1999 9053 8114 2175 8336 8297 8358 9419 IS 9480 9541 9603 9663 9734 8785 8846 8907 8968 3029 13 3090 3150 3311 3373 3333 3394 3455 3516 3577 3637 14 3998 3759 3tfi0 3881 3941 4003 4063 4134 4185 4345 715 4306 4367 4498 4488 4549 4610 4670 4731 4793 4853 16 4913 4974 5034 5095 5156 5316 5277 5337 5398 5459 17 5519 5580 5640 5701 5761 5822 5882 5943 6004 6064 18 6194 6185 6945 6308 0366 6437 6487 6548 6608 6608 19 6799 6789 6850 6910 6970 7031 7091 7151 7313 7873 730 7339 7393 7453 7513 7574 7634 7694 7755 7815 7875 91 7935 7996 6056 8116 8176 8236 8997 8357 8417 8477 82 8537 8597 6658 8718 8778 8838 8898 8958 9018 9078 33 9138 9196 9258 9318 9379 9439 9499 9559 9619 9679 84 9739 9799 9858 9918 9978 86 0038 0098 0158 0318 0378 785 0338 0398 0458 0518 0578 0637 0697 0757 0817 0877 96 0937 0996 1056 1116 1176 1336 1995 1355 1415 1475 97 1534 1594 1654 1714 1773 1833 1893 1952 9013 3078 98 9131 9191 S251 3310 3370 3430 3489 2549 3608 3668 99 9797 9787 9847 3906 8966 3025 3085 3144 3204 3363 990 3393 3383 3449 3501 3561 3680 3680 3739 3798 3858 31 3917 3977 4036 4696 4155 4314 4374 4333 4392 4453 93 4511 4570 4G30 4689 4748 4808 4867 4936 4986 5045 93 5104 5163 5333 5383 5341 5400 5459 5519 5578 5637 34 5096 5755 5814 5674 5933 5993 6051 6110 6169 6328 735 6987 6346 6408 6465 6534 6583 0643 6701 6760 6819 36 6878 6937 6998 7055 7114 7173 7933 7991 7350 7409 37 7468 7536 7585 7644 7703 7763 7831 7880 7939 7998 38 8056 8] 15 8174 8233 8992 8351 8409 8468 8527 8586 39 8644 8703 8763 8831 8879 898B 8997 9056 9114 9173 740 9239 9390 9349 9408 9460 9535 9584 9649 9701 9760" 41 9818 9877 9935 9994 > 87 0053 0111 0170 0338 0887 0345 49 0404 0403 0531 0580 0638 0698 0755 0813 0673 0930 43 0989 1047 1108 1164 1223 1381 1339 1398 1456 1515 44 1573 1631 1690 1748 1806 1665 1923 1961 8040 3098 745 9156 3315 3373 8331 9389 8448 3506 3564 3622 3681 46 9739 3797 3855 3913 9979 3030 3088 3146 3204 3363 47 3321 3379 3437 3495 3553 3611 3669 3727 3786 3844 48 3909 3960 4018 4076 4134 4193 4350 4308 4366 4434 49 4483 4540 4598 4656 4714 4773 4830 4888 4945 5003 750 5061 5119 5177 5335 5393 5351 5469 5466 5534 5588 51 5640 5698 5736 5813 5871 5939 5987 6045 6102 6160 99 6918 6876 6333 6391 6449 6507 6564 6622 6680 6737 53 6735 6853 6910 0968 7096 7083 7141 7199 7256 7314 54 7371 7439 7487 7544 7603 7659 7717 7774 7832 7889 755 TO47 8004 8063 8119 8177 8335 8893 8349 8407 8464 56 8533 8579 8637 8194 8759 8809 8806 8994 8981 9038 57 9096 9153 9211 9268 9325 9383 9440 9497 9555 9818 58 9059 88 9796 9784 9841 9698 9956 0013 0070 0127 0185 59 0349 0999 0356 0413 0471 0538 0585 0643 0699 0756 760 0814 0871 0938 0985 1049 1099 1156 1313 1870 1338 61 1385 1449 1499 1556 1613 1670 1737 1784 1841 1898 69 1955 9019 3069 3136 9183 3240 8397 2354 8411 3468 63 3535 9589 9638 3695 3759 3809 8866 2923 89P0 3037 64 3993 3150 3307 3304 3331 3378 3434 3401 3548 3605 105 3661 3718 3773 3833 3P89 3945 4008 4059 4115 4173 66 4939 4986 4349 4399 4456 4513 4599 4686 46*2 4739 67 4795 4859 4909 4965 5032 5078 5135 5191 5248 5395. N. 1 9 3 4 S 7 8 9 Digitized by VjOOQIC 16 TABUS I. — LOO. OF NO*. N. 1 8 3 4 & 6 7 8 788 88 5361 5418 5474 5531 5587 5644 5700 5757 5613 5370 69 5338 5383 6033 6036 6153 6309 6865 6323 6378 6434 770 6491 6547 6604 6660 6716 6773 6829 6885 6948 6998 71 7054 7111 7167 7323 7230 7336 7338 7449 7505 75^1 72 7617 7674 7730 7786 7842 7839 7955 8011 8fe7 8133 73 8160 8336 83 J3 8348 8404 6460 8517 8573 8u23 8*63 74 8741 67*17 8853 8303 8965 9031 9077 9134 9L*0 9346 775 9303 9353 9414 9470 9536 9583 9638 9694 9750 9806 76 9863 9918 9974 89 0030 0085 0142 0197 0353 0309 6365 77 0431 0477 0533 0539 0645 0700 0758 0313 0*68 0934 78 0380 1035 1031 1147 1303 1853 1314 1370 1426 14(3 79 1538 1533 1649 1705 1760 1816 1873 1337 1*S 8033 7B0 3035 2150 3306 3263 3317 8373 8483 8484 8540 8535 81 3551 2707 9763 2818 3373 3329 8385 3010 3036 3151 8* 3307 32i3 3318 3373 3423 3484 3540 35.15 3i51 3706 83 3768 3817 3373 3938 3384 4039 4034 4150 4305 49 >1 84 4316 4372 4427 4483 4533 4533 4648 4704 4753 4614 785 4870 4935 4980 5036 5091 5146 5302 5357 5318 5307 8tf 5433 5478 5533 5588 5644 5iW9 5754 5809 53*4 5919 87 5J75 6030 6085 6140 61J5 6251 630J 63J1 6416 6471 88 6534 6581 6636 6693 6747 6802 6857 6913 6*>7 7023 89 7076 7133 7187 7343 7337 7352 7407 7463 7517 7573 790 7637 7682 7737 7798 7847 7903 7957 8013 8067 8139 91 8176 8331 8386 8341 8336 8451 8506 8561 6616 8670 93 8735 8780 8835 8890 8944 89J9 9054 9103 9164 9316 93 9373 9328 9383 9438 9493 9547. 9603 9056 9711 9766 94 9831 9875 9930 9985 90 0039 0094 0149 0803 0858 6313 795 03S7 0433 0476 0531 0586 0640 0995 0749 0804 0859 96 0313 0368 1033 1077 1131 1136 1940 1-295 1343 1464 97 1458 1513 15 *7 1633 1676 1731 1735 1840 1894 1349 98 3003 3057 3113 8166 3331 3375 3339 8334 8438 84 3 99 8547 3601 3655 3710 3764 S818 8873 3337 8381 3934 800 3030 3144 3199 3353 3307 3361 3416 3470 3584 3578 01 3633 3687 3741 3795 3849 3304 3958 4013 40J6 4180 03 4174 4329 4283 4337 4391 4445 4499 4553 4607 4661 03 4716 4770 4834 4878 4933 4986 5040 50 »4 5148 5803 04 5356 5310 5364 5418 5473 5536 5580 5634 5698 5749 805 5796 5850 5904 5358 0012 6066 6130 6173 6887 6381 06 6335 6389 6443 6497 6550 6604 665* 6713 6766 6H99 07 6873 6937 6981 7035 7039 7143 7196 7350 7304 7356 03 7411 7465 7519 7573 7636 7680 7734 7787 7841 7805 09 7949 8003 8056 8110 8103 8817 8871 8334 8378 6431 819 8485 8539 8593 8646 8699 8753 8807 8860 8914 8967 11 9031 9074 9138 9181 9335 9339 9349 9398 9449 9503 13 9553 91 0030 9603 9663 9717 9770 9833 9877 9930 9984 0037 13 0144 0197 0351 235 0358 0411 0464 0518 0571 14 0634 0878 0731 0784 0891 0944 0996 1051 1104 815 1158 1311 1954 1317 1371 1434 1956 1477 1530 1534 1637 16 1690 1743 1797 1850 1903 8003 8063 8116 9169 17 S333 9375 2328 3383 3435 3488 8541 8594 8047 8700 18 3753 3866 3860 8913 8966 3019 3073 3125 3178 3331 19 3384 3337 3390 3443 3496 3549 3008 3655 3706 3761 830 3814 3867 3930 3*173 4036 4079 4133 4184 4837 4890 31 4343 4336 4449 4503 4555 4608 4660 4713 4766 4*19 33 4873 4935 4978 5030 5083 5136 5189 5849 avH 5347 33 5400 5453 5505 5558 5611 5664 5716 5769 5983 *«75 34 5337 5060 6033 6085 6138 6191 6843 6896 6349 6401 N. 1 8 3 4 9 6 7 8 9 t Digitized by VjOOQIC TABLE I.—- LOO. Of NOB. 17 N. 1 3 3 4 5 6 7 8 9 885 91 6454 6507 6559 6613 6665 6717 6770 6822 6875 6027 96 6980 7033 70*5 7138 7190 7243 7295 7348 7400 7453 87 7506 7558 7611 7663 7716 7768 7821 7873 7925 7978 98 8030 8083 8135 8188 8340 8293 8345 8397 8450 8502 29 8555 8607 8659 8713 8764 8816 8869 8981 8073 9026 838 9078 9130 9183 9835 9887 9340 9398 9444 9497 9549 31 9601 98 9653 9706 9758 9810 9863 9914 9967 0019 0071 a 0193 0176 0988 0980 0339 0384 0436 0489 0541 0593 33 0645 0697 0749 0801 0853 0906 0958 1010 1062 1114 34 1166 1818 1870 1323 1374 I486 1478 1530 1588 1634 835 1687 1730 1790 1843 1894 1946 1998 8050 8102 2154 36 8306 9858 9310 3368 8414 8466 3518 8570 3ti22 3674 37 8795 8777 2889 8881 8983 8985 3037 3989 3140 3198 38 3944 3906 3348 3400 3451 3503 3555 3607 3658 3710 39 3763 3814 3866 3917 3969 4031 4078 4124 4176 4328 840 4879 4331 4383 4434 4486 4538 4589 4641 4603 4744 41 4796 4848 4899 4951 5003 5054 5106 5157 5209 5361 49 5313 5364 5415 5467 5518 5570 5631 5673 5785 5776 43 5898 5879 5931 5983 6034 6085 6137 6188 6240 63M 44 6343 6394 6445 6497 6548 6600 6651 6703 6754 6805 845 6857 6908 6960 7011 7008 7114 7165 7816 7968 7319 46 7370 7493 7473 7594 7576 7637 7678 7730 7781 7833 47 7883 7935 7986 8037 8089 8140 8101 8843 8293 8345 48 8306 8447 8498 8550 8601 8658 8703 8754 8805 fce57 49 8008 8950 9010 9061 9118 9163 9814 9366 9317 9368 850 0419 9470 9531 9573 9683 9674 9735 9776 9887 9679 51 9930 9981 93 0033 0063 0134 0185 0836 0887 0338 0389 59 0440 0491 0542 0593 0643 0694 0745 0796 0647 0898 53 0949 1000 1051 1108 1153 1803 1354 1305 1356 1407 54 1458 1509 1560 1610 1661 1718 1763 1814 1865 1915 855 1066 9917 9968 3118 8169 8820 3871 3329 8378 8433 56 9474 8595 3575 3636 9677 2727 8778 2fc29 2879 3930 57 8961 3031 3*3 3133 3183 3934 3385 3335 3386 3437 58 ' 3487 3538 3580 3630 3690 3740 3791 3843 3662 3943 .59 3093 4044 4004 4145 4195 4846 4296 4347 4397 4448 860 4499 4549 4590 4650 4700 4751 4801 4858 4902 4953 61 5003 5054 5104 5154 5305 5955 5306 5356 5407 5457 69 5507 5558 5608 5658 5709 5759 5810 5860 5910 5961 63 6011 6001 6111 6163 6313 6262 6313 6363 6413 6464 64 6514 6504 6614 6665 6715 6765 6815 6866 6916 6966 865 7016 7066 7116 7167 7217 7267 7317 7367 7418 7468 66 7518 7568 7618 7668 7718 7769 7819 7860 7919 7969 67 8019 8069 6119 8109 8219 8370 8330 8370 8480 8470 68 8530 8570 8620 8K70 8720 8770 8820 8870 8930 6970 69 9090 9070 9120 9170 9820 9870 9320 9370 9419 9469 870 9510 9569 0619 0669 9719 9769 0819 9869 0918 9968 71 94 0018 0068 0118 0168 0218 0267 0317 0367 0417 0467 79 0517 0566 0616 0G66 0716 0765 0bl5 0865 0915 0964 73 1014 1064 1114 1163 1213 1263 1313 1363 1412 1468 74 1511 1561 1611 1661 1710 17C0 1810 1859 1909 1958 875 9008 9058 2107 3157 9206 8356 3306 3355 8405 8455 76 9504 8554 3603 3653 2702 8753 8801 3851 8P01 9950 77 9000 3049 3090 3148 3198 3347 33J7 3346 3396 3445 78 3405 3544 3593 3643 3699 3743 3791 3841 3890 3940 79 3989 4038 4088 4137 4187 4336 4365 4335 4384 4433 880 4483 4539 4581 4631 4680 4739 4779 4888 4877 4987 81 4076 5035 5074 5134 5173 5322 5373 5331 5370 5419 89 5469 5518 5567 5616 5666 5715 5764 5813 5863 5911 83 5961 6010 6050 6108 6157 6207 6256 6305 6354 6403 N. 1 8 3 4 5 6 7 1 8 • Digitized by VjOOQIC 18 TABLE I.— LOO. OF NOB, N. 1 3 3 4 5 6 7 8 9 884 94 6453 6501 6551 6600 6649 6698 6747 6796 6845 0894 885 6943 6993 7041 7091 7140 7189 7338 7887 7336 7385 86 7434 7483 7533 7581 7630 7679 7738 7777 7836 7875 87 7934 7973 8083 8071 8119 8168 8317 6366 8315 8364 88 8413 8463 8511 8560 8609 8657 8706 8755 8804 ee53 89 8903 8951 8999 9048 9097 9146 9195 9344 9399 9341 890 9390 9439 9488 9536 9585 9634 9683 9733 9780 9899 91 9878 9936 9975 95 0084 0073 0131 0170 0319 0967 0316 93 0365 0414 0463 0511 0560 0808 0657 0708 0754 0603 93 0853 0900 0949 0097 1046 1095 1143 1193 1340 1389 94 1337 1386 1435 1483 1533 1580 1639 1677 1736 1775 895 1833 1873 1930 1969 3017 3066 3114 3163 8311 33£0 96 3308 3356 3405 8453 3503 3550 3599 3647 3696 3744 97 9793 3841 3889 3938 8986 3034 3063 3161 3180 3330 98 3376 3335 3373 3431 3470 3518 3566 3615 3663 3711 99 3760 3808 3856 3905 3953 4001 4049 4098 4146 4194 900 4343 4391 4339 4387 4436 4484 4533 4580 4638 4677 01 4735 4773 4831 4869 4918 4966 5014 5063 5110 5158 OS 5307 5355 5303 5351 5399 5447 5495 5543 5593 5640 03 5688 5736 5784 5833 5860 5938 5976 6034 6073 6130 04 6168 6316 6364 6313 6361 6409 6457 6505 6553 6801 905 6649 6697 6745 6793 6841 6889 6936 6984 7033 7680 06 7138 7176 7834 7378 7330 7368 7416 7464 7513 7559 07 7607 7655 7703 7751 7799 7847 7895 7943 7960 803B 08 8086 8134 8183 8339 8377 8385 8373 8430 8466 8516 09 8564 8613 8659 8707 8755 8803 8851 8898 8946 8994 910 9041 9069 9137 9185 9833 9880 9338 9375 9433 9471 11 IS 9518 9995 90 9566 9614 9661 9709 9758 9804 9653 9900 9947 0048 0090 0138 0185 0333 0380 0338 0376 0483 13 0471 0518 0566 0814 0661 0709 0756 0604 0851 0899 14 0946 0994 1041 1089 1136 1184 1331 1379 1336 1374 915 1481 1469 1516 1563 1611 1658 1706 1753 1801 1848 16 1896 1943 1990 3038 3085 9133 3180 3337 8375 3333 17 3369 3417 3464 3511 3559 3608 3653 3701 3748 37*5 18 3843 3890 3937 3985 3038 3079 3136 3174 3331 3968 19 3316 3363 3410 3457 3505 3553 3599 3646 3693 3741 990 3788 3835 3883 3939 3977 4034 4671 4118 4165 4313 SI 4860 4307' 4354 4401 4448 4495 4543 4560 4637 4f#4 SS 4731 4778 4835 4873 4919 4966 5013 5061 5106 5155 33 5303 5349 5396 5343 5390 5437 5484 5531 5578 5185 34 5673 5719 5766 5813 5660 5907 5954 6001 6048 €095 985 6143 6189 6936 6383 6339 6376 6433 6470 6517 6564 98 6611 6658 6705 6753 6799 G845 6863 6939 6986 7033 37 WO 7137 7173 7390 7867 7314 7361 7408 7454 7501 38 7548 7595 7648 7688 7735 7783 7839 7875 7993 7969 39 8016 8063 8109 8156 8903 8349 8396 8343 8360 8436 930 8483 8530 8576 8683 8670 8716 8763 8810 6856 6T03 31 8950 8996 9043 9090 9136 9183 9330 9876 9333 9369 39* 9416 9463 9509 9556 9603 9649 9695 ,9748 9769 9635 33 9883 9938 9975 97 0091 0068 0114 0161 0307 0854 0300 34 0347 0393 0440 0486 0533 0579 0696 0673 0719 0765 935 0813 0858 0905 0951 0997 1044 1090 1137 1183 1339 36 1376 1393 1369 1415 1461 ism 1554 1601 1647 1ff3 47 1740 1786 1838 1879 K85 ltil 3018 8064 9110 3157 38 3903 3349 9395 3343 3388 3434 3481 3537 3573 8619 39 3666 3713 3758 3804 3851 3697 3943 3989 3035 3083 940 3188 3174 3290 3366 3313 3359 3405 3451 3497 3544 N. 1 3 3 4 5 6 7 6 • Digitized by VjOOQIC TABLE I. — LOO. OF NOS 19 N. 9 1 9 3 4 5 6 7 8 9 941 97 3S90 3630 3069 3798 3774 3890 3866 3013 3950 4005 49 4051 4097 4143 4189 493* 4981 4397 4374 4490 4466 43 4919 4558 4004 4650 4000 4749 4788 4834 4880 4996 44 4979 5018 5064 5110 5150 5909 5948 5904 5340 5380 945 9439 9478 5594 5570 5016 5669 5707 5753 5799 5845 46 9B91 5037 5063 6039 6075 6191 0167 6919 6958 6304 47 9330 0390 0449 6498 6533 6579 6671 6717 6763 48 8806 0854 6940 6008 7037 7083 7199 7175 7990 49 7900 7319 7358 7404 7449 7495 7541 7586 7639 7678 990 7794 7709 7815 7861 7900 7959 7068 8043 -8089 8135 91 8180 8990 8979 8317 8363 8409 8454 8500 8546 8591 m 8937 8083 8798 8774 8619 8865 8911 8950 9009 9947 a 9993 9139 9184 9930 9975 9391 9300 9419 9457 9503 54 9948 9594 9939 9085 9739 9776 9891 9667 9919 9958 989 99 0003 0949 0094 0140 6185 0931 0976 6399 0367 0443 90 0498 » 6549 0594 0640 0085 0730 0776 0891 0867 97 0919 1003 1048 1003 1130 1184 1930 1975 1399 98 1389 Mil 1450 1591 1547 1589 1637 1683 1798 1773 99 1819 1854 1909 1954 9000 9045 9000 3135 9181 9990 909 9971 9317 9399 9407 9453 9407 8543 8588 9633 9878 91 9793 9709 9814 9830 9904 9949 9995 3040 3085 3139 99 3179 3990 3965 3311 3359 3401 3446 3491 3530 3581 99 3999 3671 3716 3769 3807 3859 3897 3949 3887 4039 94 4977 4199 4107 4919 4957 4309 4347 4399 4437 4488 909 4597 4579 4017 4699 4707 4799 4797 4849 4887 4939 09 4977 5089 5007 5119 5157 5909 5947 5999 5337 5389 •7 9499 5471 5510 5561 5606 5651 5096 6189 5788 5631 09 9879 5890 5905 6010 6055 6100 6145 6934 6979 09 9394 6309 6413 6458 6503 6548 6593 6637 6089 6797 979 6779 6817 0801 6006 6951 6099 7040 7085 7130 7175 71 7919 7904 7309 7353 7398 7443 7488 7539 7577 7693 79 7699 7711 7756 7800 7845 7800 7934 7979 8094 8008 73 8113 8158 8009 8947 8991 8330 8381 8495 8470 8514 74 8599 8003 8048 8093 8737 8789 8896 8871 8916 8000 979 9009 9949 0094 9138 9183 9997 9979 9316 9361 9405 79 9490 9494 9539 9583 9099 9673 9717 9761 9800 9850 77 9999 9999 9064 99 0098 0079 0117 0161 0906 0950 0994 79 0839 0983 0498 0479 0510 0561 0605 0650 0694 0738 79 0783 0897 0871 0916 0960 1004 1049 1093 1137 1189 909 1995 1979 1315 1359 1403 1448 1499 1530 1581 1695 81 160) 1713 1758 1809 1846 1890 1935 1979 9093 9067 89 9119 9150 9900 9944 8988 9333 9377 9491 9465 9500 83 2554 9598 9649 9080 9730 9774 9819 9863 9007 9951 84 9095 3099 3083 3197 3179 3916 3960 3304 3348 3399 989 3430 3489 3994 9989 9913 3057 3701 3745 3789 3833 89 ' 3877 3091 3065 4909 4053 4097 4141 4185 4999 4973 87 4317 4301 4405 4449 4493 4537 4581 4695 4608 4713 88 4797 4801 4845 4809 4933 4977 5091 5005 5108 5158 89 5199 5949 9984 5398 5379 5416 5490 5504 5547 5591 999 9935 9979 9793 9787 9911 5854 5898 5949 5880 6930 91 6974 6118 6191 6905 6949 6993 6337 6380 6494 6408 99 6919 6555 6909 6643 6087 6731 6774 6618 6889 6906 99 6949 0993 7037 7080 7194 7168 7919 7955 7999 7343 94 7389 7499 7474 7517 7581 7605 7649 7099 7730 7779 999 7893 7897 7919 7954 & 8041 8085 8198 8179 8916 99 8999 8347 8390 8477 8591 8999 8606 8699 97 8999 8799 8788 8890 8809 8919 8956 9999 9043 9087 99 9131 9174 9918 9991 9305 9348 9399 9435 9479 9599 99 9009 9999 9096 9739 9783 9899 9870 9913 9957 1899 69 9969 j 0049 0087 0130 0174 6917 0901 0304 0947 - 0391 1* 1 • 1 » 1 ' 3 4 5 6 7 9 9 1 Digitized by VjOOQIC Digitized by VjOOQIC TABLE II. LOGARITHMS OF SINES, COSEC'S, TANGENTS, &c. Digitized by VjOOQIC Digitized by VjOOQIC Table n.— loo. tunco, tasq% Ac. 23 0» 0* 1'- .15" !• — 15' 1»-150 170© 11* Hours. D»f. L.Bin. DUE for 5" L.Cotec L.COS. L.8ec L.Tug. DUE for 5" L.Cot. D« I- Boon. m * i It i a m • 1 15 5.861666 100343 58697 41646 33303 4.138334 0.000000 0.000000 0461666 100343 58697 41646 38303 4.138334 45 00 53 3 30 6.168696 3437304 00 00 0.168696 8437304 30 58 3 45 .3387b7 .661813 00 00 438787 .661313 15 57 4 1 .463736 436874 00 00 463798 436874 59 58 5 15 .560636 36394 22316 19331 17051 15859 .438364 00 00 460636 86394 88316 19331 17051 15853 .439364 45 55 30 439817 460183 00 00 439817 .360183 30 54 7 45 .706764 493236 00 00 .706764 493836 15 53 8 3 .764756 435844 00 09 .764756 435844 58 58 9 15 415909 .184091 00 00 415900 .184091 45 51 10 30 461666 13798 18596 .138334 00 00 461666 13798 18596 11587 10788 9988 .138334 30 50 11 45 J03059 .096941 00 00 .903059 406941 15 49 12 3 .•40847 .059153 001 00 440847 .059153 57 48 13 15 475609 f*Si .084391 00 00 475610 .084300 45 47 14 30 7407TC4 xurao 9988 0492306 00 00 7407794 9LQQM06 30 46 15 45 .037757 9343 8776 8375 7837 7485 .968843 60 00 ..037758 9343 8776 8875 1Z 468848 15 45 16 4 465788 .934314 00 00 .065786 .934814 56 44 17 15 .093115 407885 00 00 .098115 .907885 45 43 18 19 30 45 .116939 .140430 483061 459580 00 00 00 00 .110939 .140490 JMW 99 15 43 41 90 5 .163696 7063 6735 6435 6161 1910 437304 00 00 .169696 7063 ss 6161 5910 437304 55 40 31 15 .183885 416115 0.000999 01 416114 45 39 33 SO 404089 .795911 99 01 404089 .795911 30 38 33 45 433394 .776606 99 01 483394 .776606 15 37 34 6 441877 .758183 99 01 441878 .758188 54 36 25 15 459606 5678 5464 5865 5010 4909 .740394 99 01 459607 5678 5464 5865 5989 4998 .740393 45 35 36 s 476639 .783361 99 01 .876640 .783360 30 34 37 493030 .708970 99 61 .708970 15 33 28 7 408834 491176 99 01 408835 491175 53 38 39 15 434064 475936 99 01 424065 475935 45 31 30 30 438787 4747 4596 4455 4383 4198 .661813 99 01 .338788 4747 4596 4455 4382 4196 461918 30 30 31 45 453088 .646979 99 01 .353029 .646971 15 39 33 8 466816 .633184 99 01 466817 .633183 58 38 33 15 480180 .619880 99 01 480181 .619819 45 27 34 30 .393145 .606855 99 01 493146 408854 30 86 35 45 .405734 4078 3966 3861 3760 3665 494866 99 01 405735 4078 3966 3861 3760 3665 404865 15 35 36 9 .417968 488038 99 01 417970 488030 51 34 37 15 .439867 470133 98 08 470131 45 33 38 30 .441449 458551 98 08 441451 458549 30 32 39 45 .453730 447870 98 02 .458732 447868 15 31 40 10 .463735 3575 3489 3406 3338 3853 430875 98 02 .463787 3575 3489 3406 333E 3853 436373 59 80 41 15 .474449 485561 98 08 .474451 435549 45 19 43 30 .484915 415085 98 03 .484917 415083 30 18 43 45 .495134 404866 98 02 .495136 404864 15 17 44 11 405118 ,494831 98 08 405180 .494880 49 16 45 15 414878 3183 3113 3048 8985 8985 .485183 98 02 414880 3188 3113 3048 8985 8935 485180 45 • 15 46 30 434433 475577 98 02 484485 475575 30 14 S 45 433763 .466837 97 03 433766 .466234 15 13 13 443900 457094 97 03 448909 457091 48 18 49 15 451861 448139 97 03 451864 448136 45 11 50 30 460635 3867 3811 8758 8708 8656 .439365 97 03 460638 8887 8811 8758 8706 8656 .439368 30 10 51 53 13 45 469335 477668 .430765 .482338 97 97 03 03 469838 477671 430768 47 15 9 6 53 15 485941 414059 97 03 485944 414056 45 7 54 30 494059 .405941 9? 03 494063 .405938 30 6 55 45 .609038 8608 8568 8510 8475 8433 497979 97 03 ,.608031 8608 8568 8518 8475 8433 497969 15 5 56 14 40P853 499147 96 04 .609857 490143 4« 4 57 15 417540 488460 96 04 .617544 468456 45 3 58 3°. 435093 474907 96 04 .685097 474903 30 3 59 4ft 433517 307483 98 04 .63858] 467479 15 1 60 15 7.939816 0469184 0.000096 O.00OO04 7.639820 83460180 45 00 Hoi • ire. ' i" D6f. L.0M. Diff. for 5" L.8ec | I* St*. LCowe. L. Got Diir. for 5" L.Tmnf. Bf. m Hon * r§. *» = MP l'-4« lo«4* 00* > II* Digitized by VjOOQIC 24 0» OO tabue n.— log. bines, tang's, Ac* l'-M" I-—]*' 1»— lfiO 17VO 11* Hou it. De i I- L.Bin. Diff for 5" L.Ooiec. L.CM. L.S6C. L.Tuf. DUE for 5" L.Obt. IX *. M - 1- 1 15 7339816 8393 8354 8316 8380 8344 9360184 9.909096 O.OOOO04 7.639890 8393 8354 8316 8880 8844 9.360180 45 M ,*» 1 15 J646995 353005 96 04 .646999 353001 45 59 8 30 .654056 345944 96 04 .654061 345939 90 * 1 3 45 .661005 338995 96 04 361010 338990 15 57 4 16 .667845 338155 95 05 367849 333151 44 "I 5 15 .674578 8310 8177 3145 3113 8083 .385433 95 05 .674583 8810 8177 3145 3113 8083 385417 45 53 6 30 .661908 318793 95 05 .681913 318787 30 7 45 .687739 318861 95 05 387744 318856 15 8 17 .694173 .305887 95 05 .694178 305882 43 a2 9 15 .700513 399487 95 05 .700519 399481 45 51 10 30 .708763 8054 8085 1997 1970 1943 393838 94 06 .700768 8054 8035 1997 1970 1943 393838 30 50 11 45 .713933 387078 94 08 .718988 387078 15 49 IS 18 .718097 .881003 94 06 .719003 380997 48 4« 13 15 .734987 375013 94 06 .784993 375007 45 47 14 30 .730896 369104 94 06 .730903 369098 30 46 15 16 19 45 .736735 .743477 1917 1898 1868 1844 1821 363375 357523 94 93 06 07 .736738 .743484 1917 1898 1868 1844 1831 363866 357516 41 15 ■ts 44 17 15 .748155 351645 93 07 .748161 351839 45 43 18 30 .753758 346843 93 07 .753765 346835 30 4? 19 45 .759391 340709 93 07 .759398 340703 15 41 90 30 .764754 1798 1776 1755 1734 1713 .835346 93 07 .764761 1798 1776 1755 1734 1713 335839 40 40 21 15 .770149 .839851 93 07 .770156 389844 45 39 39 30 .775477 334583 93 08 .775485 384515 30 3* S3 45 .780743 319858 93 08 .780750 319850 15 37 94 31 .785943 314057 92 08 .785951 314049 39 45 36 25 15 .791083 1693 1674 1654 1636 1618 308918 92 08 .791090 1693 1674 1654 1636 1618 308910 35 36 30 .796162 .803838 93 08 .796170 303630 30 34 27 45 .801183 .198817 92 08 301191 .198809 15 33 38 39 .808146 .193854 91 09 .806155 .193845 38 39 39 15 .811053 .168947 91 09 311068 .188638 45 30 31 30 30 .815906 1599 1583 1565 1548 1533 .184094 91 09 315915 1599 1588 1565 1548 1533 .164085 30 31 45 .820704 .179396 91 09 330714 .179886 15 39 39 33 .825451 .174549 90 10 335460 .174540 37 2* 33 15 .830146 .169854 90 10 330156 .169844 45 87 34 30 .834791 .165309 90 10 .834801 .1C5199 30 15 86 35 45 .839386 1516 1500 1485 1470 1455 .160614 89 11 339397 1516 1500 1485 1470 1455 .160603 35 36 34 .843934 .156066 88 11 343944 .156056 36 84 37 15 348434 .151566 89 11 348445 .151555 45 23 38 30 .858889 .147111 89 11 358900 .147100 30 83 39 45 .857398 .148703 89 11 .857309 .148691 15 21 40 35 .861663 1441 1436 1413 1399 1385 .138338 89 11 361674 1441 I486 1418 1399 1385 .138386 35 90 41 15 365964 .134016 89 11 365995 .134005 45 19 42 30 £70368 .189738 88 12 370874 .135786 30 18 43 45 .874490 185501 88 18 .874511 .185489 15 17 44 36 .878695 * .121305 88 IS 37870S .181398 34 16 45 15 382851 1373 1359 1346 1334 1333 .117149 87 13 389864 1378 1359 1346 1334 1338 .117136 45 15 46 30 .886968 .113032 87 13 .886P81 .113019 30 14 47 45 .891046 .108954 87 13 301059 .108941 15 13 48 37 395085 .104915 87 13 395099 .104001 33 ll 1 49 15 399088 .100912 87 13 399103 .100808 45 50 30 .903054 1310 1398 1387 1375 1364 .096946 86 14 .903068 1310 1398 1887 1875 1364 .096938 39 10 51 45 .908984 .093016 86 14 308098 .093008 15 9 53 38 .910879 .089121 86 14 .910894 .088101 38 8 l 53 15 .914740 .085360 86 14 314754 385346 45 7 i 54 30 .918566 .081434 85 15 .918581 .081419 30 6 55 45 .93335? 1853 1848 1338 1383 1811 .077641 85 15 .983374 1853 1348 1838 1838 1811 .077686 15 5 56 39 .oseiiB 373881 85 15 .996134 .073866 31 4 57 15 .930847 .070153 85 15 .989863 .070137 45 3 58 30 .933543 .066457 84 16 333559 .006441 30 8 59 45 .937308 .063798 84 16 .937884 .008776 15 1 1 60 30 7.940848 9.059158 0.090084 000016 7.940858 9.050148 39 08 m I - ' // T\i^ L.Bac L.Bin. L. Gowc L.Oot. Diff. for 5" L. TftDf. ' if • Hoan. Dog. L- 00 * IfwJ' D6f. Horn. _ 6* — 1 H>o 1'— 4» IC-.4" 1 100 &• Digitized by VjOOQIC TABLE II. — LOtL «N£0, TANG't, 11* Houn o i 3 4 5 6 7 I 10 M i: U U .15 1 • 17 U 1J a i 11 19 21 m 25 - "' *3 •j- S.i 30 31 32 :y M 38 35 37 '«- :n .in u ii !' II 45 -in ■IT 40 r.«i .54 53 .-»■! .': > Dix IS JO 45 15 3(1 45 J+. Bin. m M 45 L5 ,.W 15 I:". HI IS 15 311 15 15 » 15 I." 15 30 15 L5 45 15 TO 15 45 15 10 45 I.". 1 5 DiflE Jj>r 5' 7 'f-r: •.» i : n £48030 .osisos .Jttafifii lhi303I £05454 .072250 .0751 ;u3 .■«7-.-:ir .0*2333 08551 i .088704 JB1S03 .0H5J It! ,fc«t70 S. 00151? <0044J74 .0077^7 IH 0-Th ,0L3U7 ,018W4 mm .O23020 .03 501 I .023075 .034*44 .037741' N iu.il 043501 .04' '-34 » ,042178 ASioea .0547>" -057i*i JMD3H JDG3044 ,0957711 .071171 ,07364 i ,070 HO ««Hl7fi4 ,0*4372 .fl*«W5 ,083542 .ITOlOl <|||'51 ,0171 pe .OWTOl .ll'--"4 107li*7 ,103097 .113074 J 14507 Hou De* L,Co», G*.* 00 130) ll i IHg 2 IK. 1)54 U44 1135 1127 111* I in: 1101 10-3 10- 1 1076 105@ ]lr ll 105; I 1045 ln3.- 1030 j on mi*. 1000 K.J 0?*J H75 Oft? !»■■:' 05 040 DM ■••:; PHI 025 1119 007 003 era wO 675 BfiO -M fa 654 84* &4f B33 KH 62,' 625 Hi Bl I- COMC- r>iff fori' ftOS.)l£ 1 1.*/. 55 : 04W35 0441*1- .041130 .037^69 .u:«l.>:k T onii30 .u:7 7>i .0*1337 .03 1W Ol77ii7 -OH-lnl' dU£36 ,004.107 .004*02, 00 J £1 1. 09841 a AOtSl i .B&3133 JWO053 .983000 -U7!H*7J -07IVJ74 .0733UH .07 1 035 .1HHIHI .'ii.;j.\, JM»3j1 .95. 3 ffi ,05041 >9 ,953iiS4 ,950822 £4*0 11 Mastu ^43444 .KH04H .034324 ,03151^ .^33500 + 92O=Vi0 .1)13035 .t?1045^ .007^' .00534 .onaaii .hoik i' .srrrsc M9071 3N833 B87 W JSMfM3 1 ->'AI7-| L. 5.-L'. L. Ojt I,*. ?CC iMmaa-i O.UUOUJ &4 H 63 17 R3 17 esf lei ei 1© e2 l# BJ I'J ^i M &i 19 m 19 1 ea 20 Hi ^ so 3tl T3 2J 73 21 Til UJ 7* ^ 7~ + S3 7M Sfc 7* &i T7 23 77 23 77 23 TLi 34 71) 24 70 24 75 35 7J 35 75 as 74 H 74 Sti 74 2Ji 73 27 Ti 27 73 3^ 73 3p 3H 71 3S> 71 ia 71 m 70 3d Tii 31) 7U 30 I.'.' 31 B9 31 C8 >J 4» 3^ 4> 33 €7 33 €7 33 m 34 m 34 m 34 65 33 f>5 35 64 3Ti 64 3(i U 3d f3 37 9OO00.:i 000017 L- SlQ. [... Cn^.c. L, Tjid^. Diff far 5" L.Col T.L>40H5e / 44-1,3 ,M*U37| .1*S1,M ,y55lOO JWMO .075(333 .S7A"51 ,U<**253 .Ucrf7r5 JM»9014 &4Sdia 'Li- 4H1 N.1H|]5.U .0040W1 JOO7BO0 ,010 01 .OlTOlt) .020045 O3TO50 .03 JOlKI .031 "45 .0346ti0 .037775 .0401*1 »l .043537 .IWlitTfi .OILIifUA .053010 ,&54W3 .0575*^ li)jO:M3 ,or*attl U ..-;-. IJ .071^1 .073P74 .D7tL531 07H1 4191103 ■0^4404 .QASLID7 .030573 .*3*i37 .017217 .04073.1 .102330 .1047^ .107303 J0HH1.1 ,113110 .114511 8.116063 Dcg< | Hotiri. L. Cot, 12'>J )J I im J 173 J1U3 1151 1144 IK-. 1137 11 Id 11 10 1101 10»;i 10^5 1070 lUCi^ 1 1 '.I 1053 1045 1038 2031 J"J,i 1010 won 0P5 i,.-, 1H*1 075 SOO 1)03 05i i £150 043 037 031 •<-■< P10 ■■'!> WW ■ Ll J MM I h-U H75 i-7*l 601 w:* £54 NO (M4 es'i 630 eas 6'iTI £10 en 60S tur5' ^.115^142 30 | .U555J7I 45 .051 ( .034518 .031111 .027731 ■J.- u:n i:j .017747 27 IUI4 'J .011345 .0070^ l ii 1 15 -:p l.ltOH-lfl .^'5304 .0*1*. 10 Mnu -071JOSB .071000 .■M.HI-,-, 304WJ3I .'*#?>■::* f P5J340 .■i.v.i:-! J596S4 .0507^5 M?m .045111 "i:pi. ( . ( .i3ii','i: .034104 ,113141* .1 ■:-; ig .OsEoisrt ,112340^ .'i.'ii-J- .Olf-305 J1SSW J013O53 ,010425 .1107^3 MM .15 JBB771 1 ■MKS273 .~'.io:i:t7 1883037 L. Tuoff. 13 14 :: j j 20 li 17 u Deg. 07 .7 Huuri, 1^ — 4> lo _ #> D 803 Digitized by VjOOQIC TABLE n. — LOG. SINES, TANG'S, <&C. 00 1' — 15' 1- — 15' l» — 15© 1T90 11» hi L. sin. ivun for 5' ' L. Cuiec, L. Cob. L.S*c. L. T*og. Dilf far 5" L, Cm, lh | \:> h jn>jr 602 tub 793 789 785 l.*83074 WJtfttf 0090937 0.116963 m 7B8 703 1.^3037 10 S41 m 10 .11 039 £80006 02 38 ,119370 .Hrtn;:iu 45 30 .121725 318875 03 38 ,131703 ^78237 :hj 58 a .124104 £75890 03 38 .124143 £73887 15 57 id .126471 jn-3%214 01 30 .120510 -673490 14 56 u .u— r. 780 770 770 768 764 .871 J 75 61 30 ,128864 TBI 776 772 7l.r- 764 .871136 4,'i 55 30 jaiiso £68834 60 m ,131200 JC871H ■ --4 10 J334M .86o.yi6 60 40 .133534 M4XW 10 !7 J35810 £04190 5J+ 41 .135851 .804149 13 . 15 -138114 .861886 50 41 .138155 £01045 15 30 .140400 7fi0 7*6 752 748 741 .850594 Si 41 .140447 760 H8 752 7 4." 744 £59553 30 u . 1420*5 £57325 58 42 .142727 .857273 10 16 444003 £55047 57 43 .144100 .H.-iOJKil li i:, .147209 £52791 57 43 .147868 £52748! 40 3ii .140453 ,8505-17 56 44 > 149497 J85O503 31 45 .15HHi 741 737 733 726 ■B4B314 56 44 .151730 741 737 733 730 720 J848270 10 ' (g .lo:im- £* g a 56 44 ,153958 M ME u 41 10 .1511118 .-.»-- £5 4A .150103 t 84383H 40 43 3H J 58316 .r.iir.s* 55 45 -158301 -841030 :«i M ■10 .160504 £30400 54 46 .160551) -83£M5tl II 41 K) JfiStW 722 7, 3 715 711 TOB .8373 IU 54 46 102727 722 719 715 711 708 £37273 m M 1.7 11 rJ.-|T .835153 54 40 .164893 ,835197 40 j& : ,i 4,1 .160140 £30834 52 48 J89J04 -830800 15 37 U .171380 £28720 52 48 17132' MM » 3* 1.1 .173404 705 701 098 OEM 601 £96596 52 48 ,173452 7H0 701 m 604 001 830548 40 Ml :bj ,175517 >X , 44.-3 51 40 .I7550li -834434 :pu >4 45 ,177020; .ft»238U 51 49 ,177006 jernrn 10 33 A .17**713 H2lf>7 50 50 ,170703 man - ■ 10 .li*179fl .81W204 so 50 ,]Sl84t, >18154 10 31 30 .1N3808 688 m*4 £16136 49 51 .l^l'i ASA 684 H C75 >l'-^l » 43 .185931 £14000 48 so JH50H3 ^14017 10 - -.1 .187984 68B £1*016 48 53 ,168096 £11064 7 10 490038 67N £00078 48 52 .I 1 , il MM 8«"919 10 27 30 ,192003 675 .80703* 47 53 ,1(>2115 .£07885 » 26 45 .104067 672 009 KS 603 .P0S913 4^ 53 .194140 072 WW oia 060 .805800 10 25 a JEHH02 ,8(t3H^ 46 54 >19615<» N0JM4 - 10 .1''H«t ,80 1**2 46 54 ,19PL02 8MI838 40 :m .200104 .TlRWJJii 45 55 .200l5E» .7M643 :a« •10 «02Dl>2 fdi .797908 45 55 jjkmi .7U7853 10 B :.:■ .2O4A70 65? 653 05t 018 045 ,TO3B9B 44 56 .201121, 057 054 051 64* 045 ,TOS874 5 20 10 .301X140 .793960 44 56 ;' ■ 7L"31HM 40 M"i SOhflOO .7920011 43 57 20H157 .791043 ■ 18 1.'. Mm a .700048 43 57 «J09fli> 7-^"'l 10 17 M ,sn*i5 .788109 42 5e .21195:1 7-^47 I M 15 ,313890 MS 630 034 631 .786171 VI 58 .2138H7 643 630 OT fi34 031 786113 40 15 30 .215755 41 59 215814 Mom 3D 14 JO -217672 ^TftEtS* 41 an ,217731 ■7W2T0 15 13 .7 ,910081 P 7804Ua 40 00 919841 Tf*J359 3 10 .221483 77-01- 40 60 .221542 .778458 40 30 ,333374 628 m 0*23 690 » 1 T .770020 30 61 .223435 0-JH G25 623 e'lO 617 .776503 HI 19 45 ,225258 ,774713 30 61 £23319 774081 15 9 & .237133 ■TTWi? 3* 03 .'237 I'd 773W15 3 8 ].-. «3i*)Ol .ttowbo 37 63 .3290*4 *77O0»l to 30 ,230801 ,709139 37 03 .230924 ,T0U07fi 30 15 ,239713 015 612 OOP 007 WM ,■"0728? 37 03 ♦232770 615 BJ9 T4W 607 Uk5 ,767934 10 so .334557 765443 36 64 ,234021 765371 1 10 .33fi3Pa ,7031,07 35 65 £3645* .76354S 45 .0 .2>221 .781779 35 &5 JB38B86 7'.I7H :«o 10 £40049 .75**1*5* 34 00 ,2-101 Or ■TJBBM 10 1(1 8-24(855 1.758145 9,009933 9OO0O>i7 8 AOStt 1.758078 1 00 .■ n L-Co*. DMt for 5" I* Sec L. Sin. L. Com* L. Cot urn for5 rr I- Tii np * ■ i o^; Be* Boucs- -i HJ r-4* j.0.^4- 81 t ~~W Digitized by VjOOQIC TABLE 11. — LOO. SINES, TAMO's, &C. 27 0* I© V — 15" 1« — 15' 1» — 150 1T8© ll» n.tr Did. i ♦ Miiri. J**_ L. Bui, r,»f 15" ].. OMbOi L- Cot, U&3* L. 1 hi- Cor 15" L.Cot, _£«^ Hours ~ 1 ■ | or 1' 1 ot 1* ' • ■ 4 4 " D k MKVi l*>2 1787 im 1758 1744 l t 75M45 0.990fi:« O 0000*17 93UJPtt3 ie02 ir~: 1772 1744 1.75807i? as 53 ■ l> 2 10 ' £4545*) .7^^r 33 b7 HSf« -73447J i V i I 249033 .Tsaitfi »i «« ■34'JIOI .7WSW ■ ii. i. M .25257* 710431 3U 7ft 3£*H* .747352 :io 54 -i _> 2254i0J4 .743UUC) 23 71 ^i>lki5 743835 SQ 52 in :u» ,259582 1730 I7tii 1703 Ji-.-i 1677 .740418 » 73 .ayjtw 173(i ■74034i. So 50 i: } ,203042 ,7:W!^ '27 73 2*k3| 15 1717 170H .73KBS .".7 48 n ,n 2ikH75 .733311 3ft 74 smfrta -T.13451 M 46 hi ■i .- . - ■ I TJOlLit 25 75 MOM |n HI 7WM4 » 44 is LO 17909 ,7*i7W SI 70 ,373:W7 1077 .7-iiM/t •HI 42 XI .'. ,270014 ilea 1651 163B id 14 TS93&Q 33 77 jff«iin 1004 li.Sl ll*3n .723309 n -iu ;•: HI "79:141 .T^lKJSy fil 79 Ji^KfJO JlLJOtU ad 3- ) d ,3*3243 ,71li757 90 *u .283323 7104>77 'a Jti .III .713479 1% 81 .^■1 .III J 1 ' '2 j ,7133944 30 34 >■ ! .28U773 >71ft£7 17 83 JBSHA IS 13 ,710144 f ;t 32 W ;;.i ™.30tH ins ism 15711 1567 1550 .T'lr.'ll.- Jfl B4 5SI3tWi 1003 l.V.il .7909 14 80 :iii :u - 2290207 .7i.i:Ct;* 15 J^5 ^H]JI3 .TlKtTlJfe 1 ,2 28 M » .299; J8f .:ijihU2 14 * W] 15* 15iU? 1557 + 7VKLMU :«i 2fi .LI, Q .30*5* (HI7454 i 87 ,30*333 .fal"4JJ7 ■ t 24 l- :m .3050H AMUl ! 11 ft 30i77< -694330 30 22 .N U) .308794 1545 1534 1523 15J3 1502 ,091'2«Jrt 1ft M .aio^w^ J,-|4'- 1535 1524 lil \ .691110 .-,n 26 2 :k> 3XW3& 4 1 1"> 09 91 211070 0WTO24 :w 18 11 u 314954 l.h^Mii 07 93 31504^ .684'^! IM 10 ki hi jiiHim AQlflOS 06 94 Jlt*K>5 .6819113 |0 14 i- u JKJIWT ,071*173 05 W Atnia 154XJ Arm* 4C \: » ■til 3340133 1492 148 J 1472 14(12 1452 jG75^W no 97 .T3412?i 14EKI 14KI .G75?71 P 10 ..j n .3270 n i-72''^ 02 96 .:C2711J .67288« 17 & ,i 30 .3291*1 4 u7«mi 01 OH ,3:ftx»Hn 1473 1453 3M59l>20 3J.i W u .33*9*4 ,Sli7|]7fl UtfG .s *i .000101 .3334*25 660975 V, 4 « :m .33584t< ,004152 OH m :i;c ,'.in .664050 30 2 fi ii ffl ,339753 1443 1433 14EM I4J4 im t fi0l'247 S7 03 ,338P50 1443 w:m 1425 1415 140U .661144 45 95 B 9Q ,941038 .(J5H3l^ 05 05 ,341743 .658257 Si 58 i in ,344504 -C554WJ 94 Oft 34 |fi 10 J 05,V*'0 M 56 g 90 .347352) .ti5l*rj|H 93 07 ,34745** JBtati 1 se Si - i: .3501*1 M6I0 Bl 09 ,350290 .t.ir.i7n IS 52 to ;u> .tdssi 1396 1387 J ^78 1370 13131 .6471XIP SO 10 .353101 13147 13>^ 137!* 1371 \3&J .640899 » 50 « -■ [fi «3557H3 .044^17 m 13 355905 C44ia^ 42 48 II :io ,358558 JMU49 m Lt 35367 J ,0413* :ki 46 1,, 1-. ,361315 .63t!*lr5 85 15 .30 J 430 f3M-n 11 44 1.- TO ,364055 jstfs^ 84 10 .3ft417I Mam :w 42 rc » ,350777 1333 1344 133h 13« 13|y .K^2S3 83 IF ,306*1.1 1333 r:i i:. J337 1371 1320 .63310,1 HP 4ft .'.■ u> 330193 JOft5l« ei 19 .36D00I jsan^fj ::i.i 38 ■i ji .372171 jseia® 70 31 •379893 .tf277"> •*t 30 ■y> :m .374^3 ,©5157 79 23 -374&W .035035 :» 34 j- H J77499 ,ii£lTOl 77 S3 .3771/22 ,62237^ m 32 10 :su ,3POl3* 1312 13(14 I2;ii. 1J- 12*1 Biowa 75 35 .3^02it3 1313 1306 121>7 J 280 12.+2 .619737 30 30 l; zj -SHrfTfJa Gl?2^ 73 87 .383K^ .oinu ,17 28 M :u> ■jasJTii < ,(1141130 70 SH .38549* 014503 iD 20 w. j i ,38706* .61 + J(XK 70 30 ,3§frtR!3 ,611908 te 24 i- Hi ,33*0530 ,nmi-«ji m 31 390070 .009330 30 22 1" U ..ttfjoi 1273 I25fl 1251 1244 jasaw 07 33 .303234 1271 1200 125tl 1245 .POOTOti as 20 tt ao ♦3954V48 4MSH 00 34 ^HJ57P3 .604218 :u> 18 H M .3981 7U joftien S4 W jwni .6016*5 M 10 !!■ .III .400006 j H :iy30i 62 3? ,400834 smm Ml 14 |£ 2: 403 1 " MOM 61, 3a ,4DXW .596602 aa 19 10 a ,105687 1237 1330 1223 l^lCt 1209 ^04313 50 41 .4II.V3- 123^ 1331 1224 1217 1210 .504172 ai 10 ■, J -:■- ,40-162 5>ih:w' 53 tt .4083fH .591090 s 8 u H] .410*21 .5^fi37U 5ft 44 I107W ,589035 -iu o w H .4J30M^ JflOHSB 55 45 .413313 V.. 7^ 7 .1] 4 "•- ri ,4 15500 ■5M45O0 .13 47 415647 .584353 a V 5 IJ to ft*41TflfS l.^JOH] 0.090Nol 0OOO149 8.41*04^ 1^1938 M) 541 u i • ■ It L.COR. DtlT for 15" Ufa L- Sin. L. Ctwc. UCot. Din: Oir 15" LTaD(t 1 ■' - 1 ttouri Peg. o*r Haiti*. 1 orl* 91 Y G* V IV V — ¥l 0_f* % IB« »* Digitized by VjOOQIC TABLE n suret, tang's, &e. .15" !•— 15' 1* — 150 1TSO 11» Dog. L.Bin. Diff. for 15" orl* L.Coeec. L. Co*. L.8ec. L. Tang. Diffi for 15" orl« L.CM. Deg. 30 30 30 30 30 30 30 30 3D 30 30 30 30 30 30 30 30 30 30 30 i 30 30 ► 30 \ 30 I 30 5 30 5 30 7 30 8 30 8.417910 .4520335 .42*717 .4250 Mi .427402 .420616 .432156 .4344*4 .430800 .439103 .441394 .443074 .445941 .448190 .450440 .452672 .454803 .457103 .459301 .461489 .463665 .465830 467985 .470129 .472263 •474386 .476498 .478601 .480(593 .482775 .484848 .486910 .488003 .491001; .493040 .495064 .497079 .499084 .501080 .503067 .505045 .507014 .506974 51025 .512807 .514801 516796 .518643 .520551 .522451 .524343 .52622**. .528102 5291:69 .531828 53367T 537?5< 53!'18f .54U>07 8.542819 Deg. 9l5~ 1203 11% 1JW* 1183 1176 1170 1164 1158 1151 1145 1140 1133 1127 1122 1110 1110 1105 1099 1094 1088 1082 1077 1072 1067 1062 1056 1051 1046 1041 1030 1031 1020 1021 1017 1012 1007 1003 998 993 989 984 980 075 971 967 902 958 954 950 94(i 041 938 933 92!> 925 922 918 913 910 90C 1.582081 .570675 .577283 .574J04 .5T253* 570184 .507844 •50551t> .503200 5606y* .558600 .556320 .554059 .551804 .549500 .547328 .545107 .542807 .540699 .538511 .536335 .534170 .532015 .5 29871 .527737 .525614 Diff. I. Co* |£, r , orl« 9.999851 50 48 46 44 43 41 39 .52131* .51930' .517225 .515152 .513090 .511037 .508994 .505960 .504936 .502921 5009U! .498020 .496933 .494955 499U8t 49J02< 489075 .487133 .485199 .483274 .481357 .47044H .477549 .475657 .473774 .471808 .470031 .468172 .466321 .464477 .462641 .400814 .458993 1.45718J Ii* BCC 34 33 31 99 27 25 as 22 20 18 16 14 13 11 09 07 05 03 01 .9997*) 97 95 93 92 M 88 86 84 82 80 78 76 74 72 57 55 53 51 48 46 44 42 40 38 9.999735 0.099149 50 52 54 56 57 59 61 62 64 06 67 69 71 73 75 77 78 80 82 84 86 87 89 91 93 95 97 99 .000901 03 05 07 08 10 8.418068 .420475 422e09 L.Bin. 33 35 37 39 41 43 45 47 49 54 56 68 60 62 0*000965 L. Coaec. .427618 .499973 .432315 .434645 .430902 .430267 .441560 .443841 .446110 .44830' .450613 .459847 .455070 .457281 .459481 .461671 .463849 .466010 .468172 .470318 .472454 .474579 .476693 .478798 .480892 .482976 .485051 .487115 .480170 .491214 .493250 .495276 .497203 .499300 •501298 .305267 .507238 .509200 .511153 .513096 .515034 .516961 .518880 .52O7S0 .524586 .526471 .528349 .530218 .532080 .533033 .535779 .537616 .539447 .541209 8.543084 L.Cot. 1904 1197 1190 1184 1177 1171 1105 1150 1152 1146 1141 1134 1198 1123 1117 1111 1100 1100 1005 1089 1083 1078 1073 1068 1063 1057 1052 1047 1042 1037 1032 1027 1022 1018 •1013 1008 1004 999 994 990 985 981 976 972 968 963 959 955 951 947 942 930 934 930 996 923 919 914 91 907 1.581922 57T525 .577131 .574750 •5723*2 53 Diff. for 15" orl 30 30 .570087 .567*85 .565355 .563038 580733 558440 .55815ii 553810 551033 549387 547153 .544930|22 542711 54051! 30 30 30 30 536151 533984 531828 599682 527544, 523307 521902 51910b 517024 514949 512885 510830 508786 506750 504794 502707 .498702 .496713 .494733 4927€2 490800 488847 .484966 483039 481120 479210 477308 475414 473599 471651 409782 467990 466067 464221 402384 4T0554 458731 1.456916 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 ss 5* 56 54 50 48 46 44 42 40 38 36 34 32 26 24 22 18 16 14 12 10 6 6 4 2 58 56 54 52 L. Tang. 30 30 30 30 30 59 48 46 44 42 40 38 36 34 39 30 28 22 18 16 14 12 10 8 6 4 2 • Deg. Boa 1'— 4- lo— 4- M6 H Digitized by VjOOQIC TABLE II.— LOO. SINKS* TAMO's, &C. Ok 90 !• — IS" 1- - IS' 1* - 150 1TTO Dirf [>itr 9t i**. L. Sim far 15" Lr Cowe. L Co». 1.6ee. L. Ting. for or 1* L Cot.. ite* * ♦ « •' nr !• ' 1 ■ i • §44)81^ StM fcij 1.4£?l#1 S\M»fJS PfSiM ShH30N ooa 1. 45*1.1 U, a ■-' 30 ,514irft .werti XI if .511 -.'I BOO .455 10 J B i 1 .3|r'.4-£± 13*57? 31 t;i Mmati BOS «fli + 45330;i •- « a .TO 4*412 .4517* MLi 71 MMPA .451517 ;lu * : .54Wi r «MMD 27 73 ,:V.m:.- 441T733 > in ;«» 551770 884 r" 873 870 JS¥WCI S4 7fi 55^04n R85 .447054 ;m II j ,553531' t 44iurrl n 7p^ 55> 17 H-"l #78 ,440183 ■-7 u M ,,v.-.:m^ 4447IHJ 91 HI J 5555 B74 871 II, 1 ., ;\ '.., H S9 55*<00 ,*4i*M> 15 €5 J3S0BI .440 05 LID s) s .S5054I poo BBS BBQ .<3D4l"P!> 13 F7 4 500?^ BC7 8iil 857 /mm IS H BO JOfcTO .4;lTTi7 10 w jmssea j&msi no M li -ftVllWO i:»jh;u m n JSfiwn .4:1570 > "»l M tu 5**57 W 4S4^U m w, .r.Hi.nf.i ,4;i3ill-7 n M 7 .507131 i:nv^ (M no J8??*7 (-54 43£!73 S3 so :ki .5fiTU37 6*9 644 843 83 + 83li i'h i-..:* 01 ffi JS043Q EDO A305M 30 tj g jn<0lr 4Ji|i>J .DD93!»!» .000:111 1 .571137 till .4*rt*i3 v: M ;ki -.:.■,> ,43747-J HHJ 1H JFSfOI 844 Mtas ;in ► V I 574214 .4057^ W on v574.V30 840 838 ,43S4HU M If .1.. J7*» . i j 1 1 1 ■ : ^i OH jmNDi ^ti37!K> :w Sj 10 J7T9U P33 8:30 K7 4S94S1 PS 11 ^77?77 834 ,422123 7u i: JO stem r 44u7«»; 87 13 .57'i-V-l5 8.11 .jlmii.v. w 11 11 JCW09 ^Itijn"' 84 Ifi .581^08 &$* li-; : r' bj y» ..w:- SASKM PIT 814 HII §05 .11 il". 77 33 jenis? 1 81fl ,413843 :n; >• a ..V7100 AWM 75 25 J87TM ,4iga*; r 10 ,58*0* .410 H* 7-i 81 5- ,, l: i 8 til ,410574 :io <; n .5 mi .4ttf37V 70 30 ^1051 mi .?"•"! «'■ * is 5ui!338 .4l)74iri'J fl* K v5f«07D god .407.1.MI so * li ,yicm# TOO -m 700 .4IH10.V2 r,7 35 J04283 803 405717 1'.. ■i .la msssi .4411147 to 37 fiftfltSO 801 .4041 10 n t 10 1 .5J7l5sl .j.i-i- m 40 ,5974^ 7V7 ,HK:.<\- H '. 30 .530745 Ml IN 58 4i JMMift ,400!>J3 so i 17 j .aoo:rjg jwew 53 45 jSJBSffrl TSQ ,399233 n H «i .ftOT>L3 788 785 7*3 m> 770 .T«-'."< M 4* ♦orcsfii 7?*'' .307739 ID n 1- fAlO' > Jpftfll 1 SO . # 51} .ffQUM 781' 783 .331 JWH7U* 37 03 .GI1M4 773 J8835ii :w> ;i ;> .012*24 * ' 1 SfJITB 35 65 .61318?! 70 386811 s j. m .ftU300 7iv .S3S440 3i 68 I + 6H7i8 707 JH5S73 39 :- ■11 ,eu£>i T ■"' 703 J»4ItW 2-' 71 ^UBfil 764 ,38373- £ :w 3d .017417 7f>0 smsM B7 73 .filTTPO 7*^1 ,382110 30 B S| SlflBSf .>iu ,:i 94 W .^1 13 1 1 7Sfi jeown 17 M 3D .fi^MJi 757 755 .3T.I54P £3 7H T 0#KIO 73' > JITOIT** 30 v, M .«31 c Xj2 .37WJJ 1 19 81 .*£K^43 7.1*J JW7i=S7 f. H m jssaiifl 75-J 740 37US34 16 84 .023850 75! .370150 :.ii 40 sa BJ4N4 747 37VIVi 13 ?7 JS9999 ?# -37464^ r. « M *VJ".45J 37ti*l 11 8" .'..'.-J- 7 li .37315^ ;pi ♦4 » >.;:•*- 744 JT9Mi 0* 93 AfrMU 743 .37 l*am n IS H ,8**4:« 74 L J r :>:i»'» > «s K .&***+!? 74* ,37017:1 :in 1- n -fl3UO]l 7 f . 737 .3O0OHO 03 B7 ,631308 738 3SMB9 1:1 n ¥> . I IBM ! 754 1 rw ^ 7* 1 M 1 smu ftfl .OO04W &rm 7TV JRtlJ :io \t m SJwl "t-'.l ,3^141 09959S 61 .«US5«i 7% Jft£744 B 54 fl A953IM jMsa li: w ,03,'iM3 73 ja 1 m :n> ■ BB ASSTTI w Or jsnsi :;- J038K il » 1 30 ,(D*J3t ,1 J6i77f V . 8! 11 T 03Wlt 7"li Jftl3$l ss mm |:Ttl 8 fl3»fci * 1.MIX3I li 0.9995''- mmni: 9 ftnnf*: 1 38BBH n _^ . | IKAT fhlT IS" |L Soc L. Sin. L. C«dc. L- CoL Cm tf, Tan^ — - Roar*. 1 Oh. [. Co*, a* I ^^ 1 orl* 1 orl' -STT r . 4 1 1° - 4« Digitized by VjOOQIC so TABLE KU— -LOO. SINES, TAMO'S, 1 i a :;0 .643D9H 359003 7S S3 .644420 J55M0 m i | ■ j ■ ,645l2> 354572 75 25 .615ei3 .354147 H ia 30 .646853 710 706 TOO 703 701 .353147 7S 36 .647981 711 TOO 707 704 703 <352719 »" 12 33 ,043*74 ,351736 71 30 6l-7.lt ^513:^ Rl s 1 1 :«i 4400VQ ,320310 61 33 ,656123 J8WV7 3D ii. S| .651 1U3 .:i [-■'•- 64 36 £51336 J63881 :•■■ 4 i- m .05250? 347499 61 39 ,6533M7 -347953 ■ 2 30 35 .6339 n 609 607 094 692 an .346089 K 41 .("►54352 700 6'.i* fiwi 603 601 JIHH 33 '-'- :;n i^m- .34 0. ''2 Si 45 .ilVJT.'iJ -344247 n ? ■21 so .056703 343996 5T 47 .is-,711' WMl :[ 6 20 SO f 05*0,u 34 r 00 St 50 .65H541 341430 :•> 4 .17 ,653475 .340525 4; 53 ■BIBUe JMU972 23 ' :?m ,660955 087 6H5 6*1 679 334145 4H 50 .661311 689 r,^7 685 6K1 no .33«>-l ■ » > .43023:10 337770 41 5L1 '■'..' - .337311 23 ■< 1 44 10 483G0J .3363110 a- 62 .i,nM ;| ,335j37 30 5 30 :ti .atttwj 333631 3i 64 ..>..,i:ii .334507 u 1 :t- <«i 496331 .333IWJ a TO .66(37!*;* 333301 30 i In (0 jmvm 67S 673 671 an .33231] 2! I . 71 .668160 67¥ 67ti 674 873 670 ,331940 20 > t -j lu .«".- .-"I i .3301*57 31 74 483617 418481 :*h ' 41 M £70309 ,330607 a: I . 77 .670670 .33SH30 [9 5 l'l IS ■;n 47173' 398303 2 7!i 473318 JOTTH 30 1 13 479061 .3300111 It ) . 83 .673»i3 336437 1- t .-,11 9i 54 98 30 .874418 666 004 001 65c .325.5.*' i: 1 . 95 471303 669 ft*; 004 ".. 6641 ,33501*7 30 1 13 .675751 ,334849 i, ! . f>- .670230 333701 17 i 30 .6770a 333920 w » . 91 ,677571 .322439 38 » H 478405 331395 w r . 94 .670639 .331101 16 I •>-■ 90 479737 .320273 til 1 . 07 488334 ,310776 36 1 11 |- .681044 630 651 053 318850 w .OOOSW 481944 659 654 iu7-j 650 318450 u 40 i Hi 483353 317644 .09040* 04 483BQ0 317140 30 1 n : . 483665 .314335 o; 07 4J84I72 JH9BH H i i: in .tiH4'i7l Ii5fl 315089 01 00 ,..,!-, 31431 30 i .Ot*i273 64r« 313736 & 13 ik*ii7H 313*16 13 1 lu so .687569 647 645 643 (Ml 630 .31*431 $* in 4BKH3 648 840 644 643 640 311015 30 i li 16 1- 18 £63309 311138 ^] 19 4BB3B1 .310619 12 ! ie 30 .690153 .3fl>w 7> 32 .ffHhiT4 309896 A< 401439 308563 7: 35 491963 ,30tO37 11 30 .602720 .3072*0 7S 2H 43334B ,300753 M -■n ■J J Vjli ,ii .m:v.w 637 633 630 .3ir.iHK' fit! 31 .604530 639 637 635 633 631 305471 Hi 30 .oo.vm .301727 Of 34 495B07 .304103 n* >i ,601 $43 303457 63 > i.'iT-i-l 39211 i 30 .6397810 ,303190 5!' 41 083351 :ai]i.| i 3o 33 466073 .:«hH-,'7 50 44 60LK.I7 J8Q9B3 ■ 39 M 36 3ti .VI n 700333 !,-.■ , 624 839 631 .390807 53 47 .700880 63i 630 632 .2001241 30 .7O15B0 ,2^411 56 50 ,703134 3B78SJ : 54 10 7'h>ll asnu9 47 53 7nXl-.il 496800 30 ,704090 44 5fi .704if46 .9*5354 6 IN .705333 ,31*4665 40 66 .7O5d05 "."III Li 30 in M £ 55 ,70ii.177 m 617 615 fill, 013 403493 37 63 .797140 090 610 617 615 |'N nomo 5 3o .707»ifl .303 L*5 34 66 *0rtfe*l 3H1019 .10 ■'"■ .709040 .-.-""il 31 69 .700(1 |H ■-■.k>>2 4 Si M .710890 999720 27 73 .7riKH 2-".'l47 30 ,711507 JB8403 i*4 76 .713083 ,397917 3 n ".i s \u ,710713 610 60- 607 r,n-.; 4079eh 31 70 .713:1]] 613 JB8888 M .7I3B52 .39601* 1R *2 711511 610 600 IMJ7 005 J85488 2 ji 10 .715169 .3*4*31 14 m ,715755 9941140 30 i i .716339 3*9617 11 m .710072 483393 1 1 11 ■=1 " to .7 1 7.1 « & 718000 22*24417 1.281300 0? 9 00941N 02 000*06 .71B1M 8. 71 LOW >9*ltt]5 1 ^HU.J4 30 #0 L, Cm, fr>r 15 J L.Bec L Sin. L, Cruet, 1 L. Cot. Diff. for 15" L. T*nf . 1 " - f ftntii I»«'K- Def. Huur- 1 or!' 1 1 orl* F _ 4' 10 - 4- S7« Digitized by VjOOQIC TABLE II. — LOO. SDfEB, TANG's, i BO 4T •■- 10 30 .724785 m 5 1 i>2 5*7 .27531* 88 13 .725307 593 .-;thhki :n> ■' 12 3 .725972 .274028 84 id .72115*8 533 5H0 273412 ,: I-- 14 16 4 30 .727156 .728337 372844 ,371063 81 78 lti 23 .7-2-77;. .72». :n> u 11 16 30 .789514 .27048ti 74 2ft .730140 388 J*j»h.J0 a 31 20 5 .730688 585 .-I- 1 5*2 5-1 579 269312 71 25" 73i:ii: 5p5 5«4 5x2 ^ftftfl*:; 55 ]<> 22 30 .731859 -ftifiUi 67 ! 33 .72349* .2H730r; :«Ci .'•- £4 e .733027 .&ifl973 64 3d .MHiji.-l 93BS7 51 ■ ■■ 26 30 .734192 .2lV5cOri 61 30 .734831 .3115 Mir :so . i 28 7 .735353 364*47 57 43 ,735!i9ti 5-1 J04OO4 *l ,, 30 30 .736512 577 57i] 575 573 572 mm 54 46 .73715* 571 ) m 570 99B4M9 30 10 ' 32 8 .737667 3UHUJ » m rwm £61089 r.j i-- 34 30 .738820 jSftllHD 47 53 .733473 .260527 30 i 36 9 .739969 .260031 43 57 ,740636 575 .2511(374 .»! it 38 30 .741115 #HBt) 40 6ft .741775 57J ai393l ;if» :: 40 10 .742359 570 567 5*fc 504 'J.17T4I 37 63 .74301 572 ,v:n 537ft7a .VI 30 42 30 .743399 .iiiinii S3 67 ,741006 255(34 33 :- 44 11 .744536 .255464 29 71 .745207 j,^ -j.,i7.:i u li. 40 30 .745670 .254330 3ft 74 .740344 5,7 art v-v.v-v >u» 14 48 12 .746801 433193 22 7* .74747 J .23-23J1 10 13 50 30 .747930 m 5tU 55 ' ... 557 J253070 19 SI 748611 584 2il3*i :k» in 52 13 .749055 C0945 IS 65 .74!J740 503 230209 17 - 54 56 14 30 .750178 .751297 MB33 .34*703 12 04 ft? 92 .TMdiJti t 751'W* 5>U 5"'l a* '134 J2484H1 M :io > 58 30 .752414 ^ITSciii 04 ve ,753110 358 .a408Uft 30 3 13 15 .753528 5tt m sji 54 'J £46472 01 90 .754237 537 -243773 i.7 47 r> ' 2 30 .754639 .345:41-1] .09030? 0007o:i .755343 55(i i i u ..- :m sa 4 16 .755747 .244233 94 m ,736453 554 533 J343547 •N .v. 6 30 .756852 j mi" m 10 ,757363 24243? :w> VI 8 17 .757955 .24*045 87 13 ,19W 551 2u:t:!j 1:1 iJ 10 30 .759054 >|- M7 54* 514 5*:i ,24004ft 83 17 .750771 550 9«V9 :*> 30 12 18 .760151 omn 79 21 .TBOJS 5411 J30]Sfi M 1- 14 16 19 30 .761245 .762337 337003 7a 7 s * 25 2r .7611170 ,7453069 5+7 340 139001 .3.1- ■■■::.■. ii :h> 18 30 .763425 £30575 ! fe 33 ,704157 544 333-4:1 30 * 13 20 20 .764511 541 540 S'XD 57*7 53*i .:-.-,)-■. 65 35 F 76324ii 543 234754 M ,H 22 30 .765594 -:.»*< 24 31 .766675 3:1.1:13.1 57 43 ,767418 541 2325*! IB In 26 30 .767753 ami 54 46 ,718499 53^ 231501 iir fur 15" L.T^f. ■ ■ ■ Houn. De* t*g. Htm 1 ' — 01 r l'-4* 10— 4" or 1' 6» WO "860 5» Digitized by VjOOQIC TABUS n.— LOG. SINES, TANo's, - Ihtf ihir. Dug. L. Bin, ftti JUCohc U Out. L Bee L T«D| fur 15 rJ or 1' I..r..t. Dec. II.. ! — ■ JO 8 7 -,►.;., 5 LU 5N 5 J.J 512 511 1 31 1 r-35 [i BW 1 [ 1 lt.OOU8ll 8.7d64^t 51 B 31.. 515 l.j; l*ji iO 30 inn £134 j.« h5 15 .7*7522 .21247ft %) i\ ♦787730 41*164 B3 1* ,7fH554 .31144^ li 39 T TelH7ti3 il 1337 78 S3 7ftJ5-5 514 £10415 ft.i ! ■ .7**787 J210213 74 3tj .790013 513 J0J3tf > : 30 ,736«J 509 SO-" 100 505 JW3I0I 70 30 ,79lo3fl 513 510 .3o-:*.;i 10 5*1 33 ,711 1*W £08179 Bo 34 ,?fi m .30733H .'7 ! ao f 7U9tfM .31 ii 1 "1 1 63 3* .793^3 309 ^i.ij; a I M .793*5 ■ 900141 58 42 .TUTUl 5Uft 507 :^ 30 .7.11-;: ■305l3f< 54 40 ,7W57I- lp m H ti .705^1 cm 001 50J 500 4',' .204119 30 59 .TM731 500 .3033 JO IS P 30 ,706088 ,903111 40 54 ,797743 501 J00151 Hi 1- i. .7.IT-.M ■SOiJOii 42 5^ ,7i»H7.rJ 503 iin:i- H X >i .798897 ■ J i 38 63 .TWTJy 51 ig >i 3? .7948^7 £0011** 34 60 .890703 501 Jt03TT O i rwj £0099(1 498 4»: 405 404 403 .imiih 89 70 + TO176rt 3f»f 1 m it. 38 .80lS-.il .lHflJO.1 90 74 009765 0V0 JB733J 33 :*u ,000885 407113 i£> 7ft .NUTfia 4-7 4Th> ,100137 to 33 £09870 .100144 . 1* S3 ^IM75^ t tlO040 J] :w .304^15 .195135 14 M J8SS75J 4.»5 494349 so « 10 • P'">.V» 493 4UJ 4110 4*3 48ft ,19414* 10 00 .800742 491 .19325ft 10 ■ sii JD B9i 193163 DO 94 .007731 41*3 100 li«3 '■< Jj 11 aotbio i j ■: 1 a 1 OS 98 hki; 4013ft3 1.1 k ;tn £08799 .I'lllHH 900096 .000992 JSQJ701 4 'J J0O0JO 15 .803777 100223 34 06 .8lOuft3 4'"> .1--.M17 1- r. ft ,810733 4*7 405 484 ltd I^.M7 90 10 .811063 4-^ 1-- .f". n M IH .011737 ,13973 U 14 .-LJ.-H ^ - ;; J0IS ,1 IT 30 ,187303 82 l" -H-.li' 400 ,100101 »> ■ 11 ,813007 ,180333 78 S3 J 145^*9 400 1-511! M K £14034 .183300 73 27 >J.wul 4^4 J044OI M 13 .81331* 1-M 47.1 47ft 477 184409 69 31 .816339 4^3 ,183471 15 49 3d £(65i| .183433 63 35 .ft 171 Hi 4"J >:vn 10 i-i £1753* j - a 1 78 81 39 .818461 4>"1 4-ji 401339 N M .81*4*1 .J8133Q 37 43 ,-1 *4 J 1 .180577 :«i 17 mwati .180394 52 4ft .8303ft4 470 IT'.L' in 30 .pansm 47rj ,179810 48 53 JB21342 478 470053 10 W £91343 475 473 473 47*i5H 44 5ti .832-JH 477 477703 n » .0833 »3 .177707 40 00 JESS2S3 476 473 474 17*1747 19 ,883341 ,110750 30 64 J040O3 .1757 '5 ij 30 .auiat .173814 31 69 ,835135 474845 :»0 9 ,825130 473 470 469 407 407 474570 27 73 .8SH103 473 471 173897 01 lu £04070 roras S3 77 mm» J7015I ■ SI .82701 1 .172 "Hi 19 81 M7^1 471 410000 .tii .827940 173031 15 85 ,6*8834 470 100 .1710 k, f) v: 471110 10 90 -ft3Jft74 .iTOli,, i „ .Us £0W« 4'."1 4JH 464 003 4lii .1701*2 09 94 ■83»ftb2 408 407 4 ' 437 457 .165344 85 15 ,835471 4«3 403 4iil 4IH.P 40453 1 ) 5 W ■Hi ►8353T7 .194043 m «t) ,KI , 1 1: IiiMrfH M l- k (•,,'•: 403703 7ti 94 ,837321 400079 t :n £37315 .1087*5 72 9ft ,P3ft343 101757 H -.7 SW1J0 .101870 67 33 ,830103 I50 10OS3T 1 n .H30CII4 430 455 454 453 433 .16013 i 63 37 .8400^1 45* ]'.^-l< 10 .-.- .83^5 [ 1601144 5 J 42 M#xm 457 45i ; 435 451 .150009 1 30 £00806 .191131 3* 4*i 041413 15=04 ■ so .841774 la^ar 50 50 84*314 utrro 1 1 Ihi 34*330 .157390 45 35 9431 E3 15 MS 30 ^. , to 77 R 84MB3 1 159415 99894 I 0.00105 * 8, 844W i.uqp 01 | DilC DiiF ' -* * •1 L^Cof. fto 15" L Sec. L> Bin. L. Court L. Col, 15" L. T*Hf . Dei. Dc* Bran Of l 1 or 1 » 030 V-tV 10-4* Digitized by VjOOQIC TABLE 11.— LOG. SINES, TANg's, &C. 33 40 !•— 15" 1" — 15' 1*=-150 175° 11* ■ DiflT. Diff. 1 Hoars, | Das. L. Sin, for 15" L. Cosec. L. Cos. L.Sec. L. Tang. for 15" L.Cot. Deg. J Hours- T7 i ''■ orl» orl* 1 "l " • 16 1. a.fii3sas ^ 1.1564H 5 9.998941 0.001 053 8444J44 „„ 1.155356 60 43 60 - M 44448J 44L 44* 44? .15551: 1 . 36 . 64 \ 44555 It .154449 30 58 ■i 1 JB4S38 1 .154612 32 . 68 .846455 T£ .15:1545 59 56 a SB J483& .153714 27 . 73 .84735J *t' •15264J 30 54 H ■J ,&*ii«: .152817 21 \ . n r -8*8260 25 .151740 58 53 in 30 44307* 446 445 444 444 443 .151923 18 81 •84915S & 447 44b 445 .150841 30 50 1: 3 44607: .15102J 14 8fc .850057 .149943 57 48 k 30 1 ■ ■ . .150138 10 9(J .850J5; .149046 30 40 u, ■i .->N7 11 .149249 05 95 .851841 .148154 56 44 H 3d :ril'.,;. .148361 01 99 .852736 .147262 30 42 eg ft 453534 442 440 440 439 438 .147476 .998896 .001104 .853626 444 443 442 441 441 .146372 55 40 « 30 .853*09 .1465J1 92 03 .854517 .145483 30. 38 9| jstno .145710 87 13 .855403 .144597 54 36 20 1 as Mx&m .144823 83 17 .856288 .143712 30 34 28 7 jBsam .143951 78 22 457171 .142829 53 32 30 :tu JBStffX 437 436 436 434 434 .143074 73 27 .858053 439 439 438 437 436 .141947 30 30 31 b .H.yr-oi .142199 69 31 .858932 .141068 52 28 34 30 .85*174 .141326 64 36 .85)810 .140190 30 26 36 1 .&sa546 140454 60 40 460686 .133314 51 24 38 30 460415 .133585 55 45 .861560 .138440 30 22 M 10 401 383 433 432 431 430 429 .138717 50 50 .862433 435 434 433 433 432 .137567 150 20 42 :«) .H&JAO .137850 46 54 .863304 .136696 30 18 H ii .1*3014 .136986 41 59 .864173 .135827 49 10 *' : . w .803*77 .136123 37 63 .865040 .134960 30 14 4H IJ 464733 .135262 32 68 .865906 .134094 48 12 p 30 4C5597 429 428 427 426 425 .134403 27 73 .866770 431 430 423 428 428 .133230 30 10 ■•I 11 .860455 .133545 23 77 .867632 .132368 47 8 $4 30 am 10 .132690 18 82 .868492 .131508 30 6 .;.; n 468165 .131835 14 86 .869351 .130649 46 4 .> H .sown .130983 09 91 .870208 .129792 30 2 IT a i.j . 409IH& 424 424 423 422 421 .130132 04 96 .871064 427 426 425 424 423 .128936 45 43 •> 30 -H707I7 .129283 .998799 .001201 .871918 .128082 30 58 m jo jsmu .128435 .12758J 95 90 05 10 .872770 .873621 .127230 .126379 44 30 56 54 e r. 473255 .126745 85 15 474470 .125530 43 52 Up 30 4740^7 420 419 419 418 417 .125903 80 20 475317 422 422 421 420 419 .124683 30 50 16 B .£73777 .125062 .124223 76 71 24 29 476162 47700b .123833 .122994 42 30 48 46 IfS 1.' *7M15 .123385 66 34 477849 .122151 11 44 Id 10 .877451 .122519 61 39 478690 .121310 30 42 90 JX\ 47Bf236 416 415 415 414 413 .121714 57 43 .879529 418 418 417 416 415 .120471 40 40 19 10 >7.'ll-: .1208*2 52 48 480366 .119634 30 38 M ■J] .-T-.i 'Hi .120051 47 53 481202 .118798 39 36 ■_':i tc mrm .119221 42 58 .882037 .117963 30 34 9a m ,831007 .118333 37 63 .882870 .117130 38 32 HI ag 483133 412 411 411 410 409 .117567 32 68 .883701 414 414 413 412 411 .116299 30 30 n B JBUff .116742 28 72 .884530 .115470 37 28 u in .rtM03l| .115919 23 77 .885358 .114642 10 26 h :» 484 TO3 .115037 18 82 .886185 .113815 36 24 i. j n 485723 .114277 13 87 .887010 .112990 » 22 in is .WB6542 408 407 407 406 405 .113458 09 91 .887833 411 410 409 409 408 .112167 15 20 u TO .*V73-V .112341 04 96 .888655 .111345 30 18 11 M .898174 .111826 .998698 .001302 .883476 .110524 34 16 iti X. ,M| 4.-.1 .111012 94 06 .890234 .109708 » 14 IS ft .883801 .110199 89 11 .891112 .108888 33 12 V11 tn 490612 404 404 403 402 401 .109388 84 16 .891928 407 400 405 405 404 .108072 30 10 v- « Mi 1 42 1 .108579 79 21 .892742 •10725S 12 8 1 la -flSKJifiSJ .107771 74 26 .893555 .106445 30 6 >', H .893035 .106965 69 31 .894366 .105634 31 4 sa tii .HR3840 .106160 G4 36 .89517G .104824 30 2 17 :so ^.-MCiii 1.105357 9.998659 0.001341 8. 835981 1.104013 30 42 M L. Co*. Diff. for 15" L-Sec. L. Sin. L. Cosec. L. Cot. Di£ for 15" # " at Hours, tog- LTan * Deg. IlOU'B. orl' orl" 1 0* 1 1 1' —4' E 10^4-i 85 5» Digitized by VjOOQIC 34 TABLE II. — LOO. SINES, TANo's, 4&C. 0* 40 Houri. Dpg. " * ' IK D w ; 3D i SI p .10 B M li.« :io U o 11 ao J', mi la .in 10 aj ■'■• :. ii ->- :xi 10 r. a .:u > HI o Kj » ft in ;tn ]j ■ ^ 3 I LM lu ii J.-. *l .0 ;,ii ■J -J :ni -' -» SI 90 ir n :n ■n» 1J ,*:< it :mi HI ,1 H 10 tn ,„v 19 10 ii Si ii. io Pi .j( ■fi •:.i v: > N !!i :. ■ as :>- ;i> 10 u — - _ - — * ' ■ M (Ion rs. i* 1 !•— 15" 1-— 15' 1» — 150 17*o *1» L. Sij 0,ad4HH3 ,&,544ft .807044 JB0S30 ,899432 .9003*5 .so 1017 Mimi _rni-j.-. ■. . .ooawa .904100 .U04U53 .90G517 .9072^7 .OilHlTO iKJ**53 .010104 Jill 177 .9-11949 .913710 ,IH04HP ♦91425G .UJ57HU JHliftftU .omi .',i|!'.»'l .9-3134* .921104 .' :k> .P32rtHJ .943&9 .93411$ QajStij JSSfiOfl >.'7iuu .9*27644 ,02*5*7 49938 ,03U0t* ^rwr-Oi. JI31544 .9322*0 ,033013 £33749 .0344*1 .sasus ,9351)42 .936*17 A373Bfl !>:t-i-r# ■■> -.vi *93*\i74 Diff. f,.r 1ft" 401 400 ' 3* H;i- 3317 3 ni 39C :fc'5 3,14 399 393 392 »H 590 ai«i 3*9 3* 388 ft? 3W 39 333 >i 3H 3*3 3~. >*J 3SJ 3HQ 371 :r- 377 m an 37a 374 374 372 37-2 371 370 3713 new $50 MP sm ft? 3N 305 30i *V| 30-7 3f'J 3*2 tfl J'nf for 15" or I 1 J+. Co««. 404535 JIH755 .lOftlftl JQ915* J0J3O2 lOOM^ ♦ft.if*7?5 ^098083 .mum JBStiHiK 0J604T .UJ4yiii ,J7)O .CIU1L44 .O.il H7 .0JVJ71 .ri-'-.Vn n---j:i .t»H>OSj r 037B?] k teeSt£ .0P5744 h U834ftO .0«20Ht! .061997 .ii-JH " il-iinr ,D7DSa snw* .0781 i-2 jlRTJPO .075^e .07J13'.f .0743! M J073M5 .07V HUP joraisd ,071413 .070H7S .in ,'* .:i-j JftttlM .068Mfl .(h;ttjm 0(W0R5 J)655I9 J0647W Masse .IK ■,'!. !►-,' 'nii: V- (H !| I R 1 .0,11 Li^H I.. B D L. Cob. UUVKGj. ft 44 30 34 3D 24 19 14 0? 04 true si* 94 63 7* 7H fiB ."*- 53 4* 4-2 37 35 S -i W 11 Ofl 01 PC ^5 M* 11 Q9 .-.:, ft- 47 «S :t; 39 :■ ■ji Jft IK 04 94 B3 SO 0.90*1344 L.Sec. 40 51 511 l.l 00 71 7'- 91 9« 001401 Bi 11 39 3 4S -i; 03 0?- 73 79 B# m 'ji» ■ '■ 10 II tt) Bfl 3] :>: 42 41 .VI ftp i.:t ,;- in OM 001AO1 CM II i- HS K 34 4H ftO 0018ft I*, fewer, L* Tftn|< DiC 1ft ' orl* L, Col, Lv; S r.'ft ■- I .8tH)7^1 .R»7S;W .8^400 JMWB .H00004 Mium .^03103 .5O30IT7 ,IJCH77V ,tOftft70 .9ou:ift!i ,907X47 ,907934 AKW7 19 .Imi 503 JB10WS IHJ006 .9118441 ,913*94 ,01310] .914177 .0149ft 1 .9 15724 ,910494 »917W5 ,SJ1HJ34 .919567 h^IOIJO ,P9lJ^58 .92337*1 .9-24 KM v j j -■ =:l BSAMB .lh»403 937156 ]'2H(i7 .930122 .930003 931 W7 ,0:i3l34 .933H70 J*34910 .935553 "i: :i ,93t7«M .9404^5 941224 8ii4lL^> I», Cot. -in:i Jiej 44)3 401 4'M.I 399 3-Jfl 3W7 397 :r«-. 394 :t94 393 m 3 1 591 :ij«4 3* 3-7 :j.-ti »0 3*4 .TK3 :i-:s 3-2 an >} 3t*l 37« 370 37>3 37* 377 MTr. 370 375 374 374 373 373 37* 571 371 m ;tr.o 3«i7 3f^5 m nut ffIT 15" Uf I* l.]UWI«3U .I4MHU&J ,10>4O4 30 .1UK4JV .1011797 99 J0WI97S7 ,4KH4Wi «| iwiftai r 41 ^ * I 1 I 2* ■ MM XT7W14S .OAOUM L- Tmif - I I \ I i \ i l>rt- 05 r - 1* i^«4* Digitized by VjOOQIC TABLE 11.— LOO. 81NES, TANo's, d£C. 35 0» &o !•- .15" 1« — 15' 1» — ISO 1740 ii> biir Dlff. 1 ffotin Dcj L. Sin. tat 13' L, Co*ec L. Cot. L. 3cc L. TaTijj. for L-COI, De S- Hfiurm. • ' 1 " ftf I" orl J * " m p 10 ii 1 B.B402H 3fil 3.0 35.1 350 338 1JU&794 9-00*344 O.U01fi5>> H ■'! I'.',." 3ft3 3t.2 *jl 301 1 (15NU- iT*J 39 *0 : 30 .04J0W jm w 3"* 61 jMaan ,0573^1 m 58 i 1 1 ,i*417J> 313.^2. 2 33 07 .0434 OTi JBttttS .V.I 50 a 30 .11-1*137 ,037543 2a 72 .114412' A9SB7J 90 54 a -> 1 043 J 74 0M 9 . w TO £41853 .055 14t* 53 52 ui la .943891 357 357 337 355 333 .omio > 17 §3 ,045574 300 3f'0 354 35H ,05442i> M 50 1^ » 1 ,044 ..0-. ,fl553!M U so a 04th!J5 o^:»7o:» V7 4& u 'an .045120 joumo 05 S3 .047015 .U32JIH5 10 4I> ItJ 4 .040034 JDSCI 1 P IHl .0O17W JK7TH 0522tM, :.u 41 10 30 040745 .053 fctt 90WI 00 .04N51 XkSlSfl 99 42 ii 5 1 JM74S6 355 354 33.T 352 4B3S4H & « .04I*lffl 357 357 33iJ 330 355 05OP32 sa 40 |j » JttfttOO ittl!«M !2 17 ,04ti«rt3 ,050117 MM SB l"l o 1 S48&74 .0511** * 77 S3 ,U3tT307 .049403 ->i i.i 3d % .9f33H] ,0504 IU Tfi 3* *5130S tMHtUU » 34 3d 7 Miss ,04*71:1 Wi 34 ,052021 .04707JJ i3 :n in 90 , BftQ jOfl 352 351 351 330 340 ,04WO* frf> 40 ,032732 334 354 354 353 352 ,047Wj? 30 ») ■-' 4 .1*5100*5 04^3J> 1 S3 45 .053441 .M[ t .;..v. W v!- ii 9Q ,0593 ■■- AfTON 40 51 .054140 .045851 3n 10 lit ii ,053100 ,O40W»O 43 57 ,054*57 .045143 "•I i!4 ,i-' :m .£53800 ,040200 3* 03 + B535G£ ,04443d 30 2 j ii 19 940 34* 344 347 347 .04550 J 32 68 ,050207 352 351 350 350 350 .043733 w Vi> i: ,035107 jfmaaa 245 74 .050071 ,043fi2[> 30 18 M 11 Ml! I'M- 21} m .037074 .042321* 49 10 1 ■ .Ml .05tili3ii .043401 15 65 .i,ivj.v- ,03 i r M- m 14 mm* .03^134 10 4 "H ::■> ,&JU74J jnOBM §*> 30 .B023ftl .037430 so 2 41

JML439 343 343 342 342 34J 03W7J 71 : S .003355 340 34"i 343 345 344 ,030745 15 39 1 :m .!".■:?! ■ 1 Oil ,063047 .03005:1 30 .V-' 4 Mi '^;hi; 0371 C 03 37 ,D04U30 .u:«;wi H .-, , 33" 33* .03514^ 45 55 L 00«707 344 343 342 HI 341 ,033253 30 .in N M ,005334 .03440t( 30 01 .1107303 .032 MT5 IJ 4» "I Ut .BO02I4 .QXSTrti 33 07 .Bn^OHl jotfiio no 40 to r> .!>'.!> «'l .03,4107 37 73 .PO?7iiO .o.'ii'i:i4 II 44 M Ml ,007572 ,032 1>& 32 7* .90»450 ,030330 90 43 .'■1 :n 00§24V :u~ i:u. 330 .031751 10 W ,'CiH.n 341 340 340 333 330 .oj-m;: to 40 -J V) 963335 ,03J0fW ft 00 ,070^15 JO891B0 3fl ,L- II 2i 11 J ,t806DQ ,070174 4 03i)mo 04 999 0:M imiiir r 07U90 .072170 .0245114 n:: -;i W :f.i. :tu H 22 •■"'LI 17 JH0QS3 02 0^ M7^.V. .027145 n m 1 .'1 :*3 13 n ,071010 ,072243 335 333 334 333 .0-17711 80 io 14 30 .973533 .074900 33S 33« 337 337 330 ,030407 .025701 n M lit 3* 34 t.i J973 kS i 4nmi 74 30 ,074^5 .025115 99 *i [, M m m ^.hlT'i 0* 32 .1*75500 .024 440 ■ 24 w m .0743-W ,0-^370 1 02 5? ,070234 tonfi 90 jfii 0» 25 jmims 33:1 gl % 330 .n>MVi- 50 44 .tlTOMOO 336 335 3144 333 033014 XI 20 W 1 in pi . e r Oi*137i 50 50 ,07757ri ,032422 in re H ao ,07O2>2 •to7« 44 50 joatTV 11 10 40 hi JTttEJftt <0ilO44 38 m .07P0ld 312I0-.2 in 14 48 37 ,077010 X&Xi 32 te ,0703^7 ,030 m 17^ 30 74 .060254 333 342 332 331 331 ,010741'. 30 10 M p 2i ,07?** 1 UJIII..I so BO .0*1 32 i ,0101171* J IJ H. 34 J to 078000 JM0400 14 en .OH 154ft JUHU4 :m il 56 S3 OBftJQ ■H1974I 0* 02 ,0P2251 .0177 »?l 11 4 A* 1 30 ,0*0*1* .otooai 02 09 0^'U OlTtHft M 2 31 BttfSft 1,010497 9.9070)0 OOOTO04 S.0ftl577 1418493 to 3N ■• r>4f-iie:» JOIS^II 73 38 joestn .0137^3 ■ » > .984*10 325 325 3J1 331 ,015100 R5 35 H 98ti«75 328 m 33* ■0131S5 :?o ■ JBMUl «omsw 50 41 J87S» .0L34ii8 a H 30 J*P6l4il JlifrUiO 53 47 J0I07 .011813 ■ *-• ' n 1:1:1 1 47 53 .988fcl43 .011158 ■ M 30 Bitf437 333 D133U9 41 59 IM .01O5W *i *, ,988084 323 aw 321 HI 3-21 H 0110ii] 35 €5 .90014H 330 335 Stt 334 324 .OO0S51 ■ V ft .9887*» ,011271 23 73 .!i'j"-»0 ,000291 ■ M .980374 0jU,i2O 33 78 .'.*:' Hi i JKP&ir* N H ::u .990017 «iij i-:i 10 84 .5*93101 MBF7VS» ■ :vi .990000 ,00,1340 10 00 .BO3750 .007150 a .^ 30 .99130? 320 3JJ 310 3111 318 M099 04 96 .9933!^ 333 333 33-1 '1 r r ,000603 w ■ JDftjM .U04J57 09 7S ,003102 JJ94045 ,imfi'iJkS a t ;«j .99B5& 097417 01 0* ,094094 JUt.V'l- It rf ,903233 ,00*577* K5 15 ,995337 .004003 31 M » .9S3i«flO .OOOUO 70 SJ -9951^1 331 OOIOIL' » H .904497 318 317 317 317 .005503 73 27 .990034 321 .003376 :n ■ :Ki ,995133 094803 OS 34 .9972117 330 320 319 ,003733 .Ml U .90570H ,004232 00 40 .1U71KH OOiWi n H an .990402 ,003598, 53 47 .9D8S4EI ,001451 M U .^;u.ti 310 iN&Kti 47 53 ,930188 310 .000812 ■ 1!. 3i» .mm? 31 a 31J 315 314 314 002333 41 SO .:»'.-: ^2: 319 3!H 31^ 317 317 .000173 ■ 10 .998300 001700 35 65 nn" Si 5 0999535 IT r n .iHiHi;ifi .001070 2* 72 .001103 .'.i"j>--;v- JO 1 ,9005110 .000140 22 78 .00173c JHHl l*i * in 9.0001^ l*.».-^'i ; To M ,002372 in :m 1 I .nonnifi 313 313 31.' 31 J l' r '.M-l 01 91 ,003007 310 Hi m 3L5 315 ,990909 15 St rn IM .09*557 03 *'7 .00304U jMftM II i* INI.'Hi-l 097031 moth ,003303 .004 J7i J*tt572r* n M 30 ,001091 .99730* '.HI 10 .004': to 1 MOM :k> -< ♦00331 b 311 .9901*2 B4 10 .005534 /-im,. i:t s; D .OOilMI 311 311 310 ,090059 77 23 .0O01G4 314 314 313 ua .WW30 mi V* .00*5,3 .005437 71 in ,00)7** .99W0- u a v.l .005 1 <> J94815 05 35 00743IJ .9*>J5fii 30 ■ ,005*15 310 .304105 5- 43 GO»47 .^n :c*.i 11 l« n 00&125 »U ,903575 53 43 sOO^irJ 991 m; ™ , H .0070 M 300 a* a^ 307 30? .'I'M.V. 45 55 t 009$U9 31 -i 311 311 :ijn 310 .990701 to M in ,007 > ,00*378 001722 33 08 ,010540 ,»!ftH54 •■ y« rti .00 -w 3.UHIJ an 74 JOU10I jimi in 3i ,909510 .999490 SO 80 .011790 .oi?aiio H 1 id .0101 31 3O0 oewTfi 13 87 ,013411 310 m 1 300 ,9?75*« 30 30 .010737 k 0HWti3 00 04 ,013031 '.'^"' 7 *v Hi .011M0 30 i art 305 98*050 00 ,IW*30n .OiUttSO m V .011001 DWHftC* 997993 07 AJ4368 .VKS733 1 M m .012572 .WNSa 87 13 .0t4«*5 JW t9 XI a &mm 305 301 a»:i 301 303 M&ifi 00 30 .015503 aw 307 300 300 300 .96440* 5 yr :o M\.r. a B*02l*l 74 n OlOllfi 'fr-.'i-xj *) !' ■■•■III'" .vasaoo 07 33 .Ut H7X1 !okJ3»i7 4 u n .tn.vi.h .■i-O' 'J 01 30 .017340 .98^(54 JU N .015013 .9843*7 54 40 «n T'o 4 ,962041, 3 12 >0 j01«« 303 ihi 301 301 a>L ,0837i*l 47 53 -01W73 305 ai5 3D4 SM 304 .9314** II 10 ♦oir«t .0831 7ti 41 59 41SM3 .WftH|7 : 1 H. J0I?«8 .9*2573 M Ofi .0IH794 BBOM 30 ♦"■ .01*131 ,081909 38 73 .020403 -079507 1 4 IA oiama .f<8l3*J7 31 TO 021012 ■»:-i^ -JO 8 ».«r'j.n ©.UHW. 0997614 000*3-1 Bjotuao ootswj m 1 • ' Biff far l,V lliff 35" ' •' m K L. Co.. I, S'T L. Sin. L. Cotec L. Cflt. L. Tang. I>ef. JIBUTI *r r ori* fcq r — <* i< s -4- 9 4- 9* " Digitized by VjOOQIC TABLE II.— LOO. SINE8, TANo's, ifT lur 15" or I 1 L, Coi. D«- I four* 41 in II [1 JLt 1-1 « I JO N i 51 OMi i-. , Hrf3 . 3+37 . 40Ju . 5303 BUD ; :v>: , 6*W tl'JW <0 31WJ . 31*1 , 4583 . 574 J 6896 . 804* . 9W7 .0*0343 lltiS , 909J itm u '■- ; "i3i , 8373 NO! ovi.,1 ■ . Iiilo . 2740 3861 r i960 wni , 7173 8271 . 9367 .O :>iu it . 1551 . 2ii3J 3733 ■!-'!' S"5 6003 aim . U107 , 121"2 3305 xm . 4424 5480 , 0533 . 7J83 , sail , 007ri <0B07lf . 17ji . ar»7 . 3833 4B61 9.0«il.W.I,i :-ihi 99J SJ« 99? Mi SJ3 993 «g 3tf!> 288 387 awj 386 2*3 2-1 2*3 939 3*3 3*1 280 9.79 979 378 377 377 37 ti 275 275 ::i 373 373 373 371 371 370 3** ■,•;- 307 306 3150 9(13 ■r.i j> a 363 ■: i-j 90 261 961 31 i 339 258 25- U.ON074, -97;>5i5 . 9999 . 7175 , 5U84 i 4797 . seii 34X1 1454 .OOtfUl . 7743 . 0579 5117 . 4£>J> . 3101 . 1953 . 04X1, .o.-, ...-.- . riij . 7X5 993f . 3105 3<7I . 2816 . mi , 03*9 .OlUttl . 8305 - mt . Sill 5034 , 3MB . 2-2* . 173* . na .930510 . rjtji . 4i377 . S|N 4113 303* . 1961 . ma .090831 . 875* . 7005 9»i34 . 5370 . 4530 . 3407 - 9417 . 13*1 . 0334 .0193*1 < >-.■;! « 730.1 O.OOmII , 7oat - 7588 ♦ 7571 . 7512 J . 751* . 7531 . 7531 . 7507 7103 , 7480 . ?m ♦ 7153 i 743J ■ 713.5 . 7111 , 7J97 - 7383 - 990 ■ 7355 ♦ 7311 7*17 ♦ 7313 , ZB I « 73*5 - 7371 , 7*37 . 7343 732' . 7311 - 7jfln » 7185 , 7171 . 7150 . 7111 , 7137 . 7113 . 7098 . 7083 7008 ■ 7034 . ItOI . 7034 ♦ 7»» fl c »75l M4U aoiii 6F73 9999 1*13 0797 511ft! . fl700 O 014105 UOO075] 3 ■1 S 3 a 3 a n :i 3 3 3 A a 3 3 3 3 3 3 3 3 3 3 9 4 3 i 4 3 3 4 4 3 4 :\ 4 4 3 4 4 4 4 4 4 4 4 -I 4 4 4 4 1 4 4 4 4 4 \ 0.00&lMi , 3J-KJ . 9CU . 9499 . 313S1 9453 . Sf4+jo . 347!. . 34i>3 . 3507 , 2520 , 3.W 354* , 35i.>i . 2575 . 35Btj . 3i>t»l * 2iii; - 3tt3J ■ *>40 . 265D 9tf73 . urn 3791 . 3715 - 3739 . 3743 ■ 375* , 2773 . 27** . 2*n - 9819 3^ry . 3W44 . tfiSA , 3873 3lMi3 , 3^1 , 3J#33 , 29141 . 2Mi\ i 3U7U . iwt«i . 3ooti 3031 . 303*S . 3051 . 3O0*i p 3081 . 30M 3111 . 3127 . 3143 . 3157 , 3173 . 31r<8 , 9913 . 3318 J5334 UUO:i3l:> 9.041U3U . 2a34 4044 . 5351 0155 I 7055 . *H r j3 03IWUO . mt 3r'iffi , 17' , 5'hiii . 7 14* . E310 . 0155 .QlOiMl . hh , 2.173 . 4130 . 5284 . 0135 . 75*2 , 8737 - 98UL. .031008 3111 . 9971 i 4407 * 5535 , 7781 -'.inn OOOlllli . U39 t 334d , 334P 1 . 4153 . tt»\ . 0055 . 7752 . iieHO .011IK7 i 2113 . 3l>7 137- , s:i5ii . 0433 . 7305 . 8370 , 9041 O8071« . 1773 ; 2833 3-'! . #41 » 04)00 ♦ 7050 r.l ,r IMivln 3o;j sua 30J 301 300 3H0 3 '- 999 2J7 999 i;p| 9M 2J3 W\ 2U1. 2J0 58.* 988 999 3c«j 283 2.-5 flSI 2K1 38JJ 281 380 S7i' 278 377 37". :;*, 375 374 373 373 373 271 371 370 260 9P 9tf 308 361 2ft6 2f>lt 305 3' i 964 3u3 999 3K 3J-J O.0l83»0 00 7lL!bl 53 5jo.il 58 474J| 37 3545 3d 3345 55 1148 54 .OOiftitt 53 97 j 39 7573 9399 530 4W1 2-5 i 1L>81 0315 .-»-•■ 7n3; 3079 471d 3SiJ 941t 1^7J 0131 04--.W 7M0 07^3 3593 110.5 tni 33lti 1100 J»3>->»4 8H70 77i,d 9999 5517 1 I M 3313' 3] 2348 1154 IX) j 92^»73 7887 9M 5?& 4644 350H 3499 1424 0356 W I ■.»-.' Hi 9993 7167 0100 9993 t(HHI 3 ».Vi 1903 •JllKV, Bfl ..id :... ..j j i i-i J*j :u 3r< 34 3D 10 I. 8 4 35 Si 33 5.» 53 4rt 44 30 33 i!4 20 10 13 1 8 ■l 5.. 99 M it 40 3u 33 99 34 30 10 13 9 ! 5:. .: 18 40 36 32 > 34 30 hi :13 OffR. LCm. f'.rf 15' ' ot 1* i L R* r L-Sjn. Dlff 15 orl' L-Coiwc- I*Cot* IHfT for orl 1 L. Tang, D9J Hftun- 6* on* r — 4» 1^-4* ^.j -.* Digitized by VjOOQIC TABLE II.— LOQ. SINKS, TANo'3, &C. TO l'- 15" 1" — 15' 1*« -ISO 1TSP 11> Diff. Dili". Diff. Dej». L. Sin. for 15" orl« Li. Comc. L.CM. for 15" orl' L.86C L.Tang. for 15" orl' L.Cot *X Hoar* ' 60 m 9.0854 15 257 253 253 255 254 0.914105 9.993751 0.003249 9.089144 361 360 25J 85J 358 O.910856 31 •* 1 . 6:122 . 3078 . 6735 4 . 3205 .090187 .90^13 5J > 2 . 7J47 . 8053 . 6719 4 . 3281 . 1228 . 8772 58 jj 3 . 8970 1030 . 6704 4 32J6 . 2206 . 7734 57 4- 4 . ft)J0 . 0010 . 6688 4 4 . 3312 . 3302 6696 56 I 44 5 .091008 251 253 252 252 251 .908993 6673 . 3327 . 4335 358 357 350 353 355 . 5665 55 L 6 . 2024 . 7976 . 6657 4 4 . 3343 . 5307 . 4633 54 '3 7 3037 , 6903 . 6641 . 3359 . 6390 . 3u04 53 it 8 . 4047 . 5953 . 6625 4 . 3375 . 7422 . 2570 52 jr 9 . 5050 4944 . 6610 4 4 . 33J0 . 8446 1554 51 1 10 . 60(12 251 250 250 244 248 . 3938 . 6594 . 3406 . 9468 355 354 354 353 352 . 0533 50 "J» 11 . 7005 . 3935 . 6578 4 . 3422 .100487 .89.4513 49 It 12 80J6 . 1934 . 6563 4 . 3438 1504 . 84'JO 48 _ 12 13 . 9005 . 0335 . 6546 4 . 3454 351* . 74H1 47 «• 14 .100002 .89J938 . 6530 4 4 . 3470 . 3532 . 6468 46 « 15 . 1056 248 247 247 246 245 . 8944 . 6514 4 . 3486 . 4542 852 251 851 350 350 . 5458 45 31 15 . 3048 . 7953 . 6498 . 3502 . 5550 . 4450 44 i> 17 . 3037 . 6963 . 6481 4 4 4 4 . 3519 . 6556 3444 43 ,±* 18 19 . 4025 . 5010 . 5975 . 4990 . 6466 . 6449 . 3534 . 3551 . 7559 . 8501 . 3441 14k 43 41 • *• 44 1 20 . 5992 245 244 244 243 243 . 4008 . 6433 4 4 4 4 4 . 3567 . 9550 349 349 348 347 347 . 0441 40 40 21 . 6973 . 3027 . 6417 . 3583 .110556 .889444 39 j. 22 23 . 7951 . 8927 . 3049 . 1073 . 6400 . 6384 . 3600 . 3616 . 1551 . 3543 . 8443 . 7457 38 37 j^ £« 24 . 9901 . 0099 . 6368 . 3633 . 3533 . 6467 36 24 25 .110872 342 242 241 241 340 .889138 . 6351 4 4 4 4 4 . 3649 . 4531 346 346 345 845 844 . 5479 35 20 26 27 2d . 1842 880J . 3774 . 8158 . 71J1 . 6220 . 6335 . 6318 . 6302 . 3665 3683 . 5507 . 6491 . 7473 . 44J3 . 3500 8528 34 33 38 lo ' 12 24 . 4737 . 5203 . 6885 '. 3715 . 8452 . 1548 31 4 30 . 5698 339 339 339 338 337 . 4303 . 6369 4 4 4 4 4 . 3731 . 9489 344 343 343 342 342 0571 30 SO 31 . 6650 . 3344 . 6252 . 3748 .190404 .879596 29 5. 32 . 7612 . 8388 . 6235 . 3765 . 1377 8633 28 j£ 33 . 8507 . 1433 . 6219 . 3781 . 3348 7652 87 4f 34 . 9519 . 0481 . 6302 . 3798 . 3317 . 6683 36 M ( 35 .1310469 837 836 336 335 335 .879531 . 6185 4 4 4 4 4 . 3815 . 4384 841 840 340 339 839 . 5716 85 40 30 1417 . 8583 . 6168 . 3832 . 5349 4751 34 *> ' 37 . 2362 . 7638 . 6151 . 3849 . 6311 378.1 23 XT 38 34 . 3306 . 4248 . 6694 . 5753 . 6134 . 6118 . 3806 . 3882 . 7172 . 8130 . 3828 . 1870 28 21 24 40 41 . 5187 . 6125 5* 334 833 333 832 . 4813 . 3875 . 6100 . 6084 4 4 4 4 4 . 3900 . 3916 . 0087 .130041 838 838 837 837 336 . 0913 .86945 20 19 30 ' In . 42 43 44 . 7030 . 7993 . 8925 . 3940 . 3007 . 1075 . 6066 . 6049 . 6032 . 3934 . 3951 . 3988 . 0994 . 1944 . 88J3 . 9606 . 805i . 7107 18 17 16 u : B 4 45 . 9854 832 331 331 330 330 . 0146 . 6015 4 4 4 4 4 . 3985 . 3839 336 8J6 335 834 834 6161 15 99 40 .130741 .863219 . 5998 . 4002 . 4783 5317 14 *» 47 . 170$ . 83M . 5980 . 4020 . 5730 4274 13 52 48 . 2.130 . 7370 . 5983 . 4037 . 0667 3333 13 4"* 49 . 3551 . 6449 . 5946 . 4054 . 7605 . 3395 11 44 50 . 4470 839 329 828 828 827 . 5530 5988 4 4 4 4 4 . 4073 . 8543 833 833 833 833 833 1458 10 40 51 . 5387 . 4613 . 5911 . 4089 . 9476 . 0524 9 3.1 52 . 6303 . 3697 . 5894 . 4106 .140409 .8535)1 8 32 53 . 7216 . 3784 . 5876 . 4134 . 1340 6660 7 ** 54 . 8128 . 1872 . 5859 . 4141 . 8369 . 7731 6 24 55 . M37 827 826 326 325 835 . 0963 . 5841 4 4 4 4 4 . 4159 . 3196 331 331 £2 330 839 . 6804 5 20 56 . 9945 . 0055 . 5824 . 4176 . 4121 . 5879 4 10 57 .140850 .859150 . 5806 . 4194 . 5044 4956 3 12 58 1754 . 8246 . 5788 . 4312 . 5966 40fc 8 5J . 2050 . 7344 . 5771 . 437) . 6885 . 31 IS I 4 60 9.143555 0.856445 9.995753 0.001347 9.147802 O.S52I * as • * Diff for Diff for for 15" ' ■ J7" L.GM. 15" L.See. L.Bin. 15" L-Oomc L-Cot. L.TAinf Oef. Hoot orl' orl' orl" * r> 1' - -4* lo — 4» • *6" r Digitized by VjOOQIC TABLE II. — LOO. SINES, TANg's, &C. Oft So P — 15" 1-—15' 1»-150 171 1 Diff. Diff. "MTi 1 Hours. Deg. L.Sin. for 15" orl» L.COMC L.Coi. orl« L.Sec L. Tang. for 15" orl* L. Cot. i Deg. - • / ' 3* 0.143555 224 224 223 223 222 0.856445 0.005753 0.004247 0.147*02 229 0.85215 8 00 4 1 4453 . 5547 . 5735 . 42c5 . 8718 . 12*2 59 8 2 . 534u . 4051 . 5717 . 4283 . 9032 228 . 03U8 5* 12 3 . 6243 . 3757 . 5699 . 4301 .150544 228 227 227 .849450 57 10 4 . 7130 . 2864 . 5682 . 4318 . 1454 . 8540 56 30 5 . 8026 222 222 221 221 220 1974 . 5663 . 4337 . 2363 220 226 220 225 225 . 7637 55 24 6 . 8915 1085 . 5646 . 4354 3269 . 6731 54 26 7 9H>2 . 0198 . 5628 . 4372 4174 . #20 53 32 8 .15068L .849314 . 5609 . 4391 . 5077 . 4923 52 3b 9 . 1569 . 8431 . 5591 . 4409 . 5978 4022 51 40 10 . 2451 220 219 219 2J8 218 . 7549 . 5574 . 4426 . 6877 224 224 223 223 222 . 3123 50 44 11 3330 . 6670 . 5555 . 4445 . 7775 . 2225 49 48 12 . 420b . 5792 . 5537 . 4403 . 8671 . 132 • 48 52 13 . 5084 . 4910 . 5519 . 4481 . 95(5 0435 47 56 14 . 5957 . 4043 . 5500 . 4500 .100457 .839543 40 33 0' 15 . 6829 218 217 210 216 216 . 3171 . 5482 . 4518 1347 222 222 221 . 8653 45 4 10 . 7700 . 2300 . 5464 . 4530 . 2230 . 7764 44 6 12 17 18 . 8509 . 9435 1431 . 0565 . 5446 5427 . 4554 . 4573 . 3123 . 4008 . 6877 . 5992 43 42 16 19 .100301 .839699 . 5409 . 4591 . 4tti2 221 220 . 5108 41 20 90 . 1164 215 215 214 214 213 . 8836 . 5390 . 4610 . 5774 220 219 219 210 218 . 4226 40 24 28 21 32 2026 . 2885 . 7974 . 7115 5372 . 5353 . 4628 . 4647 . 6654 . 7532 . 3340 . 2408 39 38 32 30 23 24 . 3743 . 4600 . 6257 . 5400 . 5334 . 5310 . 4666 . 4684 . 8409 . 9284 . 15!)] . 0710 37 30 40 25 . 5454 213 213 212 212 211 . 4546 . 5297 4 5 5 5 5 . 4703 .170157 218 217 217 217 210 .889843 35 44 20 6307 . 3693 . 5278 . 4722 1029 . 8971 34 48 27 . 7159 . 2841 5200 . 4740 . 1899 . 8101 33 52 28 800c 1992 . 5241 . 475. . 2767 . 7233 33 50 29 8850 . 1144 . 5222 . 4778 . 3634 . 6366 31 34 30 . 9702 211 211 210 210 20:i . 0298 5203 5 5 5 5 5 . 4797 . 4499 210 215 215 215 214 . 5501 30 4 31 .170546 .899454 5184 . 481( . 5362 . 4038 29 8 12 33 33 . 1389 . 2230 . 8611 . 7770 . 5105 . 5146 . 4835 . 4854 . 6224 7084 . 3770 . 2»10 28 27 10 34 . 3070 . 6930 . 5127 . 4873 . 7943 . 2057 20 20 35 . 3908 209 208 208 208 207 . 6092 . 5108 5 5 5 5 5 . 4892 . 8800 214 213 213 213 212 . 1200 25 24 30 . 4744 5256 5089 . 4911 . 9655 . 0345 24 28 32 30 37 38 39 . 5578 . 6411 . 7243 . 4422 . 3589 . 2757 . 5070 . 5051 . 5032 . 4930 . 4949 . 4968 .180508 . 1300 . 2211 .819402 . 8040 . 7789 23 22 21 40 40 . 8072 207 207 206 206 205 . 1928 . 5013 5 5 5 5 5 . 4987 . 3059 212 211 211 210 210 . 6941 20 44 41 8900 1100 4993 . 5007 . 3907 . 60!)3 19 48 42 . 9727 . 0273 .. 4974 . 5020 . 4757 . 5247 18 52 43 .180551 .819449 . 4954 . 5046 . 5597 . 4403 17 50 44 . 1374 . 802; . 4935 . 5065 . 643i> . 3501 16 33 45 . 2196 205 204 204 204 203 . 7804 . 4910 5 5 5 5 5 . 5084 . 7280 210 20(1 20.) 20' 208 . 2720 15 4 46 . 3016 . 6984 . 4890 . 5104 . 8120 . 18K) 14 8 47 . 3834 . 6166 . 4877 . 5123 . 8057 . 1043 13 12 48 . 4051 . 5349 . 4857 . 5143 . 97P4 . 0200 12 10 49 . 5467 . 4533 . 4838 . 5162 .100029 .803371 11 30 50 . 6280 203 203 202 202 201 . 3720 . 4818 5 5 5 5 5 . 5182 . 1462 208 207 207 207 206 . 8538 10 24 51 . 70i»2 . 2908 . 4798 . 5202 . 2234 . 7700 9 '26 ! 52 . 7903 . 20»7 . 4779 . 5221 . 3124 . r*7i; 8 32 53 36 j 54 . 87J2 . 9519 . 1288 . 0481 . 4759 . 4739 . 5241 . 5261 . 3953 . 4780 . f047 . 5220 7 G 40 ' 55 .100325 201 201 200 2W> It* .809675 . 4719 5 5 5 5 5 . 5281 . 5606 200 200 205 205 204 . 4304 5 44 5tf . 1130 . 8870 . 4700 5100 . 6430 . 3.570 4 48 57 . 1933 8007 4680 . 5«0 7253 . 2747 3 52 58 . 2734 . 7206 4660 . 5V( . 8071 . V. 2f5 50 50 . 35^4 . 6406 . 4040 . 5300 . 8894 1105 1 35 00 (» 1043:i2 0.805608 0994620 O.OO5380 0.103712 o.^oo.^! •t 1 • f Diff. Diff Diff. 1 ' Lours. Deg. L. Co*. for 15" orl« L. Sec. L. Sin. for 15" orl« L.Cotec. L. Cot. for 15" orl* *-*■■* -5*7 O* 08 V — *• IO- r4"» 81 I Digitized by VjOOQIC TABLE 11. — LOO. 8INB8, TANo's, 56 4* 5 . 8302 197 197 197 196 196 . 1698 . 4519 5 5 5 5 5 . 5481 3783 302 202 202 201 201 . 6217 55 4" 6 . 9091 . 0909 4499 . 5501 . 4592 . 5408 54 j* 7 . 9879 . 0121 4479 . 5521 . 5400 . 4600 53 32 8 .800666 .70J334 . 4459 . 5541 . 6207 . 3793 58 2* 9 . 1451 . 8549 . 4438 . 5562 . 7013 . 2*7 51 h 10 . 2235 195 195 195 194 194 . 7765 . 4416 5 5 5 5 5 . 5582 . 7817 900 . 2183 50 2P 11 . 3017 . 6983 . 4398 . 5602 . 8619 200 200 19J 199 13H1 4'J K 12 . 3797 . 6203 . 4377 . 5623 . 9420 054) 48 12 13 . 4577 . 5423 . 4357 . 5643 .910220 .789?oO 47 14 . 5354 . 4646 . 4336 . 5664 . 1018 . 8*£ 48 4 15 . 6131 194 193 193 192 192 . 3869 . 4316 5 5 5 5 5 . 5684 . 1815 199 198 198 198 197 . P185 45 S3 16 . 6906 . 3094 . 4295 . 5705 . 2611 . 73** 44 * 17 . 7679 . 2321 . 4274 . 5726 . 3405 . 65J5 43 iJ L8 . 8452 1548 . 4254 5746 . 4198 . 5802 42 4.- " 19 . 9222 . 0778 . 4233 . 5767 . 4989 . 5011 41 44 » . 9991 192 191 191 191 191 . 0009 . 4212 5 1 5788 5779 197 197 196 . 4221 40 40 21 .910760 .789240 . 4192 . 5808 . 6568 . 3432 30 3* 22 . 1526 . 8474 . 4170 . 5830 . 7356 . 9644 38 32 23 . 2202 . 7708 . 4150 . 5850 . 8143 196 196 . 1858 37 2* 24 . 3055 . 6945 . 4129 . 5871 . 8926 . 1074 36 24 25 . 3818 190 190 190 189 189 . 6182 . 4108 5 5 5 5 . 5892 . 9710 195 195 195 194 194 . 0290 35 «*» 26 . 4579 . 5421 . 4087 . 5913 .830492 .779508 34 lr> 27 . 5338 . 4662 . 4066 . 5934 1272 . 8728 33 12 28 . 6097 . 3903 . 4045 . 5955 . 2052 . 7948 32 «. 23 . 6854 . 3146 . 4024 . 5976 . 2830 7170 31 4 30 . 7609 189 188 186 187 187 . 2391 . 4003 5 5 5 5 5 . 5997 . 3600 194 193 193 193 193 . 6394 33 a* 31 . 8364 1636 . 3982 . 6018 . 4383 . 5618 29 5i 32 . 9116 . 0884 . 3960 . 6040 . 5156 . 4844 28 52 . 33 . 9868 . 0132 . 3939 6061 . 5929 . 4071 27 4* 14 .3*0618 .779382 . 3918 . 0082 . 6700 3300 26 ,44 . 35 . 1367 187 186 186 186 185 . 8633 . 3896 5 5 5 5 5 . 6104 . 7471 193 192 192 191 191 . 2539 25 40 » . 2115 . 7885 . 3B75 . 6125 . 8240 1760 31 3tf 37 . 2861 . 7139 . 3854 . 6146 . 9007 . 0393 23 32 38 . 3606 . 6394 3832 . 6168 . 9774 . 0226 22 2* 39 . 4350 . 5650 . 3811 . 6189 .330539 .769461 21 24 10 . 5092 185 185 185 184 184 . 4908 3789 5 5 5 . 6211 . 1303 190 190 . 8697 93 20 11 . 5833 . 4167 . 3768 . 6232 . 2065 . 7935 19 16 12 . 6572 . 3428 . 3746 . 0254 . 9836 190 190 . 7174 18 12 13 . 7311 . 2689 . 3725 . 6275 . 3586 . 6414 17 8 14 . 8048 . 1952 3703 . 0397 . 4345 189 . 5655 16 4 1 15 . 8784 184 183 183 182 182 . 1216 . 3681 5 5 5 5 . 6319 . 5103 183 189 188 188 . 4897 15 »1 16 . 9519 . 0481 . 3660 . 6340 . 5859 . 4141 14 5* 17 .330252 .769748 . 3638 . 6362 . 6614 3386 13 52 t8 . 0984 . 9016 . 3616 . 6384 7368 9633 19 4« 19 . 1714 . 8286 . 3594 . 6406 . 8190 188 . 1880 11 44 50 . 9444 182 182 181 181 181 . 7556 . 3572 1 5 6 5 . 6428 8872 187 187 187 186 186 . 1198 10 !270 54 30 .N 7 . 4656 . 5344 . 3195 0805 . 1461 . 8539 53 32 Si 8 . 5303 . 4037 . 3172 . 0828 . 2191 182 . 730 • 52 28 33 9 . 6009 . 3931 . 3149 . 0851 . 3930 132 7080 51 24 40 10 . 6775 170 170 175 175 175 . 3325 . 3127 . 6873 . 3648 181 181 181 181 180 . 6352 50 20 41 11 . 7473 . 3522 . 3104 . 6890 . 4374 . 5626 49 10 48 12 . 8181 . 1819 . 3081 . 6919 5100 . 4900 48 12 52 13 . 8883 . 1117 . 305) . 6941 . 5324 . 4176 47 8 SO 14 . 0583 . 0417 . 3036 , 6904 . 0547 . 3453 40 4 41 15 .950232 174 174 174 173 173 .749718 . 3013 . 0967 . 7369 180 . 2731 45 10 4 10 . 093U . 9020 . 9990 . 7010 . 7990 180 180 179 179 . 2010 44 50 8 17 . 1677 . 8323 . 3967 . 7033 . 8710 . 1290 43 52 13 Id 9373 . 7027 . 3344 . 7050 . 9429 . 0571 43 43 16 19 3067 . 0933 . 3921 . 7079 .960140 .739854 41 44 3D 90 • 3701 173 173 179 172 179 0339 . 9398 . 7103 0603 179 178 178 178 178 . 9137 40 40 24 31 . 4453 . 5517 . 9875 . 7125 . 1578 . 8492 39 30 28 82 . 5144 . 4850 . 9852 . 7148 . 8933 . 7708 38 33 33 23 . 5334 . 4100 . 9829 . 7171 . 3005 . 0995 37 38 36 94 0533 . 3477 . 9800 . 7194 . 3717 . 0383 30 34 40 25 . 7911 179 171 171 171 170 9789 9783 . 791) 177 . 5572 35 90 44 96 7898 . 2102 9700 . 7940 ! 5138 177 177 170 176 . 4802 34 10 48 97 . 8533 . 1417 9730 . 7304 . 5347 4153 33 19 32 98 . 9988 . 0732 . 9713 . 7287 . 6555 . 3445 32 8 36 99 . 9951 . 0049 . 9090 . 7310 . 7201 . 8739 31 4 44 30 .960333 170 170 .739307 • 9900 . 7334 . 7907 176 176 175 175 175 . 8033 30 18 4 31 . 1314 . 3643 . 7357 . 8071 . 1321 39 50 8 32 . 1994 .' 8000 . 3319 . 7381 9375 . *»025 38 52 13 33 9673 170 109 109 . 7327 . 3590 . 7401 .9 70077 .799923 37 48 16 34 . 3351 . 0049 . 3572 . 7428 . 077J . 9321 90 44 90 35 4097 109 138 . 5973 . 9548 . 7452 . 1479 175 174 174 174 174 . 8521 35 40 94 36 . 4703 . 5217 . 3523 . 7475 . 3173 . 7322 24 30 •18 37 5377 . 4021 . 3501 . 7410 . 8*W . 7124 23 32 32 38 0051 168 3>41 . 847* . 7522 . 3573 . 0427 22 28 36 33 . 6723 108 108 . 327? . 3454 . 7540 . 4239 . 5731 21 24 40 40 7394 . 230~i . 2430 . 7570 . 4904 174 173 173 173 172 . 5030 20 20 44 41 . 8035 108 . 1933 . 240'i . 7514 . 535) 4341 19 18 4S 42 . 8731 187 . 12V» . 23*2 . 701* . 0352 . 3043 18 12 52 43 . 9402 107 . 05T* . 2*59 . 7041 7043 . 3157 17 8 53 44 .970039 107 100 .793331 3333 . 7303 . 7734 . 8300 10 4 43 45 • 0735 . 9205 . 9311 7089 . 8434 172 172 172 171 171 . 1570 15 17 a 4 46 1400 166 . 8090 . 92*7 . 7713 . 9113 . 0887 14 50 8 47 9064 100 . 7930 . 3213 7737 . 9801 . 0199 13 52 IS 48 . 973S 105 . 7274 . 8213 7702 980438 .719512 13 48 16 49 . 3388 105 165 . 6013 . 22II . 7786 . 1174 . 8386 11 44 20 50 4043 105 . 5951 • 9190 . 7810 . 1859 171 J71 170 170 170 . 8141 10 40 24 51 . 4708 . 52T2 . 9100 . 7834 . 3542 . 7453 9 30 W 52 5187 105 164 . 4533 . 9149 . 7358 . 3325 . 6775 8 32 32 53 0025 . 3975 . 9118 . 7882 . 3907 . 0013 7 28 36 54 . 6081 104 104 . 3319 . 9033 . 7907 . 4588 . 5412 24 40 55 7337 103 9033 . 9009 . 7931 5308 J70 109 109 109 109 . 4732 5 90 44 50 7991 . 9991 . 9044 . 7090 . 5947 . 4051 4 10 48 57 8645 103 . 1355 . 9090 . 7980 . 6095 . 3375 3 13 52 58 9997 163 0701 1990 . 8004 . 7301 . 8099 9 8 36 53 9948 103 . 0052 1971 . 8099 . 7977 . 8033 1 4 43 60 60 0.960599 103 O.719401 0.001947 0009053 0988052 0.711348 16 1- L.OM. DiC for 15" L.SM. L.flin. Diflt for 15" L.COMC. L.COC Diff. for 15" L.T0Bff. t p » Hoara. Tleg. Ham. orl* orl* orl» 6* 10 0* r — P lo. -4* P UPl too 6* Digitized by VjOOQIC 42 TABLE II.— LOG. 81**8, TANo'g, &C. 0> 11° !•- - 15" 1- - 15* 1» -150 108O 11 Diff dht. Dift. Hour*. Deg. L.Bin. for 15" orl* L.Cotec. L.Cbe. for 15" orl* L.8ec L.l*ng. for 15" orl* L.OM. Dog. Bowk. • ' i - • 44 9.880599 163 MS 163 163 161 O.T19401 9.991947 • 008053 9*88653 168 168 168 168 K8 9.711348 69 18 60 4 1 . 1348 . 8753 1933 . 8078 . 9336 . 0674 59 56 8 3 . 1897 . 8103 . 1898 . 8103 . 9999 . 0091 58 53 IS 3 . 3544 . 7456 . 1873 . 8137 .990671 .79933U 57 48 16 4 . 3191 6809 . 1848 . 8151 1343 . 8658 56 44 90 5 3836 161 161 160 160 160 . 6164 . 1833 . 8177 . 8013 167 167 167 167 166 • 7987 55 40 34 6 . 4480 . 5530 . 1798 . 8393 . 3683 . 7318 54 36 38 7 . 5134 . 4876 . 1774 8336 . 3350 . 6650 53 33 33 8 * . 5760 . 4334 . 1749 . 8351 . 4017 . 5983 S3 38 , 38 9 . 640H . 3593 . 1734 . 8376 . 4684 . 5316 51 34 40 10 . 7048 160 160 159 159 159 . 3953 . 1699 . 8391 !. 5349 106 186 106 MS M5 . 4651 50 SO 44 11 . 7687 . 8313 . 1674 . 8396 . 0013 . 3967 49 16 48 18 . 8336 1674 . 1649 . 8351 . 6677 . 3333 48 13 S3 13 . 8984 . 1036 . 1634 . 8376 . 7340 . 3660 47 8 56 14 . 9600 . 0400 . 1599 . 8401 . 8091 . 1999 46 4 ** 15 .890339 159 158 158 158 158 .709764 , 1574 . 8436 . 8693 MS M4 164 M4 164 . 1338 45 18 4 16 . 0871 . 9139 . 1549 . 8451 . 9333 . 0678 44 * 8 17 . 1504 . 8496 . 1534 • 8476 . 9980 . 0039 43 53 13 18 . 3137 . 7863 . 1499 • 8591 .800638 43 tf 16 19 . 8768 . 7333 . 1473 • 8537 . 1395 . 8705 41 M 90 90 . 3399 157 157 157 157 156 . 6601 . 1448 . 8553 . 1951 M4 163 M3 163 M3 . 8049 40 10 94 31 . 4039 . 5971 . 1433 . 8578 . 8697 . 7393 39 36 38 S3 . 4658 . 5343 . 1397 . 8693 . 3861 6739 38 » 33 83 . 5386 . 4714 . 1373 . 8688 . 3914 . 6066 37 38 3d 34 . 5913 . 4087 . 1346 . 8654 . 4567 . 5433 36 94 40 35 . 6539 156 156 156 155 155 . 3461 • . 1331 . 8679 . 5318 163 163 163 163 163 . 4783 35 30 44 86 . 7164 . 8836 . 1395 . 8705 . 5869 . 4131 34 16 48 58 56 37 88 39 . 7788 . 8413 . 9034 . 8313 . 1588 . 0966 1369 1344 . 1318 . 8731 . 8756 . 8782 . 6519 . 7lfi8 . 7816 . 3481 . 8833 . 3184 33 33 31 13 6 4 40 30 . 9655 155 155 155 154 154 . 0345 . 1193 8807 . 8489 163 161 161 161 161 . M38 30 14 O 4 31 .390376 .699734 . 1167 . 8833 . 9109 . 0891 39 56 8 33 . 0895 . 9105 . 1141 . 8859 . 9754 . 0346 38 53 19 33 . 1514 . 8486 . 1115 . 8885 .310399 .889091 37 48 16 34 . 8133 . 7868 . 1090 . 8910 1043 . 8958 36 44 30 35 . 3749 154 153 153 153 153 . 7351 . 1064 i 8936 . 1685 109 160 160 160 159 . 8315 35 40 34 36 . 3365 . 6835 . 1088 8963 . 3337 7673 34 36 38 37 3979 . 6031 . 1013 8988 . 3967 7033 33 33 39 38 . 4593 . 5407 . 0986 ! 9014 . 3607 . 6393 33 38 36 39 . 5307 . 4793 . 0960 . 9040 . 4347 . 5753 31 34 40 40 . 5819 159 153 153 153 153 . 4181 . 0984 . 9066 . 4885 159 IS . 5115 SO 90 44 41 . 6430 3570 . 0908 m i . 8099 . 5533 . 4478 19 16 48 53 56 43 43 44 . 7041 . 7650 . 8359 . 3959 . 3350 . 1741 . 0883 . 0855 . 0839 . 9118 . 9145 . 9171 . 6159 . 6795 . 7430 . 3841 . 3395 . 3670 18 17 16 13 8 4 47 45 . 8867 153 151 151 151 151 . 1133 0808 . 9197 . 8064 158 158 158 158 157 . 1936 15 18 4 46 . 9474 . 0536 0777 jj . 9393 . 8097 . 1303 14 56 8 47 .310080 .089930 . 0750 . 9350 9380 . 0670 13 53 13 48 . 0685 . 9315 . 0734 2 • !55 ! 9961 . 0089 13 48 16 49 . 1389 . 8711 8097 9303 .380893 .889408 11 44 SO 50 . 1893 150 150 150 150 150 . 8107 0871 . 9339 . 1339 157 £ 157 156 8771 10 40 34 51 . 8495 . 7505 . 0844 . 9356 . 1851 . 8149 9 36 98 53 3097 . 6903 . 0618 . 93B9 . 8479 . 7531 8 33 33 53 . 3698 . 6303 . 0593 . 9408 . 3108 . 6894 7 38 36 54 , 4398 . 5703 . 0565 . 9435 3733 . 0367 6 34 40 55 . 4896 149 149 149 149 149 . 5104 . 0538 . 0463 . 435B 156 156 156 153 155 . SMS ; SO 44 56 . 5495 . 4505 . 0513 . 9488 . 4983 . son 4 16 48 57 . eon . 3908 . 0485 . 9515 . 5007 . 4393 3 13 58 59 6689 . 3311 . 0458 . 9549 0331 3701 9 9 - F 59 . 7384 . 3716 . 0431 . 9569 . 6853 . 3147 1 4 47 (flO 60 9-31 7879 0.083181 9.990404 0.009598 9.387478 0-873534 ' 18 O . 1 . r Ltd* Diir. fhr 15" L.8ee. USin. DMT for 15" L.Cotet. I* Cot. Diff for 15" L.Ttnf. 1 ' • • Hourr Dm. P* Bow- Of V orl' orl» f 1 8» 141 Ho r- 4* lo -4» 78 a < * Digitized by VjOOQIC tails n^-ioo. ones, tang's, tic. 43 O* 1*> r— 15" !■ — 15' 1»- -ISO 16*0 11» Bi* DilE bitt. Ooun. D«* UBU. for 15" orV L.OM6S. IftCot. for 15" L.Bee. I*.TYnf. for 15" orl' I* Cot. Deg. Hoarv- • t i / 60 m "ll • 60* 18 e 9.317929 148 148 148 148 147 3.333131 9.339494 9.039596 9.837475 155 155 155 155 154 04172525 4 i „ 8473 . 1537 . 0378 . 9633 . 8095 . 1905 59 <» 8 3 . 9086 . 0934 . 0351 . 9649 . .8715 . B85 58 13 3 . 9658 . 0343 . 0334 . 9676 . 9334 . 0666 57 48 16 4 .3*0350 .379750 . 0397 • 9703 . 9053 • 0047 56 44 90 5 . 0840 147 147 147 147 146 . 9160 0970 9730 .330570 154 154 154 153 .669430 55 40 34 6 . 1430 . 8570 0343 . 9757 . 1187 . 8813 54 36 38 7 . 3019 . 7981 . 0310 . 9784 . 1803 . 8197 53 32 33 8 . 3806 . 7394 . 0188 . 9813 ► 9418 . 7583 53 28 36 9 . 3194 • 0161 9839 3033 . 6967 51 24 40 10 • 3780 146 146 146 146 145 . 0134 9860 . 3640 153 153 153 153 153 . 6354 50 30 44 11 • 4366 I 5634 .. 0107 . 9893 . 4351) . 5741 49 16 48 13 . 4950 . 5050 . 0079 J . 9981 » 4871 . 5139 48 13 53 13 . 5534 . 4466 . 0059 J . 9948 1 • 5488 . 4518 47 8 56 14 . 6118 3889 . 0035 . 9975 6093 1907 46 4 *9 15 6700 145 145 145 144 144 3300 .989997 .910003 6703 153 153 153 151 151 3397 45 11 4 16 . 7381 > , 9719 . 9970 7 0030 . 7311 . 9689 44 50 8 17 . 7863 . 9138 * 9949 7 . 0058 7930 . 9080 43 53 13 Id . 8443 . 1559 . 9915 . 0085 . 8537 . 1473 43 48 16 19 . 9030 . 0980 , • 9887 . 0113 . 9133 . 0867 41 44 30 90 . 9599 144 144 144 144 143 . 0401 . 0140 9739 151 151 151 151 150 . 0361 40 40 34 31 .330176 •669B34 1 9839 * . 0168 .340344 •659656 39 36 2* 33 . 0753 . 9347 . 9804! . 0196 . 0949 . 9051 39 33 32 31 . 1339 . 8671 .. 9777 . 0233 . 1558 8448 37 28 36 34 . 1904 . 8096 - 9749 . 0351 ~ 9155 .' 7845 36 24 40 35 . 3478 143 143 143 143 149 . 7533 . 9731 . 0379 . 9757 150 150 150 150 149 . 7343 35 20 44 36 . 3051 , 0949 . 9693 . 0307 . 3358 . 6643 34 16 48 37 . 3034 . 6376 . 9666 . 0334 . 3958 .• 6042 33 12 53 38 . 4195 . 5P05 . 9637 .. 0363 . 4558 . 5442 33 8 56 SO ► 4767 . 5333 - 9810 . 7 • 0390 .. 5157 * 4843 31 4 50 30 . 5337 143 143 143 143 141 . 4663 . 9583 . 0418 / 5755 149 149 149 149 : 148 . 4345 30 10 4 31 . 5906 . *094 . 9553 : . 0447 . 6353 . 3647 39 56 8 38 . 6475 . . 3525 . 9535 1 .. 0475 . 0950 . 3050 38 52 13 33- . 7043 . 3957 . 9497 . 0503 . 7546 . 3454 37 48 16 34 . 7610 • 3390 . 9469 .. 0531 . 8141 . 1859 96 44 30 35 . 8176 141 141 141 141 140 . 1834 . 9441 . 0559 . 8735 148 148 148 148 148 • 1335 35 40 34 36 . 8743 . 1358 . 9413 . 0587 . 9339 . 0671 34 36 38 37 . 9307 . 0693 . 9385 . 0615 . 9932 . GOTO 23 32 33 38 . 9870 . . 01X . 9356 . 0644 .330514 .649486 33 23 36 39 .340434 •559566 » 9338 . 0673 . 1106 . 8894 31 24 40 49 . 0996 140 140 140 140 139 . 9004 9399 . 6701 . 1697 147 IS 147 147 147 . 8303 90 30 44 41 . 1558 • 8443 ! 9371 . 6799 ~ 9987 . 7713 19 16 48 43 . 9119 . 7881 ~ 9343 0751 . 9876 . 7134 18 13 53 43 3679 . 7331 . '9314 67811 . 3465 • 6535 17 8 56 44 . 3239 • 6761 , 9186 . 0614 • 4053 » 5947 16 4 51 45 3797 139 139 139 139 139 6303 *. 9157 . 0843 . 454C 147 146 5300 15 9 4 46 . 4355 . 5645 . 9138 . 6873 • 5997 4773 14 56 8 47 • 4913 . 5067 . 9100 ' 0900 . 5813 . 4187 13 53 13 48 . 5469 . 4531 . 9071 0999 . 63H . 3603 IS 48 16 49 . 0034 3976 . 9049 • 0958 . 3018 11 44 30 50 . 6580 138 138 138 138 138 . 3490 . 9014 0986 . 7506 iS 145 145 145 . 9434 16 40 34 51 7134 S8M . 8989 ! 1015 . 8149 . 1851 9 36 38 53 . 7687 . 9313 8956 . 1044 . 8731 . 1369 8 33 33 53 . 8340 . 1760 . 8937 . 1073 . 9313 . 0687 7 38 36 54 j . 8793 • 1908 « 1109 . 9894 . 0106 6 34 40 55 ' . 9343 137 137 137 137 137 . 6057 . 8809 . 1131 .360174 145 145 144 144 144 .339536 5 SO 44 56 9893 . 0107 . 8840 . 1160 . 1053 . 8947 4 16 48 57 i .350443 .€49557 v 8811 J . 1189 . 1633 . 8368 3 13 53 58 . 0993 • 9008 8783 7 . 1918 . 3310 . 7790 9 8 56 59 . 1540 . 8460 .. 8753 . 1347 . 9787 . 7313 1 8 • 4 31 60 60 3.338088 6)4*7912 9.386734 9:011378 9.333364 0.636036 6 • • t i L.GCW. DUE for 15" . i.Sec 1 L.BUI. DUE for H" L.C0Me. L.Oot. Diffi for 15" L.Ting. i Hours. iDag. Do* Hours j-*^ ml' orl* orl* 0* 14 »6 ' r- -4? IP — 4F 7 |P 8* Digitized by VjOOQIC 44 TABLE II.— LOO. SINES, TANO'fl, &C. 130 V — 15" 1" — 15'. 1» — 150 1660 11* Diff Diff. Diff Hourt. Deg. L.Sin. for 15" orl* L.COMC. L.C0* for 15" orl* L-Soc L.Tanf. for 15" orl* L-Coc D*. Hoen. • f i t - a $* 9.359088 137 136 136 136 136 0.647912 9.988724 7 7 7 7 7 0.011276 9.363364 % 143 143 143 0.636636 69 T m 111 4 1 . 9635 . 7365 ' . 8695 1305 . 3040 . 6960 59 56 W 8 2 . 3181 . 6810 . 8665 1335 . 4516 . 5484 58 ■Si 12 3 . 3726 . 6274 . 8636 . 1364 . 5090 . 4910 57 4f 16 4 . 4971 . 5729 8007 . 1393 • 5664 . 4336 58 44 90 5 . 4815 136 136 135 135 135 . 5185 . 8578 7 7 7 7 . 1422 6937 143 143 143 143 142 3763 55 40 24 6 . 5358 . 4642 . 8548 . 1452 . 6810 . 3190 54 36 28 7 . 5901 . 4099 . 8519 1481 . 7389 . 9618 53 ae 32 8 . 6442 . 3558 . 8489 . 1511 . 7953 . 904? 58 ** ■ 36 9 . 6964 . 3016 . 8400 . 1540 . 8524 . 1476 51 24 40 10 . 7524 135 135 135 134 134 . 2476 . 8430 7 7 7 7 7 . 1570 . 9094 142 142 142 142 141 . 0906 50 90 44 11 . 8064 . 1936 . 8401 . 1599 . 9663 0337 49 16 48 12 . 8603 . 1397 . 8371 . 1699 .890932 .690768 48 12 52 13 . 9141 . 0859 . 8342 . 1658 0799 . 9901 47 8 56 14 . 9679 . 0321 . 8312 . 1068 . 1367 . 6933 46 4 53 15 .360215 134 134 134 133 133 .639785 8982 7 7 7 7 . 1718 . 1933 141 141 141 141 141 8087 45 7 4 16 . 0751 . 9249 . 8259 . 1748 . 9499 . 7501 44 56 8 17 . 1287 . 8713 . 8292 . 1778 . 3065 . 6935 43 52 12 18 . 1822 . 8178 . 8193 . 1807 3629 6371 49 48 16 19 . 9350 . 7644 . 8163 . 1837 . 4193 5807 41 44 20 20 . 9889 133 133 133 133 132 . 7111 . 8133 7 7 7 7 . 1867 4756 141 140 140 140 140 . 5944 49 49 24 21 . 3422 . 6578 . 8103 . 1897 . 5319 . 4681 39 36 28 99 . 3954 . 6046 8073 . 1997 . 5881 . 4119 38 3S 32 23 . 4485 . 5515 . 8043 . 1957 . 6442 . 3558 37 * 36 94 . 5016 . 4984 . 8013 . 1987 7003 . 9997 36 24 40 95 . 5546 132 139 132 132 131 . 4454 7983 7 8 7 7 7 . 9017 . 7563 140 140 139 130 139 . 9437 35 99 44 90 . 6075 . 3995 . 7953 . 9047 . 8129 . 1878 34 16 48 97 . 0603 3397 7992 . 9078 . 8681 . 1319 33 12 52 98 . 7131 . 9869 . 7899 . 9108 9939 . 0761 39 8 56 99 . 7659 . 9341 . 7862 . 9138 . 9797 0903 31 4 54 30 . 8185 131 131 131 131 131 . 1815 7839 8 7 ? 8 . 9168 .380354 139 139 139 138 138 .619646 39 6 4 31 . 8711 1989 . 7801 . 2199 . 0910 9090 99 56 8 39 . 9230 . 0764 7771 9999 . 1465 . 8535 98 52 12 33 . 9761 0239 . 7740 . 9900 . 9021 7979 97 48 16 34 .370985 .69J9715 . 7710 . 9990 . 8575 . 7495 96 44 20 35 . 0806 130 130 130 130 130 . 9199 . 7679 7 8 7 8 8 . 9391 . 31-20 138 138 138 138 138 . 6871 95 40 24 36 . 1330 8670 . 7649 . 9351 . 3061 . 6319 94 36 28 37 . 1859 . 8148 . 7618 . 9382 . 4934 5766 93 32 38 . 9374 . 7626 . 7588 . 9412 . 4786 . 5914 29 2* 36 39 . 9894 . 7106 . 7557 . 9443 5337 . 4983 91 24 40 40 . 3414 130 130 199 199 129 . 6586 . 7596 8 7 8 8 8 . 9474 5988 137 137 137 137 137 . 4112 99 90 44 41 3933 0067 . 7495 . 9505 . 6438 . 3569 19 16 48 49 . 4459 . 5548 . 7465 . 9535 6987 i 3013 18 12 52 43 . 4970 5030 . 7434 . 9566 . 7536 . 9464 17 8 56 44 . 5487 . 4513 . 7403 . 8597 . 8984 . 1916 16 4 55 45 . 0003 199 199 198 128 128 . 3997 7379 8 8 8 8 8 . 9098 . 8931 137 137 136 136 136 . 1369 15 5 4 46 . 6519 . 3481 . 7341 . 9659 . 9178 0899 14 56 8 47 . 7035 . 9965 . 7310 9690 . 9795 . 0975 13 52 12 48 . 7549 . 9451 7979 . 9791 .390270 .609730 19 48 16 49 . 8063 . 1937 . 7948 9759 . 0815 . 9185 11 44 20 50 . 8577 198 198 128 128 197 . 1493 . 7917 8 8 8 8 9783 . 1300 136 136 135 135 135 8840 10 49 94 SI . 9080 . 0911 . 7186 . 9614 . 1903 . 8097 9 36 28 59 . 9009 . 0398 . 7155 . 9845 . 9447 . 7353 8 32 32 53 .380113 .619887 . 7194 9676 . 9989 . 7011 7 2ft 36 54 . 0094 . 9376 . 7093 . 9907 . 3531 . 6469 6 24 40 55 . 1134 197 197 127 127 197 8960 '. 7061 8 8 8 8 8 . 9939 4073 135 135 135 135 134 . 5987 5 90 44 56 . 1644 . 8356 7030 . 9970 . 4614 . 5396 4 16 48 57 . 2159 . 7848 . 6998 . 3009 * 5154 . 4846 3 12 52 58 . 9661 7339 . 6967 9033 . 5694 . 4306 9 8 58 59 . 3168 6839 . 0935 . 3065 6933 3767 1 4 55 00 69 9.383675 0.616395 9.986904 0.013096 9.398m 0.603999 6 ■ « # L.ON. IMC for 15" L.8M. L.81&. Biff for 15" IhCoate. L,Oot Diff for LTtlf. i • Hour*. Deg. Deg. Hoar* orl* orl* orl* 6» 10 0O r- -4«lo — 4» i r*V> O* Digitized by VjOOQIC TABLE II.— LOG. 8INB8, TAMo'g, &C. 45 0> HP V -15" 1«- - 15' 1» — 150 105O < - 11* M Diff. Diff. Hours. Dei- L.SiA. for 15" orl* LCoeec. IfrOoe. for 15" orl* L.8ee. L.Tang. for 15" orl» L-Cot. Deg. i Houn. - • i 50 9.383675 137 126 126 126 136 0.010325 9.986004 8 8 8 O.O13096 9.396771 134 134 134 134 134 0.603229 60 360 4 1 . 418.» . 5818 . 6873 . 3127 . 7309 . 2691 59 56 8 s . 4687 . 5313 . 6841 . 3159 . 7846 . 3154 58 53 12 3 . 5199 . 4808 . 6609 . 3191 . 8383 . 1G17 57 48 16 4 . 5697 . 4303 . 6778 . 1PW . 8919 . 1081 56 44 90 5 . 6901 136 196 125 125 125 . 3799 . 6746 8 . 8 8 I . 3354 . 9455 134 133 133 133 133 . 0545 55 40 24 8 . 6704 . 3296 . 6714 . 3286 . 9990 0010 54 36 26 7 7207 . 8793 . 6683 . 3317 .400524 .599476 53 33 32 8 . 7709 . 3391 . 6651 . 3349 1058 . 8943 53 38 36 9 . 8210 . 1790 . 6619 . 3381 . 1501 . 8409 51 34 40 10 .. 8711 135 135 135 125 134 . 1389 . 6587 8 8 8 8 . 3413 . 8134 133 133 133 133 133 . 7876 59 20 44 11 . 9311 . 0780 . 6555 . 3445 . 8656 . 7344 49 16 48 13 . 9710 . 0290 . 6533 . 3477 . 3187 . 6813 48 13 52 13 .390200 .009791 . 6491 3509 . 3718 . 6282 47 8 50 14 . 0708 . 9292 . 6459 . 3541 . 4849 . 5751 48 4 57 15 . 1203 134 124 124 124 133 . 8794 . 6437 8 8 8 8 8 . 3573 . 4779 138 133 133 139 138 . 5331 45 3 4 16 . 1703 . 8297 . 6305 . 3605 . 5308 . 4698 44 56 8 17 . 9199 . 7801 . 6363 3637 . 5836 . 4164 43 53 152 18 . 9695 . 7305 . 6331 . 3669 . 6364 . 3636 48 48 lt> 19 . 3191 . &5<)<> . 6899 . 3701 . 6898 . 3108 41 44 20 530 . 36*5 133 123 133 123 133 . 6315 6366 8 8 8 8 . 3734 . 7419 131 131 131 131 131 . 8581 40 40 24 SI . 417.) . 5831 . 6334 . 3766 . 7945 . 8055 39 36 28 22 . 4673 . 5327 . 6308 . 3798 . 8471 . 1539 38 33 32 23 . 5166 . 4Kn . 6169 . 3831 . 8997 . 1003 37 38 36 24 . 5658 . 4u.. . 6137 . 3863 . 9531 . 0479 38 34 40 95 . 6150 133 123 133 133 139 . 3850 . 6105 8 8 8 8 . 3895 .410045 131 131 131 139 130 .589955 35 30 44 96 . 6641 . 3359 . 6073 . 3988 . 0569 . 9431 34 16 48 97 . 7131 . 3869 . 6039 . 3981 . 1093 . 8906 33 13 52 98 . 7689 . 8378 . 6007 . 3993 . 1615 . 8385 39 8 56 99 . 8111 . 1889 . 5974 . 4086 . 3137 . 7863 31 4 58 30 . 8600 139 139 139 189 131 . 1400 . 5948 8 8 8 8 8 . 4C58 . 8658 130 130 130 130 130 . 7343 30 51 4 31 . 9088 . 0918 . 5909 . 4091 . 3179 . 8831 89 56 8 39 . 9575 . 0435 . 5876 . 4134 . 3699 . 6301 88 53 12 33 .400063 .599938 . 5843 . 4157 . 4319 . 5781 87 48 16 34 . 0549 . 9451 . 5811 . 4189 . 4738 . 5868 96 44 20 35 . 1035 131 131 121 121 121 . 8965 . 5778 8 8 8 8 8 . 4333 . 5357 189 139 139 139 139 . 4743 85 40 24 36 . 1520 . 8480 . 5745 . 4355 . 5775 . 4985 84 36 28 37 . 9005 . 7995 . 5713 . 4388 . 6393 3707 83 33 32 38 . 3489 . 7511 . 5679 . 4331 . 6810 . 3190 88 38 *j 39 . 3D7S . 7028 . 5646 4354 . 7330 . 8874 91 34 40 40 . 3455 121 180 190 130 130 . 6545 . 5613 8 8 ! . 4387 . 7848 139 139 138 138 138 . 3158 90 SO 44 41 . 3938 . 6063 . 5580 . 4430 . 8358 1042 19 16 18 49 . 4430 . 5580 . 5547 . 4453 8873 . 1137 18 13 52 43 . 4001 . 5099 . 5514 . 4486 . 9387 . 0613 17 8 56 44 . 5381 . 4619 . 5480 . 4530 . 9901 . 0999 18 4 59 45 . 5863 130 190 130 119 119 . 4138 . 5447 8 8 8 8 . 4553 .430415 138 138 188 , 138 138 .579585 15 1 4 46 . 6341 . 3659 . 5414 . 4586 . 0987 . 9073 14 56 8 47 . 6830 . 3180 . 5380 . 4630 . 1440 . 8560 13 53 12 48 . 7399 . 8701 . 5347 . 4653 . 1953 . 8048 18 48 16 49 . 7777 . 3333 . 5314 . 4688 . 3463 . 7537 11 *4 20 50 . 8254 119 119 119 119 119 . 1746 5380 8 1 8 . 4730 . 8974 187 137 127 137 137 . 7086 10 40 24 28 51 59 . 8731 . 9307 . 1369 . 0793 . 5347 . 5313 . 4753 . 4787 . 3484 . 3994 . 6516 . 6006 9 8 36 32 32 53 . 9689 . 0318 . 5180 . 4830 . 4503 . 5498 7 28 36 -54 .410157 .583843 . 5146 • 4854 . 5011 . 4989 6 34 40 44 55 56 . 0633 1106 118 118 118 IIP 118 . 9368 . 8894 . 5113 . 5079 8 8 8 8 . 4887 . 4981 . 5519 . 6037 137 137 137 136 136 . 4481 . 3973 5 4 30 16 48 57 . 1579 . 8431 . 5045 . 4955 . 6534 . 3466 3 13 52 58 . 9059 . 7948 . 5011 . 4989 . 7041 . 8959 3 8 59 56 iO 59 60 . 3525 9.413996 . 7475 O.587004 . 4978 9.984944 . 5033 0.015056 . 7547 9.4*8052 . 3453 0.571948 1 O 4 0- m f / L-Ooe. Diff. for 15" USee. L.8in. Diff. for 15" L.Comc. L. Cot. Diff. for 15" L.Tang. , ,. 1. Houn. Deg. Dei. Houn. orl» orl« . orl - ".I • * 1 040 r- • 4 1 1° -4« * *3 s» 5* Digitized by VjOOQIC 46 l*—lSo TABLE H. — LOO. SINKS, TANo'fl, &C !• — 15" 1«— M' V — 150 1640 IO» Hours. De g . 4 8 13 16 30 34 38 33 40 44 48 4 8 13 16 30 34 39 38 36 44 48 53 56 4 8 IS 16 34 38 33 36 44 48 53 50 4 8 13 16 30 34 SB 33 36 40 44 48 53 56 40 41 43 43 44 45 46 47 48 49 50 51 53 53 54 55 56 57 58 59 ■Mir*. Deg. L.8in. Diff. for 15" orl" 0.41SJ98 . 3407 . 3438 . 4403 . 4878 . 5347 . 5815 . 6383 . 6751 . 7318 . 7684 . 8150 . 8015 . 9079 . 9544 .490007 . 0470 . 0933 . 1395 . 1857 . S318 . S778 . 3338 . 3697 . 4156 . 4615 . 5073 . 5530 . 5987 . 6443 . 6899 . 7354 . 7801 . 8717 . 9170 . 9031 .430975 . 0517 . 0378 . 1434 . 1971 . 812* . 877* . 3333 . 3675 . 4132 . 45*> . 501* . 5463 . 5108 . 6151 . 0793 . 7343 . 7686 . 8131 . 8573 . 9014 . 945* . 0817 0.440338 L.Cofl. 118 118 117 117 117 117 117 117 117 116 116 116 116 116 116 116 116 115 115 115 115 115 115 115 115 114 114 114 114 114 114 114 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 Ml 111 111 111 HI 111 111 111 110 110 110 110 »-105« Diff. fhr 15" orl« L.Comc L. Cob. 0-587004 0533 6063 . 55D3 . 5133 . 4653 , 4185 . 3717 . 3349 . 8783 . 8316 1850 1335 0)31 . 0456 .579993 . 9530 . 9067 . 8005 . 8143 6763 6303 5844 . 4470 . 4013 . 3557 . 3101 . S646 . 8H1 . »1737 1383 . 0830 0377 .569935 . 0473 . 0033 . 8573 . 8131 . 7673 . 7381 . 6764 . -3378 . 5131 . 4984 . 4538 . 4013 . 3047 . 3303 . 8758 . 8314 . 1871 . 1438 . 0186 . 0544 . 0101 0.559603 L.8«e. 0.084944 4910 . 4876 . 4643 . 4808 . 4774 . 4740 4708 . 4673 . 4638 . 4601 . 4569 . 4535 . 4500 4431 4397 4394 4334 4189 4155 4130 4035 4050 4015 39H1 3946 3911 3875 3840 3805 3770 3735 3700 3664 3594 3553 3531 34R7 3453 3416 3381 3345 3309 3373 . 3166 . 3130 . 3014 . 3058 . 3033 . 8986 . 8150 . 8914 . 8378 0.003843 L. Sin. Diff. for 15" orl« Diff. for 15" orl» L-Soc. 0.015056 5040 5134 5J58 5193 5394 5338 5363 5397 5431 5465 5500 5534 5569 5003 5637 5673 5708 5741 5776 5811 5845 5880 5915 6019 0054 0135 6100 6195 0365 6300 6336 6371 6477 6513 6548 •584 §619 •655 0091 8737 •798 6834 0078 7014 7050 7080 7133 017156 L. Ootcc L. Tanf. 9.4*8053 . 8557 . 90(33 . 9560 .430070 . 0573 . 1075 . 1577 . 3079 . 8580 . 3031 . 3581 . 4080 . 4570 . 5078 . 5578 0073 . 0570 . 7007 . 7563 8554 . 0543 .440030 1033 1515 8497 3479 3900 4458 4947 5435 5933 6411 6898 7384 7870 8356 8841 0336 0810 0777 1300 1741 3187 3088 4148 5107 5586 . 0543 . 7019 O.457406 L. Oot. out for 15" orl« L.Cot. Deg. 136 136 186 136 136 135 135 135 135 135 135 135 185 135 134 134 184 134 134 134 184 184 183 183 133 183 133 133 133 183 133 133 133 133 133 133 133 133 131 131 131 131 131 131 131 131 131 131 130 130 ISO 130 130 130 130 130 119 119 119 110 Diff. 15" orl* 0.571948 . 1443 . 0938 . 0434 943i 8935 8433 7931 7430 0919 •419 5J30 5431 4933 3937 3430 8933 8437 1941 1440 0951 0458 9470 897P 84*3 7994 7503 7013 0581 6031 5543 . 4565 . 4077 . 3580 . 3103 . S616 . 3130 1644 . 1159 . 0674 . 0190 .549708 . 0331 . 8740 . 8357 7776 7394 6813 5373 . 4414 . 3036 . 3458 . 818! O.543504 L.Ttnf. !'_* 10-4* >6D 56 53 4* 44 36 33 38 34 30 16 13 8 4 60 50 156 38 34 M 13 8 4 • 56 53 48 44 40 36 33 38 34 57 56 38 34 Def. V4o 4* Digitized by VjOOQIC TABLS n.— LOO. 8INBS, TANo's, &C. 47 1* 16o 1'- - 15" 1- - . 15' 1> — 150 1630 10* Uiff Diff Dili El alt M ft* L. Sin, Got 11" LG«k L-Co*. far 15" L-Sec' U Tftftf . far 15' h L. Oat. 1 l* X Kauri * 1 ' or 1' orl* url* f m • 4 » o t*o:U- no no ira (CM O.aieaoa U UN^Ji 9 S tiO 1 i 1798 , 99*3 . 3*5 i ruts 7H73 p 30ii 59 50 a : 3 . 1318 . 8783 . nm i 7331 B440 . 1551 58 53 13 3 losa . 8313 . wm . ms 8935 1075 57 48 w 4 . 9OJ0 7J04 . Sfrtt . 7301 , 9400 OiiUO 50 44 zu 5 3535 100 KM Ift-J 10J 7405 . -j'- <• 9 9 . 7310 . 9875 11* 11 11- llr 11*T , 0135 55 40 M 1 , 2^73 . 7037 . 3 m . 7370 .46031 lp ,33n,jj ji JU > 7 3410 t 65'JO , S547 . 7413 - 0*H . 0177 53 33 ;■ a . 3*17 . 6253 , 3550 7450 „ Wit? . 8703 53 38 30 ■ + 4^1 - 5716 3514 . 748* . 177U , mm 51 34 iU 10 . 4730 1011 109 lff.1 109 108 ♦ 5390 . 3477 9 9 . 7533 . 331' 118 lift 118 Ufl 118 n 7757 50 30 n 11 , 5155 ■ 4845 . 3441 . 755i - 2714 v:-. 16 r 13 LI 5540 6035 4410 . 3075 . 3404 . mm . 7596 , 70-13 . 31* . sua- 0H14 0343 48 47 I.' 56 || 645'j . 3541 . 3331 . 7609 . 4138 sen 46 4 5 n 15 6H>3 103 m- 104 103 . 3107 . 3304 9 . 7706 IPS 117 117 117 117 w 5401 45 55 i 16 . 73*; - 3674 . S237 . 7743 5ii r.i - 4i*31 11 5ti 17 18 . 7750 . 81<"1 . 3341 . 180-3 2183 * 7780 . 7817 - 553 . 44i.l , 3093 43 42 I- i'i id , 8623 . 1377 + 3146 , 7&W . 6477 . 3533 41 li 31 30 . 0054 109 107 107 107 107 . OHO . 3109 9 9 9 . TB9I » 69^5 117 117 n; 1.7 in . 3055 40 40 N 31 0435 ■ 0515 . -,niT-j > 703? 1 - 7413 i 35*7 39 30 H aa . 6015 . 0085 i 3035 . 7063 7^H1 i 913U 38 ;«3 fj 33 430315 >r , 1WI8 . 8003 8347 . 1053 37 3* w 34 . 0775 . 0335 . 1961 - B03J k 8814 . 1186 30 n 10 35 . 13iH 107 103 ]»; 107 107 . 8790 MM 9 9 9 . mn t 9-2R1 lit) Mi lit) Ui . 07-J 35 3o 11 1.- n 37 1039 1 . 3000 , 8368 . 7040 . 1^0 . 8114 8 151 . 974li ,47oan 0354 ,3tl97Hy 34 33 16 13 59 3d 30 . 34** , 3915 . 7513 . 7085 . 1K13 , 1774 . ei88 p 0676 . 1*41 . 1»334 . B85» 33 JJ 'I 30 . 3343 106 ii'. 100 106 100 . 0658 . iri7 9 , 8303 , 1605 lie 116 lib ill 115 i 8395 30 04 1 :n . 3768 . 5313 * 1IEI9 , 8301 . 90tm . 7tJ31 ■.".' 56 H 33 . 4104 5806 , 1003 * E138 . 351*3 . 7408 38 52 ft n . «ua . 538] . vm - 837t : »): 5 . 7005 37 48 If, 31 , 5044 . 4050 1587 . B413 i 3457 . 0543 30 44 u -15 . s*en 100 w\ 106 106 105 4531 . 1550 . §450 . 3910 115 li. J15 i •: , 6081 25 40 .' 1 36 , 5*13 . 4107 . 1513 8488 . 43-1} , MIS 34 W ,._ M 17 , 61 lf» . 3584 . 1474 . 853(1 4tm . 5l5f 33 n aj 3d * 6730 . 3311 . i4:m - 8564 . 530-.I . 4697 33 38 M & . 7 UK . 3838 1300 , 8601 571^ . 4337 31 « 10 iU . 7584 105 105 105 105 105 . 94W . 13H1 e 9 9 • 86351 , 0333 115 115 m 114 114 ♦ 3777 39 30 M 41 -I'M. , 1004 . 1333 . BR77 0683 . 3317 19 10 14 43 . 6437 * 1573 13«5 , 8715 . 7142 . L".V- 18 13 SI P . 8848 . 1152 . 1347 . -T.Vr . 7*01 . 311! HI 17 * 10 44 . BQ68 0732 mm . 8701 . 8053 . 11H1 16 4 T ii 4 45 40 . 9688 .400 JO* 105 105 in", 104 101 . 0313 . 1171 . 1153 9 9 9 i . 8890 . 6807 . 8517 . 8975 1M in 114 111 1L4 . 1483 1035 15 14 6$ 5ii ! rt 47 . 0527 p 0473 . 10^5 i 8f»05, g 9439 . 0568 13 53 ta 48 . t\w, 0054 . 1057 . im t 9880 . oin J -J IK tfl 49 ■ 1304 . 8630 * 1010 t 8U8I .480345 .919055 11 11 .-■1 50 . 17*3 104 104 104 104 104 . 8319 - 0081 9 10 10 9 . 0016 , 0801 114 114 114 114 114 . 0100 10 40 N SI . 3199 . 3010 . 7801 . 7384 . 0043 . OOSm , 90.Ni . 1357 . 1713 . 8743 - 8388 1 8 36 8 53 , 3n-« , 60«8 t 0866 , 9134 , «llJd . 7834 7 3-" w 54 i 344a - 6553 - 0697 , 9173 . 3631 . 7379 34 m 55 . 3*H 104 IM !01 103 103 . 6136 . 07W 10 9 10 10 , 0311 , 3075 ll.l 113 113 113 113 ■ 0035 5 30 .! M . 437-1 - 57*1 . 0751 . 0349 . 353-* 6471 4 16 i- 57 . 40M4 ♦ £Hfti * 0713 . 03*8 , 3083 . 00!8 3 13 33 58 5108 4809 . H.17I , 0336 p 4134 ■ 5506 f 8 n 30 - 55-23 . 447H . 0635 . 9305 4RB7 . 5113 1 4 7 iti AD i* m. -,-►■■..:. ">3«i>:, o.9S05:m; 0,010404 O.i^.VIL. O51460I 39 i a • F Dfff. fur 15 J ' Diir for 15" Diff f«r 15" ' Ifoun. Dtf, L.Co§. L. Set. L, Bin. L. Cowa U Oot. LTfcDi, Def 1 1 . iij r- [ or 1* «r 1 orl" | i* IOC |o 1*- 4' 10. -4* f3« 4 fc» Digitized by VjOOQIC 48 TABLE II.— LOCI. SINKS, TAKg's, &C. 1T> 1' — 15" !• — 15' 1»-150 109)0 ia» Hoars. De* 4 8 12 16 30 24 40 44 48 32 56 4 8 12 16 20 24 28 32 36 10 11 44 48 52 56 4 8 12 16 20 24 98 32 36 40 44 48 52 56 4 8 12 16 20 24 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 30 11 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 Hoars. Deg. L. Bin. DitT for 15" orl« 9.465935 6348 6761 7173 7585 7900 8407 8817 9227 9637 .470046 0455 0863 1271 1071' 9065 2492 2899 3304 3710 4115 4519 4923 5327 5731 6133 6536 6936 7340 7741 8142 8542 8949 9342 9741 .480140 . 0539 . 0937 1334 1731 . 2128 . 2525 . 292) . 3316 . 3712 4107 4501 6975 6467 6859 7251 7643 . 8814 . 9204 . 9593 9.409962 L.O0S. 103 103 103 103 103 102 102 102 102 102 102 102 102 102 102 102 101 101 101 101 101 101 101 101 101 100 100 100 100 100 100 100 100 100 99 99 99 99 98 97 97 97 97 3% 10 1* Diff 15" orl- L. Goose. 0.534065 2415 2004 1503 1183 0773 .530054 . 9545 9137 . 8729 . 8321 . 7915 . 7508 . 7101 . 6690 5481 5077 4673 4269 3867 3484 1458 1058 0658 .019660 . 9461 . 9063 8666 7872 7475 7079 6684 . 5893 . 5499 . 5105 . 4711 . 4318 . 3925 . 3533 . 3141 . 2749 . 2357 . 1967 . 1576 1186 . 0796 . 0407 O.S100I8 L.Bec L.OM. 9*9805 W . 0558 . 0519 . 0480 . 0442 . 0403 . 0304 0247 0208 0169 0130 0091 . 0912 .•79973 . 9934 . 9894 . 9855 . 9816 9776 9737 . 9697 . 9658 . 9618 . 9579 9340 9180 9140 9099 9019 8979 8939 8898 8818 fc 8777 *8736 8696 8655 8615 8574 8533 8493 8452 8411 8370 TOT for 15" orl« . 8247 0.978266 9 10 10 9 10 10 10 10 JO 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 JO 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 DMT 15" orl« L.Sec 0.019404 9442 9481 9520 9558 9597 9636 9675 9714 9753 9792 9831 9870 9988 .030027 0066 0106 0145 0184 0224 0263 0303 1042 0382 0421 0481 0501 0541 0740 0780 0901 0041 0981 1021 1061 1102 1142 1182 1223 1264 1304 1345 1385 1426 1467 1507 1548 1589 1630 1671 1712 1753 .0911794 L.O0M6. r — * io— 4» L.TMf- 9.485330 . 5791 . 6242 . 6693 . 7143 . 7593 . 8043 . 8499 . 8941 .490286 . 0733 . 1180 . 1627 2073 . 2519 3410 4743 5186 6515 7399 7841 9169 0481 0920 1359 1797 2S35 2672 3109 3546 3982 441* 5724 6150 6593 74611 7893 8756 9191 .510054 . 0485 . 0916 . 1346 9511776 L.OM. DRT for 15" orl- L.O*. 113 113 113 112 112 112 112 112 112 112 112 112 112 112 HI 111 111 111 111 HI 111 111 111 111 110 119 110 110 lie no no ue no no no no 100 169 109 109 109 100 109 109 100 109 109 108 108 108 108 108 108 108 108 108 108 107 107 0.5140*1 . 490U . 3758 9857 2407 1957 1508 1059 0GM> .0O9714 DUE 15" orl» 7927 7481 7035 6590 6145 5701 5357 4814 4370 3485 3943 2159 1718 1278 9519 9089 8641 8803 7765 6454 60IH 55H2 5146 4711 4276 3841 3407 9973 2540 9107 1074 .489046 . 9515 L.T*off IJH-I' 51 27 21 Oof •let .12 Oil* 52 4- 1\ Digitized by VjOOQIC 1» 18© Hours. 13 14 15 15 L.8U. 9.459983 .490371 0759 1147 1530 1923 3306 3695 3061 346b 3851 4336 46S1 5604 5773 6154 6537 6919 7301 7683 8063 8444 9584 9983 .500343 0731 1099 1477 1854 3331 3608 3984 3735 4111 4485 5334 5608 5081 6354 6737 7471 7843 8314 310065 0434 1173 1540 1907 3375 94113643 I* Cos. for 15" orl* TABLE II. — LOO. 8TKE8, TANo's, &C l'-iU" ^tM' 1»~>150 49 96 98 96 96 96 95 95 95 95 95 95 95 95 95 95 95 94 94 94 94 94 94 94 94 94 94 93 93 93 93 93 93 93 03 93 03 93 93 93 n 149Q DtC for 15" orF L.COMC 510018 509639 9341 8853 8465 8078 7693 7305 6919 6534 8149 5764 5379 4996 4613 3846 3463 3081 3699 8318 1937 1556 1175 0795 0416 0037 499658 9379 8901 8146 7769 7393 7016 6640 6365 5889 5515 5140 4766 4393 4019 3646 3373 3901 3539 3157 1786 1415 0874 0304 ,489935 9197 7735 0.467398 L. Bee L.Co& 9.938906 . 8165 . 8134 . 8083 . 8043 7959 7918 7877 7835 7794 7753 7711 7669 7586 7544 7503 7461 7419 7377 7335 7393 7353 7310 7167 7135 7083 7041 6957 6914 6873 6830 6787 6745 6703 6660 6617 6575 6533 6489 6446 6404 6361 6.11 6189 6146 6017 5974 . 5887 . 5844 . 5801 . 5757 . 5714 9.973070 for 15" orl- Di 4- Digitized by VjOOQIC TABLE TL—10Q. 8IN1B, TANO's, Ac. 1*> V — 15" 1«- -15' 1» — 150 1000 16* biff Diff ftiff Pel- L.Sin. /or 15" orl« L-Oomc. L.OM. for 15" orl* L.866. L.Tanf. for 15" orl* L-Ooc »* How*. / t m • 9.513648 93 91 91 91 91 0.487358 9.975670 11 11 \\ 11 0.0*4330 9.536918 109 103 103 103 103 0.463038 60 43 61 1 . 3009 . 6991 . 5637 . 4373 7389 . 9618 58 56 S . 3375 . 6635 . 5583 . 4417 . 7793 . 9308 58 J3 3 . 3741 . 6359 . 5539 . 4461 . 8303 . 1798 57 48 4 . 4107 . 5893 . 5496 . 4504 . 8611 . 1389 56 144 5 . 4473 91 91 91 91 91 . 5538 . 5453 11 11 11 11 11 . 4548 . 9030 103 103 103 103 103 . 0980 55 |o# 6 . 4837 . 5163 . 5408 . 4593 . 9439 . 0571 54 7 . 5303 . 4798 . 5365 . 4635 . 9837 . 0163 53 8 . 5566 . 4434 . 5331 . 4679 .540345 .459755 59 l 9 . 5030 . 4070 5977 . 4793 . 0653 . 8347 51 --i 10 . 6394 91 91 91 91 90 . 3706 5333 . 5189 11 8 ii ii 4767 . 1081 109 103 103 103 101 . 8939 58 & 11 . 6657 . 3343 . 4811 . 1468 . 8533 40 ' 13 . 7030 . 9960 . 5145 . 4855 . 1875 . 8135 48 IJ 13 7383 . 9618 . 5101 . 4899 . 9381 . 7719 47 4 14 . 7745 . 9355 . 5057 . 4943 968G . 7313 46 4 15 . 8107 90 90 90 90 90 . 1893 . 5013 ii ii ii ii ii . 4987 . 3094 101 101 101 101 101 . 6808 45 43 Q 16 . 8468 . 1533 . 4060 . 5031 . 3499 . 6501 44 51 ! 17 . 8830 . 1170 . 4035 . 5075 . 3005 . 6089 43 H j 18 . 9190 . 0810 . 4880 . 5130 . 4310 49 *! 19 . 0551 . 0449 . 4836 . 5164 . 4715 .' 5983 41 44 90 . 9911 90 90 90 90 90 . 0089 . 4793 ii ii ii ii ii . 5908 . 5119 101 101 101 101 101 . 4881 40 m 21 .090371 .479739 . 4747 . 5853 . 5594 . 4476 38 M S3 . 0631 . 9369 4703 . 5997 . 5098 . 4073 38 33 33 . 0990 . 9010 . 4659 . 5341 6331 . 3669 37 * 34 . 1349 . 8651 . 4614 . 5386 . 6735 . 3965 36 *€ 35 . 1708 89 89 89 89 89 8393 . 4570 ii n ii ii ii . 5430 . 7138 101 100 100 100 100 . 9803 35 ■ 36 . 3066 . 7934 . 4535 . 5475 . 7541 . 9459 34 Ii 37 . 3434 . 7576 . 4481 . 5519 . 7043 . 9057 S3 li 38 . 9781 . 7319 . 4436 . 5564 . 8345 . 1655 38 - 39 . 3138 . 6863 . 4391 . 5609 . 8747 . 1953 31 -i 30 . 3495 89 89 89 89 89 . 6505 . 4346 ii ii ii ii ii . 5654 . 9149 100 100 100 100 100 . 0851 39 14 g 31 . 3853 . 6148 . 4303 . 5698 . 0550 . 0450 98 '■ 33 . 4308 5793 . 4357 . 5743 . 0051 . 0049 98 33 . 4564 . 5436 . 4313 5788 .550359 AAQftlfl 97 t- 34 . 4919 . 5081 . 4167 . 5833 0759 .' 8848 96 41 35 . 5375 89 89 89 88 88 . 4735 . 4133 ii ii ii ii 5878 . 1153 100 100 100 100 100 . 8847 95 M0 ' 36 5630 . 4370 . 4077 . 5933 . 1553 . 8447 94 hi 37 . 5984 . 4010 . 4033 . 5968 . 1059 . 8048 93 — 38 . 6339 . 3661 . 3987 . 6013 . 9359 . 7648 99 3d 39 . 6693 3307 . 3943 . 6058 . 9751 . 7949 91 94 40 . 7046 88 88 88 88 88 . 9954 . 3897 ii u ii :; . 6103 . 1140 100 09 99 89 6851 90 M ' 41 . 7400 . 9600 . 3853 . 6148 . 3848 . 6453 19 M ! 43 . 7753 . 9347 . 3807 . 6193 . 3946 . 6054 18 13 43 . 8105 . 1895 . 3761 . 6939 . 4344 . 5656 17 81 44 . 8458 . 1543 . 3716 . 0984 . 4749 16 4 , 45 . 8810 88 88 88 88 87 . 1190 . 3671 8 it ii n . 6339 . 5130 89 90 90 80 90 . 4861 15 41 46 . 9161 . 0839 . 3695 . 6375 . 5536 . 4464 14 56 47 . 9513 . 0487 . 3580 . 6480 5033 . 4067 13 59 48 . 9864 . 0136 . 3535 . 6465 . 6399 . 3671 19 48 49 .580315 .459785 . 3489 . 6511 6796 . 3974 11 41 50 . 0565 87 87 87 87 87 . 9435 . 3444 ii ii ii ii u . 6556 7191 90 90 90 90 90 . 9878 18 40 , 51 . 0915 . 9085 . 3398 . 6603 . 7517 . 9483 36 53 . 1965 . 8735 . 3359 . 6648 . 7913 . 9087 8 33 53 . 1615 . 8385 3307 . 6603 . 8308 7 98 54 . 1964 . 8036 . 3361 • '6739 8703 ! 1997 6 94 55 . 9313 87 87 87 87 87 7688 . 3915 n n ii ii u 6785 . 0007 89 88 88 88 88 . 0903 5 90 56 . 9661 7339 . 3169 . 6831 . 0409 . 0508 4 16 57 . 3009 . 6091 . 3194 6876 . 8885 . 0115 3 19 58 . 3357 . 6643 . 367« . 6993 .500979 .498731 9 8 ' 59 . 3705 . 6995 . 3039 . 6968 . 0673 . 8397 1 4 60 9 594660 0.465946 9.973986 0.997614 0.561086 9.498834 49 • / L.O«. Diff for 15" L-Bcc L.8in. Die for 15" L-Oone. L.OOC DiC for 15" orr I L.T*of. i - !• i^T Def. .How* . orl' orl* 1 1 1 ii i#o i>- 4* 10- -4 s * ' !* 6 0> Digitized by VjOOQIC 1 AIILK El. LOO * HI SE4 , T A MVh t Ac. hi li soa 1*-15" |» n i* n* IS90 14> I...I LlnC iiif!, IBM Or, 1**11, tot IS U °* I. Oo* orl" UA^ U. T*«f ♦ Otr 4M-1* (, Lnr. 1V< lleun. •I' p i * ■ •a I ii vim;. 97 44U940 B.ttriaoe 11 !! 11 19 O.Q9t70»-| i »610M 0# IM OP BO 4>.43003i «» 3Q da * I Ufi 93 ■ n , MN 2ND . MM , 143) ■ 0511 M J4i « 1 i.i. 5S5 »*M . 7IOii lesi 1 111 ^ :.■-• H s 3099 4000 , H04» i 7133 3344 ItM n w IA • I A4& tt , 454i*J , ni , 7190 . mm , 7:«4 50 it -^ A , st«i §0 i Itffi . 9755 11 it It H U , 7945 , SO.'O DO M » 0TT3 55 01 ■ i oioo . :i~:/ t MM . 73T>1 . 31 IS . 0,01 54 30 T , 6171 . MM *kia 733J * frll OIPI 53 ;« M 14 , oau ftl M 31*1 . sun * 7309 , 4iri'i 579* 53 # u> 9 . 7103 , **X . M70 ?tau ♦ 451*3 , 5497 51 21 40 JO * 7SH7 as ■ Met g H4U0I , 0374 It T'J 11 M H , 7*7r» . 4FW1 97 117 t S017 50 M 4* 11 , 7H&I . auft i 3470 ♦ 75« , 33711 . 4 . 7390 . a«j H M " 17 * WW 0003 , sioe i TOO* , TTOfi P7 9311 J 43 M N m J4MM 1V...I . 9151 M s . 7&1U * Wlt»H H . J'.Oi 49 > j u 10 0309 . wto 4 2105 . 7313 i 048$ t»7 . 1513 41 J4 M 40 . 09)1 ■ 09 lb 09 i yw . 3a* 13 n is 13 . rm , 0973 i 1137 40 1(1 i4 91 . 1*71 * BT96 . *)U , 7U0t> , 0301 97 , n 30 ■ i- j: Hit . 0307 . J904 ■ Ui . 'mi 1 ' 07 0.151 30 M K 93 .. 195.1 . W»47 . 1»17 . »«3 ,3T00H> 07 AMMM 37 Sd -"*'► 04 ■ MW I TTO , 1S70 . 0I3C , in/: 07 07 . 9570 30 Jl VI as luas i OS I m , 73110 ; "«3 13 13 8 13 - 0177 , 0R00 . 9101 35 iO 44 9V Si i 7099 . irr« , M934 . 1105 90 < fWOS 31 n 1' i7 3310 , 0«9O ; iMi > 8271 . l.v-P 90 . 0410 33 3 .'^ 9* 3049 , KtSJ , law * 031P , IW(7 M MM K - j 'd. t* , 3**7 - 0013 . 103S . 0305 . 9353 704^ 31 4 *■ » 30 . 4383 M 01 04 01 01 SftTS , 15P7 13 SI 13 M 13 * 0413 . 373P M 00 1 M 00 * 7909) 3° 39 1 t M 13 Hi 31 33 XI 34 : w% . nil . soon 43m MM . MM !44li , 0400 •. I?.x\i MM . 3133 , 3-i07 . 3^*9 . 4i1b , 0K77; » * 0493 « . fS 90 4J-. It M :- n H as 3(1 37 ■ , 0011 . 0347 .. 0**3 ♦ 701 :» 73*4 01 81 01 M *i - 3T0fl . MB . 3117 . Bi 954Q , 13S1 . 1303 . 10SJ , Utft M 13 13 11 tt i 0040 HUT . W744 ♦ 079" . 8B39 4fiffl} '. A49T . eira 00 H 00 90 00 , 0349 90 * 41tS0! 94 . 4571, *l . 4199 99 . 3007 M M 30 ■M ««> 40 7m ftl 04 en 03 * SVir . 1113 n M H N li ■ 0^07 * 0570 M , 3194' 90 M (i 41 i HtVH •JM 10HG - N . 00** . 3049 10 h. 4- J 11 . 34150 * 1041 ; mm * KIKJ , 7311 9059 n i ■• H 43 3KW j:*T7 recti . MI3I! » 7733 05 W OS * 9377 17 B ■ H 990 . 0CT74 , PM . ucitb . 0101 liW in 4 « 15 , awo 03 ■ 03 03 , (M',.»t| 0H7-I M i P1W 04*11 »5 * 3511 15 3? n < 4>1 9094 BM t 4*se^ w . IIP * WW . 1133 14 •^1 ^ 17 ,93<*rj? .#4i» m OTW ii M . 1*31 * 0910 OS M 93 95 . 0733 13 Vi i? 4H ittS* m i 0731 B«0 O09- 0J7K 13 ■ M in ottos . 0300 , 0QS3 . 031? .5O00W iAIMH U 44 M so . >M1 01 03 1 03 ^">7'j ¥ IW3A H 19 19 M M , iubjs * U3H!i 95 05 OS 95 OS , flfill 10 w J 4 I M * 1330 WW , omi , 031& B507 • NI3 , mm lli^ , 9931 On*i 1 PI 44 : SS , 7TO3 . TftSJ IMI . P3J0 , 055K . 150P . 1I4TT * 0093 7 4* S mi 03 ■ T.lli) „ 0»4 11 H li 19 19 MM + 49* - 7TH 3 .XJ U 41 , 5jj M'VH) MM . ooat . W£ 05, 05 04 04 . §§M 4 ]»i i ST , N , ow , QOTT , 0703 3011 , MM 3 1/ 5* M . 3071 . 0319 , Mill , W*i , 057?* 9 S N 9 4U0 9 ran i>mn nwoo 3*00 . M|| I 4 m 0-^-»Ll*l OWC71 O.970IM •t.O-Jrf- 0304177 91 MtMM 341 II • • *-,* P l^* -■T m* v Digitizec byGoogk^H 52 TABLE n. — LOO, SINES, TANo's, &C, i* aio V -=15" 1- -= 15' 1* — 150 15SO lO Diir Diff Dirt M..U- - M"ff. L Bin, orl' L.Co«c L-Cm. for 15" orl' I' Set. L. Tanj. for IS' orl' L.O&t. o*« Hour* ■ * * • ♦ M A U o ssiri-j'i n m m m m 0.1 1... 1 9.1*7(1 1.VJ 12 12 12 12 12 u«ri:>-4- 0.3S4177 04 04 04 V4 91 0.415823 GO 3S *4i -i ] 4ti5e- - 5342 . 0101 9H97 . 4535 5445 SO M h 2 . 4«1*7 . 5013 , OU55 0045 . 4932 50U8 58 I: li 1 . 5315 . 5643 . 40*5 - 4357 . OOOti .1M0057 . 0904 .030043 Urn . 4314 .77 96 1 .11 5 , 5971 82 82 82 82 81 , 4039 . 9900 12 12 12 12 12 „ 0001 . 6062 04 04 94 04 04 3038 55 M 24 6 , m . 3701 . 9860 Oi-10 . 6430 ' 3561 54 > - 7 . eon . 3:rr4 . Wll , 0189 . lk-J5 , 3185 53 as I . 6U53 * 3017 . 07O3 . 0237 . 71 WJ JHlu 52 :- m j 73M* - 2720 9714 . 02cNj . 79$ , 2434 51 H in Ki , 760ii ei 81 ei 81 81 . 2304 . 9665 12 Ifi 12 12 12 . 0335 . 7041 04 04 •4 1 03 1C , 90ft m 11 fl . TB99 - 3068 . '.Mm Q3#| , 83149 ; 1B84 m U 13 . &35P . 1742 . 9567 , 0433 . WBSl . 1309 4H a i:i . 8584 . 14 Ifi . 951^ . 0482 . POtiH 0994 47 ■ m 14 ; fflffe - 10B . 04fi0 0531 i 0440 . 0500 40 i jft t 15 P234 81 81 SI 81 81 . 07QE : 0420 12 12 12 12 12 O5.*0 0S14 03 u:\ 03 03 93 01HT 45 sa B 4 IS , BUS . 0442 . 0370 „ 0C30 &O0I8H AOW1 U ■> " 17 p B0B3 . 01 II . n:fc:i „ 0070 . tiossi . IHUr* 43 i. IV 18 .rwv>>.'0: i.*j»7ia . 1M73 . 072? 0035 9Q65 1 47 .* 10 io t 0531 . 0400 . 0223 , 0777 , 1308 0092, 41 4* M 20 , &S54 PI u 81 n 80 . 0146 . 0J73 12 12 0937 1681 9.1 S3 03 93 . H3rJ 40 m 21 . nra , 8822 . 9J24 , 0870 SU54 , 9420 . 794f*i 30 • ■^ t»2 , 1501 . 8499 , !KI75 [r.i25 , 7574 » a « 23 . 1824 . BIT* . mu 12 1* W»75 . 2799 , 71W1 -T7 ; 3« 24 , 21411 . 7*54 . 8070 ; 1024 3170 ^ tftOM' 30 ;* 10 25 . 24&" 80 m 80 BO 80 , 7532 8926 12 12 12 13 12 1074 , 3542 to 03 03 03 93 „ we 35 H 30 . 2790 t 7210 . 8^76 . 1124 . 3914 wm 34 In IE 27 . 3112 . 6888 . 8K27 I17J 42-5 5715 33 M v. *3 29 . 3433 , 3755 . 6507 - 0245 . 8777 . 872H 1223 ; 1273 . 4656 , 5027 Ml i ( 4073 32 31 4 5W i 30 31 . 4075 i 43EHJ 80 80 80 80 80 . 5025 5604 . 8078 , 862H ft 12 id 1322 . 5307 , 5768 93 02 92 02 &2 4rtin , 4232 an -J!> .14 n - ■* & . 47 hi . 5284 , 8578 1422 6138 3812 ** -. 12 & , 5036 . 4904 . 85** i 847e 12 1471 . 6508 :i40Sl SI 1 a 34 , 535ti * 4044 w 1522 6878 ;ii22| m »» to 35 . 5070 . 591(5 80 80 80 80 70 . 4324 ■ 4005 . 8429 , 8379 12 13 13 12 12 ! . 1571 ]|]2» . 7247 . 7616 02 02 !"J 92 99 , 1 m i 35 u •- 31 V :t7 fi3H . 3680 . mm ' 1071 . 7985 2"|j 23 ^ a an , CC32 - XV& t «!78 1723 . 8354 , 104ft 22 .n. 311 . GOSl . 3040 . ma* i 1773 . 8723 I 1277 21 II K) 40 , 7200 70 70 2 70 79 . 2731 . Pirn 12 12 19 13 12 1822 . C001 ■ 92 9-1 92 02 , irn^ 20 u 41 , 75W7 . '.Mil , 8128 ivn . 0450 03*1 M M >- 42 , 7905 . 2095 , 8078 ; 1922^ . 0827 us 1- n -j-J a N222 . 177^ , 802** 1072 .000194 .3S*»^ 17 * Hi 4* . P530 . HOI . 7977 . 2023 05&2 U4>» 16 * 97 1 45 4a . S*5fi . 9172 70 79 31 70 79 1144 . 7927 . 7870 13 12 13 13 13 , 2073 9124 , 0020 t I20fi 92 02 02 01 01 , 0071 . H704 15 It its i ii ■ H 47 * 94SB . 0512 . 7820 , H174 , 1602 ten* 1.1 jS 1 rs H 40 170120 . 0196 .taoseo . 7775 , 7725 . 2225 , 2275 , 2020 . 2305 , 7971 i TOO* 17 11 m >n 50 < 0435 70 70 70 79 70 05*15 s 7674 12 13 13 13 12 2326 . 27fll 0] 91 HI 01 01 , 73)0 10 40 is 51 53 - 0751 , 1006 t 1380 * BBIfl . 8034 ; T6&4 7573 , 7522 . 237« 2427 . 2478 . 3127 * 3858 4 0873 . 4307 9 | 7 3f 31 ■M\ 54 1094 P30(5 . 7171 2529 , 4223 . *777 10 55 .. torn 78 78 7- 7S 7* . 7091 , 7421 13 13 13 ia 13 . 2*79 , 45* PI to 0.1 01 01 , Mil 1 p 11 Sit . 2323 7677 . 7370 . 204 0606410 o 3t*:i5 r< o o a» '1 * « * LCcf. 15" L.3*e L9in* IMS 15" UCflKt L Cot Or 15^ LT*ii*. * m Hon* it- l>f IffTIJTP cir 1* orr OTl* 7' 11 w 1' - 4»1*. r MP 1 i r Digitized by VjOOQIC TABLE II. — LOO. 8INE8, TANGOS, k J 1 . UiJ- Hours. llfljf- L. sin. 1 fir U Cotec. 1 l - c ^ s» L. Sec. L. Tanf , S-"i ' L Col, Dkjt. Houri^ ~| T 1 1 "L J 1 Pfl - L.rV - ■ 31 * CO *4 u 0.5 13571 ! 2 0.iaU2l 0.9&7 tM 13 13 13 13 13 0,03V 1 0..«iO.Ut< 1 Hi U.3IM.7H. 60 i 1 - oilJl ♦ 7U5 . SWH3 . 077; . 3^ 50 M -■ 9 , 4** . 53UU . TOM , 8 19 , 713i * S-Jj^ 5* W i: 3 ♦ 45 li . 5*fe . 70IS tttf , 7501 . 2501. 57 4tt 1'. 4 4tfM , 517*1 . i,'».;i . 303J * 7»« . 2137 50 44 ,■■1 5 . 5l& ! v \ I 1 s , 4*U . 6*0 13 13 13 13 13 t 30TC , B2i * Qi , 1*1 , 177: 55 10 -'1 6 . 5ir . 4553 , 6H3J . 3141 * 193 , 14 K 54 30 .».. 7 , ITS . 424;! , 6S0d . sm p «ast I'.l.-.: 53 :!2 fU s . oo.it . anai . fi75U mu t flJli . eoaE .: 21S :(■ 9 . 037* . 3tKl . tfTOS . 3£J5 . au*4 , 032c 51 ii hi 10 oo*s ! ? . 3311 . ens3 13 . 3347 ,61003' M in 00 fNl .3S0904 50 JO ii It . 0UO« 3i>«ll . ttflO-2 , 33* . 0391 . WHkJ m 16 i- ii . ISO , 9m . 65S0 13 , 345fl . 075^ . BOII t. j 12 ii . 7^1> . 1301 . U4*J9 1:1 13 13 . 3501 lilt . ft^l 47 ti • i ii . jlm ' 7? . iwa - W47 . 3553 ♦ lite , 89JU 46 4 14 n is . 6234 77 77 s 1764 . mas 13 , 3605 1*41 H 00 K 90 00 , 815^ 15 Si 1 id . H5-IJ , 1455 . (044 . 3U56 . 2301 . 7W( 44 W - 17 . SMI IMG MM 13 , 371« , a.vk , 7I> J 3 jj i | H . !'f ■- omp Ir.'IIJI 13 . 3760 . 2>Ji! . 707^ ■ 4* In 10 : mm mni 01 T^ 13 13 . 3S13 - 33dl . 07 in 41 44 » •Hi 0777 77 2 . 0-^3 h SIM , 3S04 , SMI Si s 80 . 0350 40 40 1 J I .DRMttS .tlWlo , e*H5 13 13 13 , 3LM5 . 400(1 , maa n 38 j_ £3) . 0301 . LMkJH „ WOT , saw . -IX. t 5l>4l 34 32 '.' S3 . O'llM g 0-JU1 . sa&j . i-ii * 471ft . ^-l 37 ■*i 3d 24 low . t)JU5 . A>Jd 13 13 , 4072 . 5077 . |0|3 :ni 24 HI 25 . nil 76 7tf 70 76 70 . 86*3 . 5^70 13 13 [3 13 13 4124 , 5435 00 BO HI A3 , 45H5 35 ■M tl Sfi . in i* . KStl 2 5(*2J , 417« . 57iM . 4JW 11 If, n 87 . iosm . H076 . 3772 . 43*3 . lil-V. „ SM n 12 52 99 «an . 7771 579ft , 424) T &S09 , 31-H M 8 ■■>, '4:1 , 3535 , 7405 . 560d . 433t . mi . 3133 31 4 JO n ir> . 3*10 711 70 70 74 76 . 7160 p mm 13 M 13 13 sa , *3N . 7f54 en 80 83 , 2776 3X1 30 1 31 . 31(5 . ires , 5,|i Ll . 4437 . 75*2 , SUA $) 56 H :u »l*1 . &n i . 5511 . 44ey . 7TO 20W m 52 11 33 . 3753 . nm , 5IS3 . 4542 , B*»5 I 1705 :; W J-i 34 4054 . 5J4J . sm . -I.VM . 8052 , 134(1 •6 44 -■• 35 , m\ 76 76 76 . S$M . ma 13 . 4647 , IHMW 841 8.1 as . DM8 25 40 2 J » . 41*5 . 5335 , 5301 , 4ii!l'> t 0361 HOB 24 :j., M 37 4 m S01I . 5^45 , 4752 , BTil ; M7t 23 u :u > . 5372 70 75 . 4T«a , 51% 13 13 13 4904 H 75 75 , sin . sfiii , 4773 . 4730 13 ia 13 a 13 . 5174, . 52*7 , sm . 2561 - ftl|5 . 3 J II 88 88 n S8 , 70 <5 * 0731 11 14 13 as 5i 51 \2 ■H . S20 75 - 1711 . 1'-'^ . 5334 . S0tt3 : an 12 J- 1 . 43 - B3*J 75 75 - 1411 . 4iii:i . 53*7 . 3V76 , coji 11 4^1 -'► Mi t^W . 1116 , «SM 13 11 13 13 13 , 5440 . 43m »4 88 88 sr,7o 10 40 .'1 si 0*10 75 IWlft Sj ,: , 54 :*:i * 4iw;» ' 33J7 K 52 5* 53 , 94*0 . 07*1 75 75 ihri t . 44^11 , 5546 . 5035 i 53-*h 4*5 4$tl 8 7 t; 54 .v.i-y.-- 75 : 71 74 .40 ^M . 4347 . 3 ■:> \ . 5741 4253 6 M to 55 03*7 . "--r" . irM 570fi . B033 88 88 m 88 88 . 3TO7 :» 20 II 51 . OW , gnu . 4^*0 ;5 . 41*7i }ij ■ *«> . 40^0 Jj 0010>H; L1 57H0 A446 3154 4 16 f- 57 . 0>M . 001 1 . 5H13 . m n 3303 3 12 I* 53 , 12*1 . HT71*« i 5^17 , 7140 . M» 3 8 1} 3> . 15*0 sin 5^120 n 7500 , 25110 1 4 &i -.■' 60 o.sohto 74 40 J |-» 035:174 O.037«SJ 37-T' ■is m. -* "J ' L,Co*. WIT fhf 15" Ute L.Kim. Jiitr I5 rt L. Covet. L. Cot n>ir f.r 15" L.Ting, | ' Himrj. ,Def. ** Hours. 1 nrl' rtr 1* r.irl* J' 114 a 1 J u e io -4* 01 ro 1 1* Digitized by VjOOQIC 54 TABLE U. — LOO. 8INB8, TANg'b, &C 1» 830 1 • — 15" 1" — 15' 1»-.150 I66O 10* Diff Diff DUE Houn. Deg. L.8in for 15" orl* L.Coaec. L.Cof. for 15" orl' L.8ec. L.Taag. for 15" orl' L.Cot. De*. Hoar* M • i i m »7 • 3a 9.591878 74 74 74 74 74 0.408122 9.964026 13 13 13 13 13 0.035974 9.6*7852 88 68 88 88 88 0.372148 60 4 1 . 2175 . 7825 . 3972 . 6028 . 8203 . 1797 59 56 8 2 . 2473 . 7527 . 3919 . 6081 . 8554 . 1446 58 52 12 3 . 2770 . 7230 . 3865 . 6135 . 8905 . 1095 57 4* 16 4 . 3066 . 6934 . 3811 . 6189 . 9255 . 0745 56 44 20 5 . 3363 74 74 74 74 74 . 6637 . 3757 13 13 13 13 13 . 6243 . 9606 87 87 87 87 87 . 0394 55 40 24 6 . 3659 . 6341 . 3703 6297 . 9956 . 0044 54 36 28 7 . 3956 . 6044 . 3650 . 6350 .630306 .369694 53 33 32 8 . 4251 . 5749 . 3596 . 6404 . 0655 . 9345 52 28 30 9 . 4547 . 5453 . 3542 . 6456 . 1005 . 8995 51 24 40 10 . 4842 74 74 74 73 73 . 5158 . 3488 14 13 14 13 13 . 6512 . 1354 87 87 87 87 87 . 8646 50 20 44 11 . 5137 . 4863 . 3433 . 6567 . 1704 . 8296 49 16 48 12 . 5432 . 4568 . 3379 . 6621 . 2053 . 7947 48 12 52 13 . 5727 . 4273 . 3325 . 6675 . 2402 . 7598 47 6 56 14 . 6021 . 3979 . 3271 . 6729 .. 2750 . 7250 46 4 33 15 . 6315 73 73 73 73 73 . 3685 . 3217 14 14 13 14 14 . 6783 . 3098 87 87 87 87 87 . 6902 45 97 4 16 . 6609 . 3391 . 3162 . 6838 . 3447 . 6553 44 56 8 17 . 6903 . 3097 . 3108 . 6892 . 3795 . 6205 43 52 12 18 . 7197 . 2803 . 3054 . 6946 . 4143 . 5857 42 4* 16 10 !. 7490 . 2510 . 3000 . 7000 . 4490 . 5510 41 44 20 20 . 7783 73 73 73 73 73 . 2217 . 2945 14 13 14 14 14 . 7055 . 4838 87 87 87 87 87 . 5162 40 40 24 21 . 8075 . 1925 . 2890 . 7110 . 5185 . 4815 39 36 28 22 . 8366 . 1632 . 2836 . 7164 . 5532 . 4468 38 32 32 23 . 8660 . 1340 . 2781 . 7219 . 6879 . 4121 37 * 36 24 . 8952 . 1048 . 2726 . 7274 . 6226 . 3774 36 24 40 25 . 9244 73 73 73 73 73 . 0756 . 2672 14 14 14 14 14 7328 . 6572 87 86 86 86 86 . 3428 35 30 44 26 . 9530 . 0464 . 2617 7383 . 6919 . 3081 34 16 48 27 . 9827 . 0173 . 2562 . 7438 . 7265 . 2735 33 12 52 23 .600118 .399882 . 2507 . 7493 . 7611 . 2389 32 8 56 29 . 0409 . 9591 . 2453 . 7547 . 7956 . 2044 31 4 34 30 . 0700 72 72 72 72 72 . 9300 . 2398 14 14 14 14 14 . 7602 . 8302 86 86 86 86 86 . 1698 30 96 4 31 . 0990 . 9010 . 2343 . 7657 . 8647 . 1353 29 56 8 32 1280 . 8720 . 2288 . 7712 8992 . 1008 28 52 12 33 . 1570 . 8430 . 2233 . 7767 .' 9337 . 0663 27 48 16 34 . 1860 . 8140 . 2178 . 7822 . 9682 . 0318 26 44 20 35 . 2150 72 72 72 72 72 . 7850 . 2123 14 14 14 14 14 7877 .640027 86 86 86 86 86 .359973 25 40 24 36 . 2439 . 7561 . 2067 7933 . 0372 . 9628 24 36 28 37 . 2728 . 7272 . 2012 . 7988 . 0716 . 9284 23 32 32 38 . 3017 . 6983 . 1957 . 8043 1060 . 8940 22 28 36 39 . 3305 . 6695 . 1902 . 8098 . 1403 . 8597 21 24 40 40 . 3593 7-2 . 6407 . 1846 14 14 14 14 14 . 8154 . 1747 86 86 86 86 86 . 8253 20 29 44 41 3882 . 6118 . 1791 . 8209 . 2091 7909 19 16 48 42 . 4170 72 72 72 . 5830 . 1736 . 8264 . 2434 . 7506 18 12 52 43 . 4457 . 5543 . 1680 . 8320 2777 . 7223 17 8 56 44 . 4745 . 5255 . 1625 . 8375 . 3120 6880 16 4 35 45 . 5032 72 72 72 71 71 . 4968 . 1569 14 14 14 14 14 . 8431 . 3463 86 85 85 85 85 . 6537 15 95 4 46 . 5319 . 4681 . 1513 . 8487 . 3806 . 6194 14 56 8 47 . 5606 . 4394 1458 . 8542 . 4148 . 5852 13 52 12 48 . 5892 . 4108 . 1402 . 8598 . 4490 . 5510 12 48 16 49 . 6179 . 3821 . 1347 . 8653 . 4832 . 5168 11 (4 20 50 . 6465 71 71 71 71 71 . 3535 . 1291 14 14 14 14 14 8709 . 5174 85 85 85 85 65 . 4826 16 10 24 51 . 6751 . 3249 . 1235 . 8765 . 5516 . 4484 9 K 28 52 7036 . 2964 . 1179 . 8821 . 5857 . 4143 8 32 32 53 . 7322 . 2678 . 1123 . 8877 . 6199 . 3801 7 28 36 54 . 7607 2393 . 1067 . 8933 . 6540 . 3460 6 14 40 55 . 7892 71 71 71 71 71 . 3108 . 1011 14 14 14 14 14 . 8989 . 6881 85 85 85 85 85 . 3119 5 » 44 56 . 8177 . 1823 . 0955 . 9045 . 7222 . 2778 4 16 48 57 . 8461 . 1539 . 0899 . 9101 * 7562 . 2438 3 12 52 56 58 59 . 8745 . 9029 . 1255 . 0971 . 0842 . 0786 . 9158 . 9214 . 7903 8243 . 2097 1757 2 1 8 4 35 60 60 9.609313 0.390687 9.960730 O.039270 9.648583 0.351417 94 m • i L.C«. Diff for 15" orl* L. Bee. I* Sin. DilT for 15" orl* L.Cotee. L. Got. Diff for 15" orl* L.Tuif. i « 1 Hour*. jDeg. Def. Hot in. T» 11 ,30 r- -4* 10 «. 4F 6 W> 4 I* " Digitized by VjOOQIC TABLE II. — LOO. SINES, TANo'8, &C. 55 i» MO ; Hours. Deg. L. Sin. "BIT for 15" orl» P—13" !•— 15' 1> — 150 L.Cotee. L-Cos. Diff. for 15" orl» L.Sec L. Tang. for 15" orl* 1550 10* L. Cot Deg. 4 8 13 10 90 34 38 33 36 40 44 46 53 56 4 8 13 16 30 34 38 33 36 40 44 48 53 1 3 3 4 5 6 7 8 10 11 13 13 14 15 16 17 18 10 30 31 4 8 13 16 30 34 38 33 40 44 48 53 56 4 8 13 16 30 21 :« 36 40 44 48 53 5\ iO 30 31 33 33 34 35 36 37 38 30 40 41 43 43 44 45 46 47 48 49 50 51 53 53 54 55 56 57 58 59 60 9.609313 . 9597 . 9880 .610163 . 0447 . 0739 . 1013 . 1394 . 1576 . 1858 . 3140 . 3431 . 3703 . 3983 . 3364 . 351 . 3±!3 . 4105 . 4385 . 4665 5503 5781 6060 . 7173 . 7450 7737 . 8004 . 8381 . 8558 . 8834 . 9110 . 9386 . 9603 . 9938 .690313 . 0488 . 0763 . 1038 . 1313 . 1587 1861 . 9135 . 3409 . 9883 . 3356 . 3503 . 3774 . 4047 . 4319 . 4591 . 4863 . 5134 . 5406 . 5*177 9.695948 71 71 71 71 71 71 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 69 69 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 O.390J87 . 0103 . 0130 .389837 . 9553 . 9371 . 8988 . 8706 . 8434 . 8143 . 7860 . 7579 . 7396 . 7017 . 6736 . 6455 . 6175 . 5895 . 5615 5056 4777 4498 4319 3940 . 3384 . 3106 . 9838 . 9550 . 9373 . 1996 . 1719 . 1443 1166 . 0890 . 0614 . 0338 . 0083 .379787 . 9519 . 9937 . 8963 . 8687 . 8413 . 8139 . 7865 . 7591 . 7318 . 7044 6771 . 6498 . 6936 . 5953 . 5681 . 5409 . 5137 . 4866 . 4594 ,. 4333 0.374052 9.960730 0674 . 0617 . 0561 . 0505 . 0448 . 0393 0335 . 0379 . 0333 . 0166 . 0109 0053 .959995 . 9938 . 9883 . 9835 . 9768 . 9711 . 9654 . 9596 . 9539 . 9483 . 9435 . 0368 . 9310 . 9353 . 9195 . 9138 . 9081 . 9033 . 8965 . 8908 . 8850 . 8793 . 8734 . 8677 . 8619 . 8561 . 85i):i . 8445 . 8386 . 8339 . 8371 . 8913 . 8154 . 8096 . 8038 . 7979 . 7931 . 7863 . 7804 . 7745 . 7687 . 7570 . 7511 . 7453 . 7333 . 7334 9.957270 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 14 14 15 14 14 15 15 15 15 14 15 15 15 15 )5 O.O39370 . 9336 . 9383 . 943U . 9495 . 9553 . 9608 . 9665 . 9791 . 9778 . 9834 . 9891 . 9948 .040005 . 00(33 . 0118 . 0175 0346 0404 0461 0518 0575 . 0690 . 0747 . 0805 . 0863 . 0919 . 0977 1035 . ion . 1150 1308 . 1366 . 1333 . 1381 1439 . 1497 . 1555 1614 . 1671 . 1739 . 1788 . 1846 . 1904 1963 . 9031 . 9079 . 9137 . 9196 . 9355 . 9313 • 9373 . 9430 . 9489 9548 . 9607 . 9660 1.049734 9.648583 . 8333 . 92* . 9603 . 9943 .650381 . 0630 . 0959 . 1997 . 1636 . 1974 9313 . 3350 . 3988 4000 4337 4674 5011 . 5684 . 6030 . 6356 . 6693 . 7098 . 7363 . 7699 . 8034 . 8369 . 8704 . 9039 . 9373 . 9708 .660843 . 0376 . 0709 . 1043 1377 . 1710 . 9043 . 9377 . 9701 . 3043 . 3375 . 3707 . 4039 . 4371 . 4703 . 5035 . 5366 . 5698 . 6039 . 6360 . 6691 . 7031 . 7353 . 7683 . 8013 . 8343 9.668673 85 85 85 85 85 85 85 85 85 84 84 84 64 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 84 83 0.351417 . 1077 . 0737 . 0398 . 0058 .349719 . 9380 . 9041 8703 . 8364 . 8036 . 7688 . 7350 . 7013 . 6674 6337 . 6000 . 5663 . 5330 . 4989 . 4653 . 4316 . 3960 . 3644 . 3308 . 9973 . 9037 . 9301 . 1966 . 1631 . 1396 . 0961 . 0637 . 0399 .339958 . 9694 . 9391 . 8957 . 8633 . 8990 . 7957 7633 . 7391 . 6958 . 6993 . 5961 . 5130 . 5237 . 4965 . 4634 . 4303 . 3971 . 3640 . 3309 . 9979 . 9648 . 9318 . 19P7 . 1657 0.331338 60 59 58* 57 56 55 54 53 53 51 50 49 48 47 46 45 44 43 43 41 40 39 38 37 36 35 34 33 33 31 30 37 Hours. r>* L.Cos. Diff. for 15" orl« L.8ec L-8in. Diff for 15" orl* L. Cosec. L.Cot. Diff. for 15" orl* L.Tang. Deg. Hours. Hi" 1' — 4' lo = 6JO Digitized by VjOOQIC 56 TABLE n. — LOO. SINES, TANG'S, &C. 1» 950 1» — 15" 1" —15' 1» — 150 1540 IO* Diff. Diff. Diff. Hours. Dog. L. Sin. for 15" or V L. Cosec. L.Cos. for 15" orl» L. Sec. L. Tang. for 15" orl* L-Coc. Deg. Hours. ■ i ' 40 9.635948 ft 68 V- 0.374052 9.95727f 15 15 15 15 15 0.043734 9.668673 83 82 82 83 83 0.33 32* 60 19 u» ! 4 1 . 6319 . 3781 . 7317 . 2783 . 9003 09!* 5J Oil 8 3 . 6490 . 3510 . 715h . 2843 . 9332 061b 58 53 | 13 3 . 6760 . 3340 . 7099 . 3901 . 9661 033! 57 4- 16 4 . 7030 . 3970 . 7040 . 3960 . 9990 . 0010 56 44 30 5 . 7300 67 67 . 3700 . 6980 15 15 15 15 15 . 3030 .670320 83 83 83 83 83 .399680 55 40 24 6 . 7570 . 3430 . 6931 . 3079 . 0649 . 9351 54 3.; 38 7 . 7840 . 3160 . 6863 . 3137 . 0977 . 9033 53 :a ' 33 8 . 8109 . 1°91 . 6803 . 3197 1306 . 8694 53 2* ' 36 . 8378 1632 . 6744 . 3256 . 1634 . 6366 51 1 40 10 . 8647 67 67 67 67 67 . 1353 . 6684 15 15 15 15 15 . 3316 . 1963 82 83 83 83 69 . 8037 50 »' 44 11 . 8916 1084 . 6635 . 3373 S291 . 770: 49 J" ! 48 13 . 9185 . 0815 . 656U . 3434 . 2619 . 7381 48 12 53 13 . 9453 0547 . 6506 . 3494 . S947 . 7053 47 « 1 56 14 . 9731 . 0379 . 6447 . 3553 . 3374 . 6736 46 4 41 15 . 9989 67 67 67 67 67 . 0011 . 6387 15 15 15 15 15 3613 . 3602 83 82 82 83 83 6398 45 19 i « 1 4 16 .630357 .369743 . 6328 . 3673 . 3939 . 6071 44 >• i 8 17 . 0534 . 9476 . 6268 3733 . 4256 . 5744 43 5i ' 13 18 . 0799 . 9308 . 620s* . 3793 . 4584 . 541f 42 4- | 16 19 . 1059 . 8941 . 6148 . 3853 . 4911 . 5089 41 44 30 30 . 1336 67 . 8674 . 6089 15 15 15 15 15 . 3911 5237 83 81 81 81 81 4763 40 40 ' 34 31 . 1593 . 8407 . 6039 3971 . 5564 . 4431 39 J»t f 38 S3 . 1859 67 66 66 . 8141 . 5969 . 4031 . 5890 . 4110 38 ti 33 33 . 3136 . 7874 . 590& . 4091 . 4151 . 6217 . 3783 37 *" . 36 34 . 3393 . 7608 . 5849 . 6543 . 3457 36 24 | 40 35 . 9658 66 66 66 66 66 7343 . 5789 15 15 15 15 15 . 4311 . 6869 81 81 81 81 81 . 3131 35 » 44 36 . 3933 7077 . 5739 . 4371 . 7194 . 2X> 34 ,'lt. ' 48 37 . 3189 6811 . 5669 4331 . 7520 2480 33 12 53 33 . 3454 . 6546 . 5609 . 4391 . 7845 . 9155 33 » » 56 29 . 3719 . 6381 . 5548 . 4453 . 8171 . 183.' 31 *\ 4a 30 . 3984 66 66 66 66 66 . 6016 . 5488 15 15 15 15 15 . 4513 . 8496 81 81 81 81 81 . 1504 30 18 • ! 4 31 . 4349 . 5751 . 5438 . 4573 . 8821 . 1179 39 j»» 8 33 . 4514 . 5486 . 5368 . 4632 . 9146 . 0854 38 3» ■ 13 33 . 4778 . 5333 . 5307 . 4693 . 9471 . 053) 37 4- i 16 34 . 5043 . 4958 . 5247 . 4753 . 9795 . 0205 36 14 i 30 35 . 5306 66 66 66 66 66 . 4694 . 5186 15 15 15 15 15 . 4814 .680130 81 81 81 81 81 .319880 35 40 34 36 . 5570 . 4430 . 5136 . 4874 0444 . 9556 34 V 38 37 . 5333 . 4167 . 5065 . 4935 . 0768 . 9333 33 :*: i 33 38 . 6097 . 3903 . 5005 . 4995 . 1093 . 8908 33 > ' 36 39 . 6360 . 3640 . 4944 . 5056 . 1416 . 8584 21 24! 40 40 . 6633 66 66 66 65 65 3377 . 4883 15 15 15 15 15 . 5117 . 1740 81 81 81 81 81 . 8360 30 an • 44 41 . 6886 . 3114 . 4833 . 5177 . 3063 7937 19 !». ! 48 43 . 7148 . 3853 . 4762 . 5338 . 2386 . 7614 18 i- . 53 43 . 7411 . 2589 . 4701 . 5299 . 2710 . 7290 17 » ( 56 44 . 7673 . 3327 . 4640 . 5360 . 3033 . 6967 16 4 43 4 45 46 . 7935 . 8197 65 65 65 65 65 . 3065 1803 . 4579 . 451° 15 15 15 15 15 , 5421 . 5483 . 3356 . 3679 81 80 80 80 80 . 6644 . 6331 15 14 17- » 8 47 . 845* 1542 . 4457 . 5543 . 4001 . 5999 13 52 13 48 8730 12 ! »0 4396 . 5604 . 4334 . 5676 13 ♦^ 16 49 . 8981 . 1019 4335 . 5665 . 4646 . 5354 11 44 30 50 . 9342 65 65 65 65 65 . 0758 . 4374 15 15 15 15 15 . 5736 . 4968 8n 80 80 80 80 5033 10 40 34 51 9503 . 0417 4313 . 5787 . 5390 . 4710 9 3K 33 53 9764 0336 . 4153 . 5848 . 5612 . 4388 8 32 33 53 .640031 .359^76 . 4090 . 5910 . 5934 . 4066 7 4 . 91% . 390H . 6094 6898 . 3103 4 It. 48 57 . NW1 . 8930 . 3845 . 6155 . 7319 . 9781 3 12 53 58 . 1333 . 8677 . 3783 . 6317 . 7540 . 3460 9 *» Ui 51 .' 15*3 . 8417 . 3732 . 6378 . 7861 . 9139 1 4 43 m 10 • 60 9.641843 0.338158 9.953660 0046340 9.688183 0.311818 16 o — IT" Sg L. Cos. Diff. for 15" L Sec L. Bin. Diff. for 15" L.Comc L.Cot- Diff. for 15" L.Ttng. # Hours. Deg- Hoorr or !• orV 1 orl" 1» 11 5 o 1'— 4 • io . -4"» i Mo 4" Digitized by VjOOQIC TABLE n. LOO. 81NE8, TANo'8, &C. • — 15" 1-— 15' 1» — 15Q 67 1530 10* Digitized by VjOOQIC 08 TABLE II. — LOO. 8INZS, TANO'l, 9 M 10 44 n H it 5J 13 5.1 11 40 15 •i its n 11 19 H u 19 jii jn 91 :t ■> ■u :u 23 Jfl 24 4'1 £5 N 20 1* 1 J 7 59 1-1 vi £9 50 Q 30 4 31 e M n 33 14 34 ft 35 M 98 & 37 H ri- :».; al »t> 40 il 11 tfl 43 S9 43 « 44 31 43 i 40 A 47 19 48 ta ■40 u 50 ji 51 >- 53 n 53 3'i 54 40 55 41 50 1- 57 fc! 59 5'i 53 *1 (JO 00 v • ~| Hmi rs De* L Sin. •Mi.*; H7 7J15 7S49 77-10 9J37 8194 Bill STlt* §7*5 QJ71 S'il7 ft?03 0*55 ojtig 074ft 03511 ltttt 1* 1730 1^70 9915 34-iSi 27111 234: 31'HI 3111 awn 4 '■■. 4100 43148 4*Wl MT> 5375 5117 fitno 931 1 .-.,>: i 6*M in. \ 73M 7510 7789 974 Cm. (V ort* L. Cowc. IK li-j <.j 09 9] •■I r.l 14 0] 9 il I;. I 64 lit 01 fl II EQ VI 91 hi iu ei oo bo «ii QD 69 DO BQ n rVi i-ai n'l OO 90 flQ ..■■. DMK for 15" or r 3*2 »0-l 2705 ai5H 3410 lmtf !Tii4 140 > 1**1 0i75 07*1 01*1 0>:i7 3399 H 074,5 0500 V954 e7m 9271 POTO 7795 7;>i TfT 7053 .>'|M 05*0 Kin flO^ 5937 5^?i 51H1 49-47 4(ii5 43 4141 3 KlO 9609 am 3l7ti 2 m 2 i'i,i B 434 2J14 1%1 ir« MM l.ni HI. 4 077 O r »3i{ run oAsa 3!tf»9in Mfti * ohm . mm . BJHt* 33*331 L>6*e. LC01. for IS" orl J :i*. 1: «i;i !Z L. Sin. r»ifr fr 15" Of I* U Sec L. Tanf + O.OAiiLlO 11 \<\ 0J19 0.1L-J 0377 0449 11.77 r 0439 row 0745 UKW 06 15 IMiKI 1025 111 Ml 1155 1990 I4lt 143 J54l> ltfifc J - 7 1743 IHOfi 1H?4 1M0 giHU 2i:«7 UI37 MH3 99 ii.134 SMi» SIM 2731 979? 33-47 30-13 ZW 311W 39?19 3.r:> 33 Hi 34^3 3999 35W 37 »: ^>31 3TI-* 07 in 5 L Owe. . 747* 77 iO . 9104 . 1HI4 , 8TW 9037 . 034U , UfciO . 05 13 0-fll . WW 1143 . 13311 3144. . 9I»1 , YTiill , 307u , 33^ 30* 4005 4315 4 1. J I , 4W3 , 9919 , 5551 , 5^Hi0 OltU 0477 . 07H5 . 70>3 , 7401 770m . W17 . 8-313 . 9033 , h 1 to tW-Vi j-iiit-.-i II 17ii 0793 10(*» |99Q 1709 900* £315 9Ml 9907 *>« 3.13 3944 414** 445( IT90 50^1 I " Ori5fi74 U OM 7" 7- 78 7" tg 7^ 7- T- 7- 7- 7- 7- 7- 7- TO 77 t: T7 7; 77 :: 7: 77 744 99 749 99 Tii -0 79 19 99 :■; 79 tHff f>.T 15 J ' ftrl* L, Cot. .«Oi-vM 19J* 15&) 1*74 0.h.d 0.^51 ihtii. B0871 9407 mi Jfrg H&-r* ■ 11 ^ MiM 7.- 5 J 7544 KM Mil 9994 5JJO 99V 531 1. 4H> 4140 3215 2«7 M ♦.' 9ftt i*ti 1979 JW7 Kh30 9(399 0445 HI** B7983J D52I W17 W11 74X15 1999 §m 04«>S 615* Wl.i 9919 4^.45 4',:n' «T4,Tit. L,T*jif 99 99 n & 54 53 .il so 41» 49 47 M 45 M a 44 H 3? ■ :v> 35 34 SI 41 99 19 It 9 4 11 94 M M J-' U 14 13 TUB* t « IO f. 51 44 9a 19 14 i « 9 it 91 M 9ft H M If 9 0*f Her, 6*° 4* 9» llfo 1' — 4* I© — 4"» Digitized by VjOOQIC TABLE II. LOO. 81NES, TANO's, &C. I» 980 1* — 15" 1« — 15' 1»-»150 1510 10* DiflT Diff. Diff. lour*. Deg. L.8in. for 15" orl* L. Coaec. L. Co§. for 15" orl' L.Sec L. Tang. for 15" orl* L.Cot. Deg. Hoi Ii • / ■ m 5*4 4 1 0.671* 0. . 1*47 59 59 0.3283>1 . 8153 9.045935 . 5868 17 17 17 17 17 0.054065 . 4132 9.725674 . 5979 76 0.274321 4021 60 59 3 H 3 . 20M 59 . 7U16 . 5MW . 4200 . 6284 76 . 37L 58 12 3 . 2321 59 . 7679 . 5733 . 4267 . 6588 76 3412 57 56 16 | 4 . 255c 59 . 7442 5666 . 4334 . 6892 76 76 . 310b •20 5 . «7f5 59 59 5J 59 59 . 7205 . 5598 17 17 17 17 17 . 4402 . 7197 2803 55 24 « . 3032 . 6968 . 5531 . 4469 . 7501 78 2499 54 28 7 . 32' . 6731 5464 . 4536 . 7805 76 . 2195 53 59 51 A-2 8 . 3505 . 6495 . 5396 . 4604 . 81014 76 . 189) Jo 9 . 3741 . 6259 . 532J . 4671 . 84.9 76 76 . 1588 40 10 3977 59 59 59 59 59 . 6023 . 5261 17 17 17 17 17 . 4739 . 8716 1284 50 44 11 . 4213 . 57K7 . 5193 . 4807 . 9020 76 . 0980 49 *t 19 4440 . 5551 . 5126 . 4874 . 9323 76 . 0677 48 47 46 52 13 4684 . 5316 . 5058 . 4942 76 0374 56 14 . 4919 . 5081 . 4990 . 5010 1 9929 76 76 . 0071 53 4 15 16 . 5155 . 53i»0 59 59 59 59 58 . 4845 . 46 . 4922 . 4854 17 17 17 . 5078 . 5146 .730333 0536 76 .269767 9464 45 44 43 42 41 * tf 17 . 5624 . 4376 . 478b . 5214 0838 76 . 9162 12 18 . 5859 . 4141 . 4718 . 5282 1141 76 . 8859 16 19 . 60'44 . 3906 . 4650 17 17 . 5350 . 1444 76 75 . 8556 20 30 . 632? 58 58 58 58 58 . 3672 . 4582 17 17 . 5418 1746 75 75 8254 40 •24 21 . 6562 . 3438 . 4514 . 5486 . 2048 . 7952 39 2d 2*2 . 67M . 3204 . 444(5 5554 2350 . 7650 38 37 32 23 . 7030 . 2970 . 4377 17 17 17 . 5623 . 2C53 76 . 7347 36 24 . 7264 . 2736 . 4309 . 5691 . 2955 75 75 . 7045 36 40 25 . 7498 58 58 5- 58 . 2502 . 4241 17 17 17 17 17 . 5759 . 3257 . 6743 35 44 4-» 26 27 . 7731 . 7964 . 2260 . 2036 . 4J73 . 4104 . 5827 . 5896 . 355B . 38C0 75 75 . 6442 . 6140 34 33 52 29 . 8197 . 1803 . 4030 . 5964 . 4161 75 . 583° 32 36 29 . 8430 58 . 1570 . 3967 . 4(i033 . 4463 75 75 . 5537 31 54 30 . 8663 58 1337 . 3899 17 17 17 . 6101 . 4764 5236 30 C 4 31 . 8896 58 58 1104 . 3830 . 6170 . 5066 75 4934 29 * 32 . 912* . 0872 . 376J . 6239 . 5367 75 4633 28 12 33 . 93(50 58 58 0640 . 3692 . 6308 . 5668 75 4332 27 16 34 . 95J2 . 0408 . 3624 17 17 . 6376 . 5968 75 75 . 4032 96 20 35 . 9824 • 58 5 W . 0176 . 3555 17 17 17 . 6445 . 6269 75 75 75 . 3731 95 24 30 .680051 .319944 . 348(i 6514 . 6570 3410 94 2* 37 . 0288 58 58 58 . 9712 . 3417 . 6583 . 6871 . 312T 93 32 38 . 0519 . 9481 . 334* . 6652 7171 . 282'' 22 36 39 . 0750 . 9250 . 3279 17 17 . 6721 . 7471 75 75 . 2529 21 40 40 0982 58 58 5H 58 . 9018 . 3210 17 17 17 17 17 6790 . 7772 75 75 75 75 75 2228 20 44 41 . 1213 . 8787 . 3J41 . 6859 . 8072 192t 19 48 43 1443 . 8557 . 3072 . 6928 . 8371 . 162T 18 52 43 . 1674 . 8326 3003 . 6997 . 8671 . 132T 17 56 44 1905 57 . 8035 . 2934 . 7066 . 8971 . 102T 16 55 45 . 2135 57 57 57 57 57 . 7865 . 2864 17 17 17 17 17 . 7136 9271 75 75 75 75 75 072P 15 fl 4 46 . 23*5 . 7P35 . 2795 7205 . 9570 0430 14 12 47 48 . 25°5 . 2825 . 7405 . 7175 . 2725 . 2656 . 7275 . 7344 . 9870 .740169 . 0130 JI5983J 13 12 Hi 49 . 3055 . 0945 . 2587 . 7413 . 0468 . 9532 11 20 24 50 51 . 3284 . 3514 57 57 57 S' 57 . 6716 . 6486 . 2517 . 2448 17 17 17 17 17 . 7483 . 7552 . 0767 1066 75 75 75 75 75 9233 . 8934 10 9 32 3t> 52 53 54 . 3743 . 4201 . 6*257 . 6028 . 5799 . 2378 . 2308 . 2239 . 7622 . 7692 . 7761 1365 . 1664 1969 . 8635 . 833P . 8038 8 7 6 40 55 . 4430 57 57 57 57 57 . 5570 . 2169 17 17 17 17 17 . 7831 . 92*1 75 75 74 773P 5 41 H »2 5*5 57 5-i . 4W 4*7 . 5115 . 5342 . 5113 . 4885 . 2099 . 2029 1959 . 7901 . 7971 . 8041 . 2559 . 2858 . 3156 . 7441 . 7142 6844 4 3 3 55 5*i «:o 51 60 5343 • 685571 4f57 0.314439 1*89 9.041819 8111 0.058131 . 3454 9.743752 74 74 . 654f 0.256248 1 41 ■t t L. Coa. Diff for 15" L-Bac L. Sin. Diff- for 15" L.Cowe. L. Cot. Diff. for 15" L. Tang. i • Hours- Deg. Deg. He orl" 1 orl" orP 7" 11 •° 1'- -4* 10 -4F 4 10 4 l* Digitized by VjOOQIC TABLE II. — LOO. SINES, TANG'S, &C. 300 1« — 15" 1» — 15' 1*- .150 150O — 10* Diff. Diff. 1 id 1 pg. L. Sin. for 15" L. Cosec L. Cos. f..r 15" L.Bcc. L, T&ng- LCtt. D^f. B«urv ! ' 9.685571 orl* orl' or r ' •-IL'-" 57 57 57 57 57 0.31442 0.041819 17 17 17 17 17 0.05h 61 (Mfeff;*. U.^^u^b 10 3 ti) 1 1 . 57!<9 . 420 J . 1749 . fciSl - 41150 _ «k,0 5'J 5t.l 2 . 1027 . 3973 . 1079 . fcaj . 434r , M &Jtx 58 3 . 1254 . 3746 . It 0J . e»>i . 4i.i.-. 74 7i , &i$$ 57 4* 4 . 64e2 . 35.8 . 1539 . S4*il - 4U4^ & t 56 44 5 . 6700 57 57 57 57 57 . 3291 . 1469 18 17 17 18 17 6531 * 1944 74 . 47€0 55 40 1 6 . 6930 . 3004 . 1398 . m 92 -, $t& . 44ti: 54 7 00 ! 7 . 7163 . S*37 . 1328 . hvj 5eflj i 4ii5 53 ;-0 8 . 7310 . 2010 . 1258 . f-^a . ti lat 74 . 3rU 52 Ufc 9 . 76, . 28fc4 . Ub7 . EfcJ3 . 1*1. 7j 7^ , 3371 51 24 [0 . 7843 56 56 56 56 56 . 2157 . 1117 18 17 18 18 18 . PFP3 . C72i 74 74 . :274 50 20 11 . tow . U'31 . 1040 . H*54 i 702. • 197-. 49 16 12 . t2P5 . 1705 . 0:<78 . 0024 . Id! 5 . TM. . a.t> 48 12 (3 . 8521 . I47lt . 0!05 • 71. Il . -^fc4 47 b [4 . 8747 . 1253 . 0fc34 . fliui . TjII 74 74 . 20157 46 4 15 . 8P72 56 56 56 56 56 . 1028 . 0763 17 18 18 18 18 . D2?7 - ,1' 74 1791 45 3 !ti . fl 8 . 0802 . 0tf3 . 9307 . tJUi Hi 5 44 5i 17 . 9423 . 0577 . 022 . 9378 . KM.) 74 . lilt 43 ii h . 9t4>- . 52 . 0551 . 94J . m: 7i . tia. 42 4C 19 . 9873 . 0127 . 04t0 . G520 . g*9 -4 74 * OuO; 41 44 1 » .6O0CTP 56 56 56 56 56 .3O9T02 . 0409 18 18 18 18 18 . Pff>1 - OTPI 74 , 0311 40 40 | £• . ozm . 9677 . 0338 . Rtf . aim 111.5 39 ;*' !2 . 0548 . 9452 . 02C7 . 9733 .7BA2M 74 je#:7ii 38 :i 1 !3 . 0772 . £228 . 01*6 . fl*04 . D574* 74 . 9424 37 :> (4 . 0„17 . 9003 . 0125 . &e:5 . otr: 74 74 . 9126 36 24 55 . 1221 56 56 56 56 . 877T . 0054 18 18 18 18 18 . muft . tm 74 74 . W33 35 20 !0 1444 . 855f .939982 .0600 1* , to % . 65.V 34 lb 57 . 1M8 ♦. 8332 . 9911 . 00m , tm • K43 33 12 ' !8 . 18*2 . 8108 . 9840 . OHO . 205*! 74 74 74 7S4h 33 f J9 . 2115 56 . 7885 . ^768 . 0232 . ©47 . 7li53 31 4 10 . 233" 56 . 7661 . 9697 18 18 18 18 18 . 0703 , 2T4^ 74 74 74 73 VA ■ 7358 30 3 11 . 25' 2 56 . 7438 . 9625 . Mn , &:*; , 7W3 29 5ti 12 . 2785 56 . 7215 . 9554 . IM46 323* » 67«.P 28 13 . 3008 56 . 69?2 . 9482 . 6.118 t 7sm\ . C474 27 4f \A . 3231 56 . 6769 . 9411 . 4?fro , 3*^ , CltO 26 44 15 . 3454 55 . 6546 . 9339 18 18 18 18 18 . 0^1 . 4m 71 73 71 73 "J3 - Kf5 25 40 16 . 3»7fi 55 . 6324 . P207 . 6733 . 44\r : 55a- 18 12 13 . 522* 55 . 4771 . 8704 . I23fi . C4i 5 f.t . 3535 17 b 14 . 5450 55 . 4550 . 8691 . im , 675 n - 3341 16 4 5 . 5071 55 55 55 55 55 . 432" . 8619 18 18 18 18 18 . 13P1 . -1 ■ 73 9"48 15 1 6 . 58^2 . 410" . 8547 . 1*51 . 734i . 2^55 14 54. t7 8 9 . 6113 . 3887 . 8475 . Ji '.-.'.', . 7i;!if 2z . 2H2 13 52 . 63?4 . 3*«T . 8403 . i.v : . W3 1 — I . str? 12 4^ . 6554 . 3446 . 8330 . 1070 . 8224 rj . 1T7C 11 44 O 1 2 3 . 6775 55 55 55 55 55 . 3225 . 8258 18 18 18 18 18 . 1742 , 8517 73 . 1183 10 40 . 6^5 . 3005 . 8185 . 1815 . 8810 . ll r 9 3». . 7215 . 2785 . 81 13 . 1P*7 . OUtf 73 0K8 8 r^ . 7435 . 25T5 . 8040 . ron . WZ -T 1 0t05 7 t> 4 . 7C54 . 2346 . 7967 . 2033 . m: 73 . Hl3 6 24 5 6 . 7874 55 55 55 55 . 2*26 . 78*5 18 18 18 18 18 . ?w:, . pf*r :■•■ nn2i 5 20 8004 . rw . 7822 . ?!7* .7flr^7\' .13K2> 4 ]» 7 . 8313 . 1FP7 . 774° . 2"3? . ''' ' , f'43f 3 12 8 . 85?* . J4«"P . 7an 2" ' r . flH.i. D"4i 3 h 9 P-51 124" . 7^03 o*l» - . n*> 73 PP5C ] 4 0." 9=^70 0301030 9.937531 O.OBSUf.' VJttUX ;3 i m 1 O m 1 , ' Diff. Diff Diff 1 * L. Cot. for 15" orl' L.6ec. L.Sin. for 15" or l* I L. Comc L. Cot. fnr 15" orl" L.Tang !*r Hou • 11 90 1' - r4* 10 — <• ft DO — 4J> Digitized by VjOOQIC TABLE II.— LOG. SINES, TANG'S, r 15" orl* L.Comc. L. Cob. for 15" orl* L.S6C L. Tang. for 15" orl* L.Cot. Dep. Hou ra. - * ' ' * i 9.89^0 55 55 55 54 54 0.30 1030 9.937531 18 18 18 18 18 0.062469 9.7614% 71 73 73 0.»3b5< 1 to o9 4 1 . 91* . 0811 . 745a . 2542 . 1731 . 8219 59 50 8 2 . 940: . 0533 . 7385 . 2015 . 2022 . 7U78 58 52 J 2 3 . 9l>2. . 0374 . 7312 . 2C88 . 2314 . 7t86 57 48 10 4 . 9644 . 0150 . 7238 . 270i . 2000 73 . 71:94 56 44 30 5 .703069 54 54 54 54 54 .899038 . 7165 18 18 18 18 18 . 2835 . 2897 73 73 73 73 73 . 7)03 55 40 24 . 028' . 9720 . 701>2 . 2i»0ri . 3188 . 661^ 54 30 28 7 . 04» . 9502 . 701* . 21>81 . 3479 . 6521 53 32 :« 8 . 07 II . 9284 . 6946 . 3054 . 3770 . t*30 52 28 Ju 9 . 0333 . 9067 . 6872 . 3128 4001 . SkX 51 24 40 10 . 1151 54 54 54 54 54 . 8849 . 6799 18 18 18 18 18 . 3201 . 4352 73 72 73 72 73 . 5r4S 50 20 44 11 . 13> . 8632 . 6725 . 3275 . 4043 . 5?57 49 10 48 12 . 1585 . 8415 . 6652 . 334* . 4033 . 5C67 48 12 52 13 . 1802 . 81:>8 . 0578 . 3422 . 5224 . 477(i 47 8 56 14 . SOla . 7981 . 6505 . 3495 . 5514 . 448G 46 4 1 15 . S236 54 54 54 54 54 . 7764 . 6431 18 18 18 18 18 . 3563 . 5805 72 72 72 72 72 . 4195 45 5S 4 10 . 2452 . 7548 . 6357 . 3043 . 60:5 . 3i05 44 50 8 17 . 2m . 7331 . 62-4 . 3716 . 6385 . 3615 43 52 12 18 . 2*5 . 7115 . 6210 . 37M) . 6675 . 3325 42 48 Id 13 . 310i . 6839 . 6130 . 3B04 . 6965 . 3035 41 . 44 20 20 . 3317 54 54 54 54 54 . 6663 . 60G2 18 18 18 18 18 . 393- . 7255 72 72 72 72 72 . 2745 40 to 21 21 . 353:' . 6407 . 5388 . 4012 . 7545 . 2455 39 30 iA 22 . 3748 . 625: . 5914 . 40815 . 7834 . 216« 38 32 « 23 . 3W4 . 6030 •. 5840 4110 . 8124 . 187< 37 28 Jo 24 . 4180 . 5820 . 5766 . 4234 . 8414 . 1581 36 24 40 25 . 43*5 54 54 54 54 54 . 5605 . 5^92 18 18 18 18 19 . 4308 . 8703 72 72 72 72 72 . 1297 35 20 44 2o . 4010 . 53H0 . 5».1>* . 4382 . 8992 100> 34 10 48 27 . 4825 . 5175 . 5543 . 4457 . 9282 . 071F 33 12 52 29 . 5040 . 49f0 . 5409 . 4531 . 9571 . 042 32 8 50 23 . 5254 . 4746 . 5395 . 4605 . 9859 . 0141 31 4 a 30 . 5409 53 53 53 53 53 . 4531 5390 18 18 19 19 19 . 4680 .770149 72 72 72 78 .543985! 30 56 4 31 . 583 . 4317 . 5246 . 4754 . 0437 . 9563 29 5'» 8 32 . 53 8 . 4102 . 5172 . 4828 . 0726 . 9274 28 52 12 33 . 6112 . 3888 . 5097 . 4903 . 1015 . 8985 27 48 Id 34 . 032: . 3074 . 5023 . 4977 . 1303 .' 8097 20 44 20 35 . 6540 53 53 53 53 53 . 3460 . 4948 19 19 19 19 19 . 5052 . 1592 72 72 72 72 72 . 840P 25 40 24 30 . 6753 . 3217 . 4873 . 5127 . 1880 . 8120 24 36 28 37 . 6907 . 3033 . 4798 . 5202 . 2109 . 7t-3' 23 32 «2 38 . 7I*« . 2820 . 4723 . 5277 . 2457 . 7541 22 28 M 39 . 7393 . 2607 . 4648 . 5352 . 2745 . 7255 21 24 40 40 . 7606 53 53 53 53 53 . 2394 . 4573 19 19 19 19 19 . 5427 . 3033 72 72 72 72 72 . 6967 20 20 44 41 . 78P 2181 4408 . 5502 . 3321 . 667 19 10 18 52 42 43 . 8032 . 8245 . 1*TO . 1755 4424 . 434° . 5576 . 5 51 . 3608 . 3896 . 63T2 . 6104 18 17 12 8 5J 44 . 845S . 1542 . 4274 . 5796 . 4184 . 581f 16 4 3 45 . 8670 53 5"> 5? 53 5? 1330 . -4199 19 19 19 19 19 . 5801 . 4471 72 72 72 72 72 . 552P 15 57 4 40 . 8882 . 1118 . 4123 . 5877 . 4759 , 5241 14 50 8 12 47 48 . 90M . 9301 . 0°0fl 00O4 . 4048 . 3073 . 5^52 . 6027 . 5046 . 5333 . 4P54 . 4667 13 12 52 48 1(5 49 . 9518 . 0482 . 3898 . 6102 . 5520 . 4380 11 44 20 50 9730 5«» 53 0270 . 3822 19 19 19 19 19 . 6178 . 5-4» 1 t*» < I* Digitized by VjOOQIC 02 TABLE II.— LOO. SINES, TANo's, &C. 9» 31° l - — 15" 1- — 15' 1*- -150 1480 9» 1 Diff. Uiff. Diff • Hour*. 'Deg. L. Sin. for 15" L. Coeec. L-Coi. for 15" L. Sec. L. Tang. for 15" L.Cot. Dcf . | Hoars- ZZ~ 9.71 1KJ9 orl 4 orl' orl 4 i LIU. 4 o 53 0.868161 9.933065 19 19 19 19 19 0.066935 9.77b'tH 71 71 71 71 71 0.991*26 to ~»,10 4 i . 2050 . 7.50 . 21.10 . «oio 90U . U,iU 59 5b 8 2 . 22b0 . 2470 . 2b79 52 . 7740 . 2914 . 7086 9341 0U4 58 52 IS 16 3 4 52 52 52 . 7530 . 7321 2*38 . 2761 71b2 . 7239 . 963* . 991b 03W . 00c2 57 56 4* 44 20 5 2889 52 52 52 5: 52 . 7111 . 2665 19 19 19 19 19 . 7315 .780204 71 71 71 71 71 .916796 55 40 24 6 . 30i»8 . 6902 . 2U09 . 7391 . 0489 . 9511 54 3* 28 7 3308 . 66b2 . 2533 . 7467 . 0775 9225 53 lei 32 36 8 9 . 35J7 . 3726 6483 . 6274 . 2457 . 23b0 7543 . 7620 10U> 134b . tt-40 . bb5* 52 51 24 40 10 3935 52 5-2 52 52 52 . tatt . 2304 19 19 19 19 19 . 7696 1631 71 71 71 71 71 * . 6369 50 20 44 11 4144 . 5856 . 2228 7772 . 191b fcOM 49 lb 48 12 4352 . 5648 . 2151 . 7849 22UJ . 779b 46 a 52 13 . 4561 5439 . 2075 . 7925 24M . 7514 47 t 56 14 . 4769 . 5231 . 1998 . 8002 . 2771 722* 46 4 5 4 15 16 . 4D77 . 5186 52 5-' 52 52 52 . 5023 . 4814 . 1921 1845 19 19 19 19 19 . 8079 . 8155 . 305b . 3341 71 71 71 71 . 6944 . 6659 45 44 55 56 8 17 5394 4C06 . 1768 . 8232 362b . 6374 43 52 12 18 . 5f01 . 4399 . 1691 . 8309 . 3910 (jfc.0 42 48 16 10 . 5009 4191 1614 . 8386 . 4195 5t05 41 44 20 20 . 6017 52 52 52 52 52 . 3983 . 1538 19 19 19 19 19 . 8469 . 4479 71 71 71 71 71 . 5521 40 40 24 21 6224 . 3776 1460 . 8540 4764 523b 39 tf 28 22 6432 . 35t8 . 1384 8bJ6 . 504b . 4W2 38 32 32 23 . 6H39 . 3361 1307 . 8693 . 5332 466e 37 3tt? 36 24 . 6846 . 3154 1230 . 8770 5616 4384 36 24 40 44 48 25 26 27 . 7059 . 7259 7466 52 52 52 51 51 . 2948 2741 . 2534 1152 1075 . 01198 19 19 19 19 19 . 8848 . 8925 . 9002 . 5900 . 61*4 64bb 71 71 71 71 71 . 4100 . 3bl6 . 3532 35 34 33 20 16 12 52 28 . 7673 . 2327 . 0921 . 9079 . 6752 324ft 32 e 56 29 . 7879 . 2121 . 0843 . 9157 . 7036 . 29b4 31 4 30 . 8085 51 51 51 51 51 . 1015 . 0768 19 19 19 19 19 . 9234 . 7319 71 71 71 71 71 . 2681 39 54 4 31 . 82P1 . 1709 . 0688 . 9312 . 7603 . 23*7 29 5o 8 32 8497 1503 . 0611 9389 . 7880 . 2114 28 52 12 33 . 8703 . 1297 . 0533 . 9467 . 8170 1830 27 4e 16 34 . 8909 . 1091 . 0456 . 9544 . 8453 . 1547 26 44 20 35 . 9114 51 51 51 51 51 . 0886 . 0378 19 19 19 19 19 . 9022 . 8736 71 71 71 71 71 . 1264 25 40 24 36 . 9319 . 0681 . 0300 . 9700 . 9019 . 0981 24 3t> 28 37 . 0525 . 0475 . 02:3 . 9777 . 9392 069b 23 32 32 38 . 9730 . 0270 . 0145 . 9855 . 9585 . 0415 22 20 36 39 . 9935 . 0065 . 0067 . 9933 . 9868 . 0132 21 24 40 40 .7910140 51 51 51 51 51 .979860 .999989 19 19 19 19 19 .070011 .790151 71 71 71 71 71 .909849 20 20 44 41 . 0345 . 9655 . 9911 0089 . 0434 . 9566 19 16 48 42 . 0549 . 9451 . 9833 . 0'67 . 0716 . 9284 18 12 52 43 . 0754 . 9246 . 9755 . 0245 . 0999 . 9001 17 * 56 44 . 0958 . 9042 . 9877 . 0323 . 1281 . 8719 16 4 T 45 . 1162 51 51 51 51 51 . 8838 . 9599 19 20 19 19 20 . 0401 . 1563 70 70 70 70 70 . 8437 15 53 4 46 . 1366 . 8634 . 9521 . 0479 . 1846 . 8154 14 56 8 47 1570 . 8430 . 9442 . 0558 . 2128 7872 13 52 12 48 . 1774 . 8226 . 9364 . 0636 . 2410 . 75-0 12 48 16 49 . 1978 . 8022 . 9286 . 0714 . 2692 . 7308 11 44 20 50 . 2181 51 51 51 51 51 . 7819 9207 19 20 19 20 19 0793 . 2974 70 70 70 70 79 7026 10 40 24 51 . 2385 . 7615 . 9129 . 0871 . 3256 . 6744 9 36 28 52 . 2588 . 7412 9050 . 0950 . 3538 . 6462 8 32 32 53 . 9791 . 7209 . 8972 . 1028 . 3819 . 6181 7 28 36 54 . 2994 . 7006 . 8893 1107 . 4101 . 5899 6 24 40 55 . 3197 51 51 50 50 50 . 6803 . 8814 90 20 20 20 20 . 1186 . 4383 70 70 70 70 70 . 5617 5 20 44 56 . 3400 . 6600 . 8736 . 1964 . 4664 5336 4 16 48 57 . 3*503 . 6397 . 8657 1343 . 4946 5054 3 12 52 58 . 3805 . 6195 . 8578 1422 . 5227 4773 9 8 56 59 . 40U7 . 5993 R499 1501 . 5508 . 4492 1 4 T 60 60 9.7*4210 0.975790 9.9*8421 0.071579 9 795789 0.904211 59 m | • ' L-Co*. Difll for 15" L.S0C L.8in. Diff for 15" L.Cotec. L.Cot Diff for 15" L.Taitf. ' m $ Hour*. Deg. Dcff. Houit. orl' orl' orl* m IS It© r- -4* 10 — 4« 1 4o * Digitized by VjOOQIC TABUS II. — LOO. 1INE1, TANo'l, &C. 63 3* 33° 1 — 15" 1- — 15' 1»«150 1*70 9» Diff Ditf. Dilf- 1 Hours. Deg. L.8in. fbr 15" orl' L. Cotec. L. Cot. for 15" orl« L.Sec L. Tang. fnr 15' orl' L, CoL Dog. Hours. "J" 7 " ' " » o 9.7*4210 50 50 50 0.3757 JO 9.938421 SO 20 30 30 30 0.071579 9.795789 :m 0.304211 to 51 4 1 4412 . 5588 . 8342 . 1658 . 6070 :■■- Tu "...I ;&jo 51 5> H 9 4614 . 5386 . 8263 . 1737 . 6351 . :ii 4'J 58 52 12 3 . 4816 . 5184 . 8184 . 1816 . 6632 , 33 8 57 48 16 4 . 5017 50 50 . 4983 . 8104 1896 . 6913 3087 56 44 •20 5 5319 50 50 50 50 50 4781 . 8025 20 30 30 20 30 . 1975 . 7194 TO in . 3*06 55. 40 •21 6 . 5420 . 4580 . 7946 . 2054 . 7474 , ^2b 54 36 28 7 . 5622 . 4378 . 7867 . S133 . 7755 To . e*t5 53 32 32 8 . 582J . 4177 . 7787 . 2213 . 8036 7U . 1'JM 52 28 35 9 . 6024 . 3976 . 7708 . 2293 . 8316 70 . 11.84 51 24 40 10 6325 50 50 SO SO 50 . 3775 . 7629 20 30 30 30 30 . 2371 . 8596 -u 1104 50 20 44 11 6425 . 3574 . 7549 . 3451 . 8877 . 1123 49 16 48 12 . 662** . 3374 . 7469 3531 . 9J57 111 7,1 08 13 48 12 52 13 . 6837 . 3173 . 73:10 . 2610 . 9437 to • 70 Don:) 47 8 56 14 . 7027 . 2973 . 7310 . 2690 . 9717 Q&3 46 4 9 15 . 7328 50 50 3773 . 7331 IS 30 30 30 . S769 . 9997 % , 0003 45 51 4 16 7428 . 2572 . 7151 . 2849 .800277 7:i 4947*3 44 ■>•» « 17 . 762-* . 782-* . 2372 . 7071 . 2J29 . 0557 7 1 . W43 43 52 1-2 18 50 50 50 . 2173 . 6991 . 3009 . 0837 :•! ■ lift 42 48 16 19 . 80J7 . 1973 . 6911 . 3089 . 1116 70 6384 41 44 20 28 22 33 20 21 22 23 24 . 8327 . 8427 . 862 > . 8825 . 9024 50 50 50 50 50 1773 . 1573 1374 . 1175 . 0976 . 6831 . 6752 . 6671 . 65)1 . 6511 30 30 30 20 30 . 3169 . 3248 . 3329 . 3409 . 3489 . 1396 . 1675 . 1955 . 2234 . 3513 TO 70 79 Tu 7=' ; 8004 , *325 . *» 45 77tfc . 7487 40 39 38 37 36 40 Mi 32 28 24 40 44 48 5* 25 23 27 23 . 9321 9422 . 9621 . 98 50 50 50 50 49 . 0777 . 0578 . 0379 . 0180 . 6431 . 6351 . 6270 . 6190 30 30 30 SO 30 . 3560 . 3649 . 3730 . a-iio . 3793 . 3071 . 3351 . 3630 TO 7m Tu ■ 7208 . !.<*> M 19 fl S70 35 34 33 32 20 16 12 8 4 56 23 .730018 .309982 . 6110 3890 . 3908 Tu . 0&62 31 10 4 -i 12 16 30 31 32 33 34 . 0216 . 0415 . 0M1 . 0311 . 1009 49 49 49 49 49 . 9784 . 9585 . 9387 . 9189 . 8991 . 6029 . 5149 . 5W . 5788 . 5707 80 30 *Q 30 30 . 3971 . 4051 4132 . 4212 . 4393 . 4187 4466 4745 . 5023 . 5302 TO 70 To 70 70 . 5-13 5534 . 5255 . 4177 . J. . 18 30 29 28 27 36 50 56 52 48 44 20 24 2-i 32 35 35 36 37 38 39 . 1*>S . 1401 . 1602 . 17 >9 . 1936 49 49 49 49 49 . 8794 . 8516 . 8318 . 8201 . 6004 . 5621 . 5545 . 54u5 . 5384 . 5303 30 SO 30 30 30 . 4374 . 4455 . 4535 . 4616 . 4697 . 5580 . 5851 . 6137 . 6415 . 6693 h'l 09 tVi 4110 441 33*5 . 3307 35 34 33 22 21 40 36 32 28 24 40 44 48 52 53 40 41 42 43 44 . 2113 . 31>0 . 35*7 . 37=>4 . 2380 49 49 49 49 49 . 7807 . 7610 . 7413 . 7216 . 7020 . 5222 514) . 50i0 . 497> . 4837 30 30 30 30 30 . 4778 . 485'J . 4940 . 5021 . 5103 . 6971 . 7249 . 7527 7805 . 8083 69 69 . 1«r>9 . 2751 521771 . 21 ■« 30 19 18 17 16 20 16 12 8 4 11 4 8 12 16 45 46 47 48 49 . 3177 . 3173 . 3.511 . 3715 . 3961 49 49 40 49 49 . 6823 . 6627 . 6431 . 6215 . 6033 . 4816 . 4735 . 4IS5T . 4572 . 4490 30 30 30 30 20 . 5184 . 52 i5 . 5347 . 5428 . 5510 . 8311 . 8638 . 8916 . 9193 . 0471 69 fl r > 6D 01 . 1K39 1*2 007 15 14 13 12 11 49 56 52 48 44 20 24 2"* 12 35 50 51 52 53 54 . 4157 . 4TVI . 4549 . 4744 . 4333 49 49 40 4-> 49 . 5843 . 5147 . 5451 . 5251 . 5031 . 4401 . 4328 . 4246 . 41<>i . 4082 30 20 30 :o 30 ' . 5511 . 5172 . 5754 . 583.i . 531ri . 9748 .8 10025 0101 . 0580 . 0857 419 r, 1 \V> 1. 1 69 0iS2 is rys 0607 B ito IN 43 10 9 8 7 40 36 32 28 24 11 40 44 4« 52 5 » •>0 • 55 56 57 58 51 60 . 5115 . 5110 . 5524 . 571 » . 5HI 9 73-1103 49 4» 4" 49 . 4865 . 4671 . 447'! . 42=51 . 408'« 0.391811 4001 . 3111 . 3817 . 3755 3671 9.931591 30 30 30 20 .*0 . 5919 . 6081 . 6163 . 6245 . 6327 0.076409 1134 . 1410 . 1687 . 1964 . 3241 9.8135H m 1. 09 P9T>r, KPO t Kin WW. 0*l47«-4* 3»J3 3* Digitized by VjOOQIC 84 TABLE II. — LOO. 8INB8, TANo's, Ac ft* 330 V — 15" 1" — 15' 1»— 15© 1499 r I Diff Dim out 1 Hour*. Deg. L. Sin. for 15" orl* L. Coiec L.C . 2532 . 301< 6984 . 4452 . 554> 53 „ 32 8 . 7601 . 233.* . 2j33 . 70J7 . 4728 . 5272 52 _« 36 9 . 7855 . 2145 . 2fc51 . 7149 . 5004 . 4MH 51 .4 40 10 . 804* 48 48 48 48 48 . ltt-2 . 27G8 20 21 20 21 21 . 7232 9280 09 89 09 80 89 . 478B 58 ■ 44 11 . 8 '41 . 17.-. ' . 2.i8i) . 7314 . 5555 . 4445 48 48 12 . 8434 . 15 . &.03 . 7X*7 . 5*31 . 4h* 48 . 52 13 . 8f27 . 1373 . 2520 . 7480 . 6107 . 393 47 • 56 14 . 8820 . 11 tO . sttto . 7502 . 63B2 3618 4* 1 i 13 15 . 901? 48 48 48 48 48 . 0087 . 2355 . 7045 . 6C58 89 6* 69 89 . 3343 45 47 4 10 . fr(W. . 07:14 . 2272 11 . 772f . 6934 . 30a 44 s 8 17 . 934F 0602 . 21d: XI 21 21 21 . 7811 . 720J . 87 1 43 12 18 . P5"0 . 0410 . 210b . 78.<4 . 74H . 251i 42 10 19 . 9783 . 0217 . 2023 . 7977 . 77L0 . 8240 41 '* 20 20 . 9975 48 48 48 48 48 . 0025 . 1940 21 21 21 21 21 . 80C0 . 8035 69 89 89 89 1965 48 24 21 .740 »«7 .959833 . It57 . 8143 . 8310 . I6IO 39 2d 22 . 035 . 9641 1774 . 822* . 8585 . 1415 39 - 32 23 . 0551 . 9449 . lttitl . 8303 . »0 . 1140 37 30 24 . 0742 . 9258 . 1C07 . 83J3 . 9135 . 6815 36 r 40 25 . 0134 48 48 48 48 48 . 9066 . 1524 21 21 21 21 21 . 8476 . 9410 89 69 89 69 89 . oy© 35 ' •-• 44 20 . 1125 . 8H75 1141 . 8559 . 9t84 . 031. * 1 48 27 . 13 IP 8684 . 1357 8043 . »*» . 0041 33 52 23 150" . 84f>2 . 1274 . 8726 .890234 .17V7i 4 at 50 29 . 1698 . 8302 . 11*0 . 8810 . 0508 . 9412 31 ■ 4 14 30 . 1890 48 48 48 . 8110 . 1107 21 21 '1 21 21 8893 0783 89 89 08 68 68 . 9217 30 44 4 31 . 20=0 . 720 1023 . 8977 . 1057 . 8HC 29 8 32 . 2271 . 7729 . 0)3. . f.Q61 . 1332 . 866f 89 12 33 . 24<*2 47 47 . 7538 . 0856 . 9144 1108 . 6394 27 10 34 . 2052 . 7348 . 0772 . 9226 . 1880 . 8120 26 *« 20 35 . 8342 47 4? 47 . 7158 . 0688 21 21 21 21 21 . 9312 . 2154 68 68 88 68 68 . 7*4f 85 24 36 . 3033 . 6W7 . 0J04 . 931)6 . 8429 . 7571 84 '■ 28 37 3223 . 6777 . 0520 . 9480 . 9*4 2703 . 72: 83 . 32 38 . 3413 47 47 . 6587 . 0431. . 2»77 . 702- 21 - 30 30 . 3802 . 6398 . 035.' . 9648 . 3250 . 6759 21 -• 40 40 3792 47 47 47 47 47 6208 . 0T8 21 21 21 21 21 . 973? . 35?4 88 68 68 68 68 . 647f 86 - 44 41 . 3382 . 601* . 0184 . 9810 3798 . 6202 19 48 42 . 4 71 . 58:9 . oo> . 9901 . 4073 . 3* 18 - 52 43 . 4301 . 5639 0015 . 9985 . 4346 . 3054 17 * 50 44 . 4550 . 5450 .919931 .080000 . 4619 . 5*1 M 4 15 45 . 4739 47 47 47 47 47 . 5201 . 9846 21 21 21 21 21 . 0154 . 4893 68 68 68 68 C8 . 510? 15 45 - 4 40 . 4928 . 5072 . 9762 . 0238 5166 . 4834 14 -• 8 47 . 51 '7 4883 . 9678 . 0322 . 5430 . 4361 13 -• 12 48 . 5306 . 441 . 9254 . 074*' . 6805 . 3W 8 • 32 53 . 6248 . 3752 . 9170 . 0830 7078 2W 7 -* 30 54 . 6436 . 3504 . 9085 81 . 0J15 . 7351 . 864' 6 .4 40 55 . 6624 47 4" 47 4* 4T 3176 . 9000 81 81 21 81 81 . 1000 . 7T84 68 68 68 68 68 . 837T 5 .' 44 50 . 6812 . 31*8 . 8915 . 108S 7897 . 310- 4 48 57 . v o 8T.5 » 1341 . 8715 . 1** 1 4 IS 00 « 60 9 747502 0.9*2 138 9.918574 0.081426 9.89*88 0.1 71012 6 6* ■ f Diff for 15" DifT for 15" Diff for 15" Dtf.l B«rt Hours- iDeg. L-Coi. L. ffcc L.8in. L.COMC. UOOL UTuf 1 orV mV orP 1 •» IS 30 l». -4*ic -4- 1 I** 1 ► Digitized by VjOOQIC TABLE 11.— LOO. SINKS, TANO's, &C. 65 340 1' — 15" 1- — 15' H—150 1450 1 m mr Diff. U£ ■ ■ ■ Hour*. Dejr. L. Sin. for 15" L.COMC L.CM. for 15" L. Bee. L. Tang . for 15" L. Cot. Dug. Hours- ~T",~rp~~ orl« orl* orl 4 # ■ • 16 9.747532 47 s s 0.95243d 9.918574 . . 8404 1 ;} 8318, *f 0.0814*! 9.99893 6f r 61 0.171012 60 . 43 DO 4 1 . 7749 . 9251 . 1511 . 92M . 0740 59 56 8 9 . 7936 9QM . 15J0 . 9535 . 046t> 58 52 19 3 . 812:1 1877 . 1682 . 980. . 0195 57 48 10 4 . 8310 1600 . 8933 91 . 1767 .83007' .169923 56 44 90 . 8491 S 2 . 1503 . 8148 91 91 91 11 . 1852 . 034$ > 68 ; | : 68 68 . 9651 55 40 94 6 . 8683 . 1317 . 8002 . 1938 062 . 9379 54 36 98 7 88711 . 1130 . 7977 . 9023 . oea: . 9107 53 32 39 8 . 905(1 . 0944 . 7841 -910J . liu . 8835 59 98 3a 9 . 994S . 0758 . 7805 . 2193 . 143' . 8503 51 94 40 10 . 9499 40 4( 44 41 •wv 46 . 0571 . 7720 91 I 1 91 91 91 . 9284 . 170J 6S 68 DC 68 68 . 8291 50 90 44 11 . 9613 . 0392 . 7634 . 936t 198J . 8014 49 16 48 19 . 9801 . 0190 . 7548 9459 . 925: . 7747 48 19 59 13 . 9987 . 0013 . 7462 . J253b . 8522 . 7475 47 8 56 14 .750173 .949628 . 7376 . 96:4 . 27* . ?204 46 4 IT 15 . 0358 4fl 2 2 . 9644 . 7230 91 91 91 91 91 . 9710 . 308 68 At Afl DC 68 . 6932 45 43 4 16 . 0543 . 9457 7204 . 9796 . 3331 . 6601 44 56 8 17 . 072J . 9271 . 7118 . 2882 . 361J . 638* 43 52 19 M . 0J14 . 9086 . 7032 . 8968 . 38* . 6118 49 48 16 19 . 1099 . 8901 . 6945 . 3053 . 41* . 5846 41 44 90 90 . 1284 2 46 2 . 8716 . 6859 91 91 99 91 92 3141 . 4432 68 . 5575 40 40 94 21 1469 . 8531 . 6773 3227 . 469C . 5304 39 36 88 99 1654 . 8346 . 6687 . 3313 496* . 5033 38 32 39 93 . 183d . 8162 . 6600 . 3400 . 523* . 4762 37 28 36 94 . 9023 . 7977 . 6514 . 3486 . 55K . 4491 36 24 40 95 . 9203 W 2 46 . 7793 6427 91 22 22 99 99 . 3573 . 578C AS 00 68 8 . 4920 35 20 44 96 . 93J9 . 7603 . 6341 . 3659 . 605J . 3949 34 16 48 97 . 9576 . 7494 . 6954 3746 . 63*2 . 367© 33 12 59 98 . 9760 . 7240 . 6167 . 3833 . 6593 . 3407 39 8 56 90 . 9944 . 7056 . 6030 . 3990 . 6864 . 313t> 31 4 18 30 . 3128 46 46 46 46 46 . 6872 . 5994 . 4006 . 7134 67 67 . 2S6U 30 49 4 31 . 3312 . 6688 • 5107 S . 5sjo ~ . 5733 s . 5646 J . 40.^3 7405 . 95 5 99 56 8 39 . 3495 . 6505 4180 . 7675 . 9325 98 52 19 33 . 3679 . 6321 . 4217 . 7946 . 9054 97 48 16 34 . 3369 . 613a . 4354 . 8216 . I7d4 96 44 90 35 . 4046 46 46 46 46 46 . 5954 . 5559 _ . 5472 S . 53S5, S . 5f97i £ ' ® 10 | 99 4441 . 8487 67 67 67 67 67 . 1513 95 40 94 36 . 4229 . 5771 . 4523 . 8757 1243 24 3d 98 37 . 4412 . 5538 4U15 . 9097 . 0J73 23 32 39 38 . 45)5 . 5405 . 4703 . 92J8 . Q70J 29 28 36 39 . 4778 . 5222 . 4790 . 95o6 . 0432 91 24 40 40 . 4961 46 46 45 45 45 . 5039 . 5035 S • *94*. 02 . 4860, £ . 4877 . 0838 67 67 67 . 0162 20 20 44 41 . 5143 . 4857 . 4965 .84010-' .1596J2 19 16 48 49 532(1 . 4674 . 5052 . 037H . 9622 18 12 52 43 . 550? . 4492 . 5140 . 0J48 . 9352 17 6 56 44 . 5690 . 4310 . 4773 99 . 5927 . 0917 . 9043 16 4 19 45 . 5972 45 45 2 45 . 4198 . 46*5 92 OA . 5315 . 1187 67 67 67 67 67 . 8813 15 41 4 46 . 6054 . 3946 . 4S17J . 5403 1457 . 8513 14 56 8 47 . 69315 . 3764 . 45)9: S . 4422; 2 . 5490 . 1726 . 8274 13 59 12 48 . 6418 . 35% . 5578 . 1996 8004 19 48 16 49 . 0600 3400 . 4334 92 . 5666 . 9206 . 7734 11 44 90 50 . 6781 45 . 3119 . '42Ig' m . 4153; 2 . 4070 1 S 31*2 2 . 5754 . 9535 67 67 67 67 67 . 7465 10 40 94 51 . 6963 . 3037 . 5842 . 9805 . 7IJ5 9 36 99 52 . 7144 ft . 9855 JJ . 9493 . 5930 . 3074 . 692) 8 32 32 53 . 7325 . 608 . 3343 6657 7 28 1 38 54 . 7507 . 3894 99 . 6108 . 3613 . 6387 6 24 10 55 . 7688 J . 2312 S • 9131 g . nso S . 1770 49 1 0.941401 . 3809 on . 6194 3889 67 67 67 67 67 . 6118 5 J 10 14 58 . 7869 3718 m . 3»ff Hoan.l orl* orl'l orl* 1 •» 1M kd r V — 4* I© . I -4* |M|0 ^ --,.. Digitiz ed by v jOOgl e J 1 66 TABLE II. LOO. SINE8, TANo's, &C. a* 390 V — 15" 1" — 15* 1» — WO 1440 9» H Mirs. ■'!> »l U3 Dec 91 Knufi- 53 38 h m »«f I . Sib, ♦ B773 ♦ HAW ♦ SJ'L> . W343 . U»I »h73 . r*»3d 7rtixiM . u3jj . 0T3O , 05* , 074- it ftl , 11QU , tiei i 14JH till . 1*11 . um . sit? . a:i3ii . 37 u . 9410 . 30'i; , 3243 . 3432 . aoon , 3777 . g£H . *m . 4r«i- . 44ft 400:! . 4«fl 51113 , Will , 51 . Of! . 37JU tiHT-J , 0217 • tUil , f3'* . Ii774 . IU| . : 1 2 1 . 730 j , 74*J . 7*4 . 7*21 . 7*1 , *]7.( . Pl| 1 *5JJ , HUT . FM7I . Mil A TOW ii. in 61* L. 1*0*- L. d»w. - 1-3* . 10 1« , QU00 * ftN , OSrj (Mtf i Oil* . D7dy 45! 41 i 44! 44 « 44 :\ 44 1 44' 41 44 44 44 #41 41 41 j 41 44 **\ 44! H 41 4 J 4|l 41 44 44l 44 44 ; 41 8 44 41 43 4.1 1* Co* ^7 I.i B351 I . BU01 7*31 7044 "V iirfi 7 2-* 7111 15753 6J7d til in rod, Ji.-ut SI '4 5.515 s.w 4:^3 4*1 1 4033 44H 41*1 4J«M 3'«a ;t73i :U77 nog IS.' n W 1 3700 853-1 sr 3>H 1*27 l -. : 147* m 113 '5:. J I IT- IHiT f.r USec> t».W13Ju4, . 337l. , it-** , 30 9 1 3*U0 . 3 J3J . &*x* 1 urn . 3300 . 3477 . 33-* « aim , £3io . SMI ami - ]'i i i u 1 , vm\ . 1UT4 fur OTl J . J 4 <3 . una , 1310 . mA UK , KMii . II UVi . Mfi| . «77tl , QffiU * OS id . olshh . niiii , OliJ . aits . 00,14, .00 W3 ito73 '■:■•: . tit 4 , fHint , ns . i'lL ' . El| K'i . W£5 , - ^7:1 - I |Q -7 ' 1 . 8M7 . fMln . pi; . P311 PHI mil') 21 <:! -11 ■11 33 3? a-i ■in >2 £3 33 ♦ja K) Kl 93 33 33 23 33 33 31 21 4 *1 33 VI 2i 3^ 1 33 U Set T. s, 1 Diir IV nr t 1 oi:; ttii 0141 or 10 >p-l ana (WW <.-. nia-j J12T i 1 . 13|n 14111 III 15M Lik7.* 1 7'1? 041010 »i L Tang r.. I'ikv i*-4 ::; . 57U4 , poi tkNfcJ . 6571 . *j*C*4 . 710^ . 7371J « 7tV4S . 71M , 6f8] . W«i t*7 . tfJ(i* , K34 , &513 r 07 c fl d 03^3 . 0391 . 0*o J , naa , ism . rm . 311H . 34M -:- M . 3U0» . nam' . r* ia . 44M!» . 4337 l'-C14 . 41^1) , AH? * 3404 ► S071 . 3*KW , AdOl . til . 0717 . 70U4 ■ 7.H7 . 7WJi . Hi II 1 BIIP , PITOJ K*ilw . din 0100 . lhjCM\ .4 mil 1- 0414 . 073fl ftl-Ml 09*VJJ,» f.ir L. t&L L-Col. 07 1,7 n 1i 7 "'- NT m 07 07 07 «7 ..T 87 .;7 H7 *7 U7 fi7 (!T 07 07 07 417 1.7 i.T ..: ..; r: <.- Ml $i % .17 ..7 <■■ |) 1,7 »:t 1,7 1.7 I,? '■' (50 Bl (.i. ft., i„i M n 04 A aiM773 430 4 -a IMS 313-i 3 tO 144 3333 anp7 1M| 1331 l*G 1013 07*1 Ot7- ono !U(|- 8P7I HI04 Sti PllTi mi 7.1 H n,rr for 13' f ,.r T IJmtr* ti44iTi w Ml 53 n 313it 4-K, I.'.*. 4-rj Id • 3T»*i m ■w *7*i 3*fi I'll I li" 0X14 U31^ Ptff oirtrtn* h T»nj n 4- 44 1- I .v- M »- N Ml 34 H 14 t: m i. hi > 14 3d ■).J llmr*. 1 J4> r - r v* - «* »4^ Digitized by VjOOQIC TABLE II. — LOG. SIXES, TAfto's, &£• 07 360 15" !• — 15' 1* — WO TTIiT it* li T ' or i* 14 So II ■!' - D*f, ±7, I fcl 14 IIS £0 24 ** :*3 30 ii 4* S3 ■:. - -i - i>. 20 « ta aa to Li I* 52 5^ «G 20 m N ax 27 0, m ,'i $ il (6 .12 v-, n 1 9 3 4 B 7 a 9 70 1] 13 13 14 JJ Jit 17 IS 39 II £2 23 34 ts ■2(1 27 Stf TO 31 33 33 34 35 3(1 37 38 M 40 ii 4S 13 44 45 io 47 Irl as as 53 51 50 a? CO I- Bin. UliT fci 15-' or l* tf TO 4J0 . 0343 . i'740 ► 1ft 13 .7700*' * I UNI 04:« . MOfl . 0770 . am . ma war 1470 i 11H3 : IS] 5 . 11H7 . BJ5M i ^131 , 2503 so 3»1U . ym . ass< . 3704 3*7j 40 4U . 4217 . 43R8 . ftStt i 47>2:" . 4SfMJ 5070 5340 . 54 Ju . 55*1 * 57511 . eo°fl «*■ 0707 , T10 . TtW . 7444; . ma * 77*1. * TWO . HE I £455 8024 . P7«U i fhf'.li t n& 1 7*7403 Hwire. t*eg I*. C«b, 43 43 43 43 43 43 ■i:; a:; 43 43 43 43 43 43 43 u 43 43 43 43 43 -1 ; 43 43 43 11 13 & ■I.' 43 43 43 ■i? 4:< 43 li I 4$ IS I. !•.' 4? 4'2 J- 01 4 2 -1 2 49 4 J IB 19 42 42 -12 42 42 a: « 4 -J 13 L- Cmec. IHIT for 1.V nrl* pjsamwi SUV ostu Mtmu 1^740 v» m B3W4 U221 tn75 6703 Ki3U 8057 etfa eon 7*41, 7tJ»5JI 74U7 7911 715;i mn\ fidhl 64G7 ausn 57*3 5G13 5442 5371 5I0J 4W3« 47641 45' II 4440 4350 *i-f 3?" 10 3741 3,571 , 3«M 32311 S*D , SMtM . 2725 SSfil . S3H7 i m?h MHO . 1713 t 1545 L, CW* I in 15" L. St. h* Tang I37ti . Jjii- 11)40 070) 7*x I' 7774 . 74.J--2 : 75^« . 740K . urn . 7314 * 7«1 . 7l^ii 7037 . EMA em . ti'LO MM . C37* . 64*$ . e3^y new , 6111 , »95 .V3 l J ► 5731 3 . ,1 4. . Sfiftfl . 545 , 53.1 9m . 5170 . 50-.1 4JK1S . 4Kfr . 4*n:. , 4711 4Qi; . 4523 , 4*ffl 4:i35 m\ 414; 4053 . :i ui 377n . 3ii7 . ai^i . 34p-7 1 XTJ3 . M*ft . :lm.i . 3li> , 301 , aoj' . 27W : sr.34 . &VI -, l j 1 ; f>ttt»23-1'i L. S«. L- S10. 23 «3 S3 23 «3 S3 23 S3 S3 S3 S3 S3 ss S3 S3 S3 S3 S3 S3 HI S3 23 2H ■23 S3 S3 v.: S3 S3 23 SI 23 VI S3 93 to to to U S3 a:i S3 ji S3 n S4 S3 34 33 94/ S4 SI M ■24 S4 ti S4 S4 Si. 4 * 1M3 ' 11T f.*r 15" or 1* S^ti a b S41U awy -.■.!M IS -1 S77* 3U.J- 3141- ^333 34S5 3)41 :<;5 . 34^> 39 5 . 41M> . 4445 . 4710 . 4V7JB , 5S40 > 5505 . 5?;o . 04I3J i L. ii'. sisi . BJ0I . 7ii:>4 . 735 , 7143 7W - 8153 , WW H.r(l . ft>45 i THT3 .S7WMH «,■■.-. . OSS:i - 07t>3 1057 , 3331 . 1*451 , S1L3 . kw s , .«oa . 3107 . 3ITO . SON . 3.M7 , 4231 44P4 . 4747 ■ 5010 . 5373 . 5.W. 7170 . 5WI 7&V . I50C1 73110 ! , 03fi" 7401 . f5- 75543| . SBS1 097151 O 877114 L-Cul. Ifte Hriun [.. COMC. L, Col. K n 50 Of. Or, ic M r.i, rr, SJ Sfl r.ii r, r , IV, i,r, Eli HO M i.i 11 1-1. i-i m rm M73, 5> E£oe 5-* TM'l S7 7677 5U 7411 1l4i 1^1 ms 5s 1,3^0 Wl-fl 5r-A 555. 53 1 1 502, 471 1> 4*« 4331 3) I J 3700 343 317 I 2 I M SMM S377 2113 35 1W^ 34 15>4 33 1320 vm 07^1 1J537 03i .3 tSJ9W 1*735 P47I earn e«43 mv 6415 PA51 7d^ 70 4 730J 70U7 f«Cl I57ii 6301 P043 577.1 5.11 U 5253 4'.w 4727 4404! 49T4I S 3«37 4 3-E74 3 34JI f 31 4» ] irem ::2 1| M 2- 37 a 2J 24 .1 ±2 8* 1 l&-> V — 4* J3 — 4" It nun 930 Digitized by VjOOQIC 68 TABLE II.— LOO. 1INB1, TANo'l, &C. 8T° for 15" orl* !•— 15" 1- — 15' 1»— 15° 14fto Tifit for 15" orl* Hours. Deg. 38 90 30 31 31 45 4 46 L.8in. 0.77J463 . 9630 . 97U6 9960 .780133 . 0300 0467 0834 . 0601 . 0368 . 1135 1301 . 1467 1634 1800 1966 . 3139 . 2398 . 3464 3796 3963 3127 33> 7077 7336 65 ' 65 65 64 64 . 2923 9664 5 4 20 16 48 57 8103 1537 . . 9191 7534 2401 3 12 52 58 . R510' 1440 0707 . 9233 . 78W . 2147 2 8 53 51 8716! 12*4 0S05 . 9395 . 8111 . 18H9 1 4 m fiO • 1 60 9 793872 0.90112* 9.890503 0.1034W 9.909369 0.091631 i 24 / I Diflf. for 15" Diff. for 15" Diff for 15" Hours* Deg. L.Cos. L. Sec L.8in. L. Cosec. I L. Cot. L. Tang. Deg. Hoars. 1 ' orl« orl* f 1 orl» 8» 12 8e 1' = 4» IO -4" ft to a » Digitized by VjOOQIC 70 TABLE II.— LOO. SINKS, TANft'S, &C. »» 390 1 mm 15" 1» — 15 1 ]* — ISO 140* •» Diff. Diff. Diff j Hoars. D*. L. Sin. for 15" or 1* UCosec. L.Co* for 15" orl* L-Sec L. Tang. for 15" or r L.Cot. »«*. Boars. [ • • t S3 • 36 9.793872 a. 39 39 39 39 o.aoiife 9.890503 38 35 38 85 88 0.109497 9.908369 65 64 64 64 84 0.O91631 60 69 ; 4 1 . 9028 . 0J72 . 0400 9600 . 8638 1372 59 y 8 3 . 9184 . 0816 . 03J8 . 9703 8886 J114 58 52 13 3 . 933U . 0661 . 0195 . 9805 . 9144 . 025t 57 4r 18 4 . 9495 . 0505 . 0093 . 9907 . 9403 • 059b 58 44 30 5 . 9651 39 39 39 39 39 . 0349 .889991 85 86 88 88 86 110009 . 9560 M 84 64 84 64 . 0340 59 «! 24 6 . 9806 . 0194 . 9888 . 0113 . 9918 . 0983 54 * i 38 7 . 996V . 003" . 9785 . 0315 .910177 .08983:1 53 52 33 8 .800117 .199883 . 9683 . 0318 . 0435 . 9565 58 2* '. 38 9 . 0372 . 9738 . 9579 . 0431 . 0893 . 9307 51 24 '. 40 10 . 0437 39 39 39 39 39 . 9573 . 9476 88 86 86 88 88 . 0534 . 0951 64 64 64 64 64 . 9049 59 »l 44 11 . 0582 . 9418 9373 . 0637 . 1S0J . 8791 49 It 48 19 . 0737 . 93ft3 . 9370 . 0730 1467 . 8533 48 i: 53 13 . 0893 . 9108 . 9167 . 0833 1735 . 6475 47 * ' 56 14 . 1047 . 8953 . 9064 . 0936 . 1983 . 8917 46 4 37 15 . 1301 39 39 36 38 38 . 8799 . 8961 86 86 86 88 86 . 1039 . 8840 64 84 84 84 84 7760 45 8)3 0t 4 18 . 1356 . 8644 . 8858 . 1143 . 8498 . 7503 44 56 8 17 . 1511 . 8489 . 8755 1345 . 8756 . 7844 43 52 13 18 . 1665 . 8335 . 8651 1349 . 3014 . 0986 49 4rf 16 19 . 181!) . 8181 . 8548 . 1453 . 3871 6739 41 44 30 30 . 1973 38 38 38 38 38 . 8037 8444 88 88 88 88 88 . 1558 . 3539 84 84 84 64 84 . 6471 49 40 34 21 . 3138 . 7873 \ 8341 1659 . 3787 . 6813 39 * 1 33 S3 . 3382 . 7718 . 8337 . 1763 . 4045 . 5955 38 '.t?! 33 33 . 3436 , 7564 . 8134 1866 . 4302 . 589r 37 *! 38 34 . 8590 . 7410 . 8030 . 1970 . 4580 . 5440 38 ** 40 35 . 2743 38 38 38 38 38 . 7357 . 7936 88 86 88 86 86 . 8074 . 4817 84 84 84 84 84 . 5183 3$ -20 | 44 26 . 3897 . 7103 . 7832 . 8178 . 5075 . 4935 34 lo 48 27 . 3050 . 6950 . 7718 . 3383 5332 . 46t* 33 12 1 52 28 . 3804 . 6796 76M . 3386 . 5590 . 4410 38 r 56 23* . 3357 . 8843 . 7510 . 8490 . 5847 . 4153 31 4 38 30 . 3511 38 38 36 38 38 . 8489 . 7406 88 36 88 38 86 . 8594 . 6105 84 64 64 64 84 . 3895 30 aa 4 31 . 3664 . 6336 . 7303 . 3698 . 8362 . 3838 39 5t» 8 33 . 3817 . 6183 . 7198 . 8802 . 8819 . 3381 38 52 13 33 . 3970 6030 .. 7093 . 8907 . 8877 . 3133 37 4<- 16 34 . 4133 . 5877 . 6989 . 3011 . 7134 . 386t> 88 44 30 35 4376 38 38 38 3« 38 . 5724 . 6885 36 36 38 86 38 . 3115 . 7391 84 84 84 64 64 . 880" 35 40 34 38 . 4438 . 5573 . 6780 . 3330 7648 . 835" 34 3fi 3d 37 - 4581 . 5419 . 6676 . 3334 . 7905 . 8095 23 J? 33 38 . 4734 . 5366 . 6571 . 3439 . 8163 . 1837 23 > 36 39 . 4886 . 5114 . 6486 . 3534 . 8430 . 1580 31 24 40 40 . 5039 38 38 38 38 38 . 4961 . 6363 88 38 28 88 . 3638 . 8877 64 84 84 . 1333 80 30 44 41 5191 4809 . 6367 . 3743 . 8934 10W 19 1ft 48 49 . 5343 . 4657 . 6153 . 3848 . 9191 . 0800 18 12 52 43 . 5495 . 4505 . 6047 . 3953 . , 9448 64 . 0553 17 p 56 44 . 5647 . 4353 . 5943 38 . 4058 . 9705 84 . 0995 16 4 39 45 5799 38 38 38 38 38 . 4301 . 5837 88 88 88 36 86 4163 . 9963 84 84 . 0038 15 8)1 4 46 . 5951 . 4049 . 5733 . 4368 .990319 .OT9781 14 56 8 47 . 6103 . 3897 5637 . 4373 . 0476 84 64 . 9534 13 52 13 48 . 6354 . 374f . 5531 4479 0733 . 9367 13 41* 16 49 . 6406 . 3594 . 5416 . 4584 . 0990 64 . 9010 11 44 30 50 . 6558 38 38 38 38 38 . 3443 . 5311 36 88 96 38 88 . 4689 1847 64 8753 10 40 34 51 . 6701 . 3391 . 5306 . 4794 1503 64 . 8497 9 3fi 38 53 . 6860 3140 . 5100 . 4900 1760 84 . 8940 8 *K> 33 53 . 7011 . 8981 . 4994 . 5006 . 8017 64 7983 7 ■*- 36 54 . 7163 . 8837 . 4889 . 5111 . 8874 64 . 7736 6 40 55 . 7314 38 38 3» 38 38 . 8686 . 4783 88 38 38 26 88 . 5317 . 8531 64 . 7489 5 f 44 56 . 7465 . 3535 . 4678 . 5332 . 8787 64 . 733 4 IA 1 48 57 . 76l« . 8384 . 4573 . 543 a 3044 64 . 695* 3 ,: i 53 58 . 776P . 3234 4466 . 5534 3300 84 64 6700 3 M 5* 53 . 7^ 7 . 20«3 . 4360 . 5640 . aw- . 6443 1 4 | 39 60 60 9909068 0.191933 9.884354 0.115746 9.98)3814 0.078186 9)0 m • ' Diff. for 15" Diff. for 15" ntff. for 15" • m 1 (Toon. D«f. L.CM. L.B4C L.S40. L-Cotec L.Cot. L.T»if. D«* Horn 1 . orl« l«l' orr 1 lA 1 W> 1'- -4' lO — 4* w to 8» Digitized by VjOOQIC TABU II.— LOO. SINES, TAJio'8, &C. 71 » 40© V — 15" 1" — W 1» — 150 for 15" or !• 139o D*. I* Sin. 40 41 49 4 « u 16 20 24 *J J2 36 40 44 46 52 56 4 8 13 ltf •20 24 28 32 36 40 44 44 52 56 4 8 19 16 30 24 2-< 32 35 43 44 48 56 4 8 12 16 20 24 2-< 32 36 40 44 48 52 5i 1 s 3 4 5 6 7 8 9 il IS 13 14 IS 10 17 18 IS 41 43* 43 44 45 46 47 48 40 50 51 53 53 54 O.8OJ0.8 . 8318 . 836u . 8519 . 8669 . 8619 . 8J69 . 91 19 . 9909 . 9419 . 9569 . 9718 . 9868 410017 . 0167 . 0316 . 0465 . 0814 . 0763 . 0912 . 1001 . 1210 . 1358 . 1507 . 1658 . 1804 . 1952 . 3100 . 3348 . 83J6 . 3544 . 3092 . 3340 . 8188 . 3135 . 33*3 . 3430 . 3578 . 3725 . 3373 . 4019 . 4166 . 4313 . 4460 . 4007 . 4753 . 4900 . 504 * . 5193 . 5333 . 54R5 . 5632 5778 . 5934 . 6070 . 6215 . 63ftl . 6507 . 6652 6798 0.816943 Diff for 15" or l" 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 36 36 38 36 36 36 36 36 36 LGofM. 101332 1783 1631 1481 1331 1181 1031 0881 0731 0581 0431 Q3d3 0133 .189 P3 9433 9684 9535 9380 9337 9088 8790 8643 8493 8344 8196 8048 7900 7752 7604 7456 7308 7160 7019 6865 6717 6570 6432 6375 6134 5981 594 L.CO*. 0.884354 . 4148 . 4043 . 3936 . 3cJ39 3733 . 3d 17 . 3510 . 3404 . 33J7 . 3191 . 308 . 8978 . 3571 . 8764 . 8557 . 355(1 . 3443 . 83W 554 5347 5100 4954 4807 4661 4515 4368 4333 4076 3930 3785 3039 3493 3348 3103 183057 . 8131 . 8014 . 1907 . 1799 . 1092 . 1584 . 147 . 136! . 12 I . 11£ . 1045 . 0337 . 0**i . 073* . 0613 . 0505 . 03)7 . 03*» . 0U0 . 0072 .873961 . 9855 . 974(3 . 963? . 9533 . 9430 . 9311 . 9302 . 0033 . 8984 . 8875 . 8706 . 8657 . 8547 . 8438 8338 . 8919 . 8103 . 7999 . 7890 0.8 17780 for 15" orl« 86 86 3d 37 86 86 87 37 87 87 87 87 87 87 87 87 87 87 87 37 87 87 87 37 37 87 87 37 37 87 87 37 37 37 87 87 37 37 37 87 87 87 87 87 87 87 87 87 87 87 87 37 87 87 87 87 87 87 87 87 L.Sec 0.115746 5552 5358 0064 6171 6377 6383 6490 6536 6703 6803 6916 7032 719< 7336 7343 7450 7557 7664 7771 7879 7986 8033 8301 833; 8416 8523 8631 8739 8847 0170 9878 933? 9405 9603 9711 190037 0145 0254 0363 0471 0580 0689 0798 0907 1016 1135 1334 1343 1453 1563 1673 1781 1891 3001 3110 1*3330 L. Tang. 0.093814 4070 . 4327 . 4583 . 4840 . 5096 . 5353 . 5J09 . 5865 . 6133 6378 . 6634 . 6890 . 7146 . 7403 . 76V . 7915 . 8171 . 8427 . 8940 . 9196 . 9451 . 9708 . 9964 .030320 . 0475 . 0731 . 0387 . 1343 . 1499 1755 . 8010 8266 . 3522 . 3778 3033 . 3389 3545 . 3800 . 4056 4311 . 4567 . 4893 . 5078 . 5333 . 5589 . 5844 . 6100 . 6355 . 6610 . 6866 . 7131 7377 . 7887 . 8142 . 8398 . 8653 890* 0.039163 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 L.Col. 0.0*6186 . 5330 . 5673 . 5417 . 4160 . 5904 . 4648 . 4391 . 4135 . 3878 . 33»i» . 3110 . 8 J 54 . 3537 . 8341 . 3085 . 1833 . 1573 . 1317 1060 . 0i04 . 0549 . 03* . 0036 .069780 . 9535 . 9369 . 9013 . 8757 . 8501 . 8345 . 7930 . 7734 . 7478 7333 35 6967 34 »eg. 6711 6455 6*00 5044 5683 5433 5177 4933 4667 4411 4156 3300 3645 . 3134 . 8879 . 9633 . 8368 . 3113 1858 . 1603 . 1347 1092 0.080837 Hours 10 10 18 5i 4C 44 40 Jo 33 28 A 30 16 13 8 4 56 53 48 44 40 36 33 28 24 20 16 3 8 4 56 52 48 44 40 36 33 28 24 20 16 17 56 52 48 44 40 36 33 38 34 30 16 13 8 4 Hours. Deg. I»Cm. 8i iW> mm for 15" orl* L.8M. L.Sin. lift for 15" or !• L.Comc. L. Cot, Oiff for 15" orlM L. Tang. Deg. Hour*. V—4* lo-4« ~T& »r Digitized by VjOOQIC 72 TABLE n. — LOO. SINKS, TANo's, &C. «o 1*— 15" !■ — 15' 1»— 150 1M« jJirt". fr£ TRI" i Itodm* D**. L. Sin. for 15" orl' L. Cosec. L.Cos. for 15" orl* L.Sec L.Tanf. for 1 15" orl* L-Cot. De* lb -• n: » ' ' 13 44 g D.HliV.ltf 30 30 30 <> 183057 9.877780 27 27 27 O.132220 9.939163 64 64 64 64 o.ooMr. 66 -i 1 70*? 2912 . 7670 2330 . 9418 05d 59 ■ ' I 3 , 7233 . 2767 . 7500 2440 . 9673 032: 50 12 3 * 7*ra , 2622 . 7450 2550 992b 0072 57 H.1 4 . 7534 30 30 2476 . 7340 27 27 . 2660 .940184 .059eib 56 ' * to M 5 7 8 , 7009 795fl i BIOS 30 :io 30 30 3- 2331 2187 . 2042 1897 . 7230 7120 . 7010 . 6899 27 27 28 28 28 . 2770 2880 . 2990 3101 . 0439 0693 . 0048 1204 64 64 64 64 64 . 9561 . 9307 . 9052 . 87tt> 55 * 54 53 51 ;j-j fl . hji; 1753 . 6789 . 3211 1458 8542 51 40 10 - K4 >3 30 •M 30 30 30 1608 . 6678 28 28 28 28 28 3322 . 1714 64 . e28l 31 11 48 11 . S5.1A 1464 1319 . 6508 . 6458 . 3432 . 3542 . 1968 2323 . 8JO* . 7777 49 48 ->± n . 8825 1175 . 6347 3653 2478 75* 47 , 50 14 8009 i 1031 6236 . 3764 2733 . 72*7 46 1 f"> 15 . 0113 30 30 33 30 30 . 0887 . 6125 28 28 28 28 28 . 3875 3988 6* 64 64 64 64 . 7013 45 1* ■1 H 13 16 17 , 9257 . NftJ . P515 . 0743 05>9 . 0455 6014 . 5904 . 5793 . 3986 4096 4207 3243 3497 . 3752 6757 . 65&i . 624fi 44 43 42 u 10 . Bdeu 0311 . 5682 . 4318 4007 5393 41 -JO 20 . 9833 36 30 30 30 30 . 0167 . 5571 28 28 28 28 28 . 4429 . 4262 64 64 64 64 64 5738 • 1 ': 88 21 33 007(1 .eaorso . 0024 .179880 . 5459 . 5348 . 4541 . 4652 . 4517 4772 5483 . S23r * ! - 32 33 34 . Q2KI 0406 9737 . 9594 . 5237 . 5125 . 4763 . 4875 . 502h . 5281 4*74 . 471. «: :: 40 11 35 30 , 0L2WO , 0503 30 S 30 30 . 9450 . 9307 . 5014 . 4903 28 28 28 28 28 . 4986 . 5097 . 5536 . 5790 64 64 64 64 4464 4210 35 ' •* 34 ' !■■» 37 . 0836 9164 . 4791 . 5209 6045 . 3.55 33 5* jW . OttO . 9021 . 4680 . 5320 . 6299 3701 » 50 23 i urn . 8878 . 4568 . 5432 . 6554 344U 31 ' 46 i) 30 . 12P5 30 30 30 30 36 8735 . 4456 28 28 28 28 28 5544 6809 64 64 64 64 64 . 3191 9 "\ 1 31 1407 8593 4344 . 565G 7063 81»37 29 1 ' - 33 1550 8450 . 4232 . 5768 . 7318 . 26*9 * U XI . 18ft 8307 . 4121 5879 . 7572 . 24** 27 1 r In :«4 - 1635 8165 . 4009 . 5991 . 7826 . 2174 "1 " J£l 35 ]G7fl 35 35 35 33 35 . 8022 . 3897 28 28 28 28 28 . 6103 . 8081 64 64 64 Si . 1919 25 ! • -.:■; 3tf * 2130 7880 . 3784 6216 . 8336 1664 24 > ^ 37 . Ml t 7738 . 3672 6328 . 8590 1410 23 * 30 3d 3tf * 3404 9546 7596 . 7454 . 3560 3447 6440 . 6553 . 8844 . 9099 1156 0001 22 21 10 40 . 95RP 35 35 . 7312 . 3335 28 28 28 28 28 6665 . 9353 64 63 63 63 63 . 0647 21 * 41 41 mm . 7170 . 3223 6777 . 9807 m 19 ft 42 2973 7028 3110 . . 6890 » . 9862 •138 !• n 43 , 31 4 33 35 35 6886 . 2998 7002 .930416 .049*84 17 M 44 . 3250 . 6744 . 2885 . 7115 . 0371 . 96fe 14 47 45 . 33*7 35 35 35 6603 . 2772 28 28 28 28 28 . 7228 . 0625 63 . 9375 15 13 4 45 353* i 6462 . 2659 7341 . 0879 63 9121 14 8 47 . 30«0 . 6320 . 2547 . 7453 . 1133 0.1 63 8867 ,J 1 IS 48 . 3S21 6179 . 2434 . 7566 . 1387 63 8613 It ! 16 4ft , 3JC3 35 35 6037 . 2321 7679 1642 s . 835, 11 30 50 . 4104 . 5806 . 2208 28 28 28 28 23 . 7792 1896 63 63 . 8104 10 > >l 51 . 424£ 35 35 5755 . 2015 . 7905 . 2150 . 7r» 9 m 53 . 43H0 . 5614 1981 . 8019 . 2405 63 63 63 7515 M 36 53 54 . OB , 4668 35 35 . 5473 ; 5332 . 1868 1755 81 32 8245 2659 . 2913 . 7341 . 7087 7 • 40 4i 53 m . 4*08 , 494,<: I)-,l1 mirm. Dot. L Bin- for 15" orl* L. C«cc L, Cm, for 15" or I* L-Set L- Tanj . 15" orl* L- CM. De&, Honn. 1 • i i - 1 » O 98*5511 35 33 35 35 M »» .1711-'' U.S7U174 38 28 38 28 , 33 tXlMM 0.954437 63 U3 ra 03 0.045563 141 11 60 4 1 . 5651 #349 . 0960 9040 4t!' 1 ♦ 5399 59 56 8 s . 5701 * 4209 . 0846 . 9154 . 4045 . 5ik55 5^ 52 1* 3 i 5031 ■mi." . 0732 . 9968 . 5100 4^H 57 48 16 4 , mri . 3928 . 0618 . 9399 . 5454 4546 56 44 90 5 mi 35 35 35 35 35 . xrm 0504 38 38 ' 20 28 38 . 9496 . 5707 63 63 63 63 63 4393 55 40 44 6 . 6351 3640 , 0390 ; ooio 5061 , 4039 54 36 *3 7 + 0401 , ism . 0276 V724 0215 . 37S.J 53 :t* 3* 8 MHO 3370 0151 . 0830 . 6460 . 3531 53 m 36 , (779 . 3230 . 0017 , 0953 E723 . 3977 51 24 40 10 who 35 it 35 35 . 3090 .869933 39 m 39 28 ,1300(17 6077 63 3023 50 20 44 11 . 7040 . 2051 . 981W , 01*2 z-r\ i 63 63 63 63 , 3769 49 10 44 13 . 711*0 , ■> J 1 . 9794 . OSOii , 74A5 i 2515 48 11 52 13 7338 . 3672 , 0580 , (Mil . 773!» . 928] 47 8 56 14 . 7467 3533 9474 . 0536 7W3 i 9007 46 4 %9 15 , 7606 35 35 35 35 35 3394 , 9360 39 29 39 :'< 30 i 0640 . 89*6 63 * 1754 45 11 4 16 i . 7715 , 3255 , 9245 . 0755 8509 03 61 (13 1500 44 ."jn 8 17 ' . 7*84 , 2116 9130 0870 8754 - 1246 43 53 Li 18 . BG33 . 1077 9015 . 0985 . 9008 . 0903 42 48 16 19 . sua , 1B38 . 8900 1100 i 9262 03 . 0738 11 44 90 30 , 83oi 35 35 35 35 34 i 1699 . B785 39 30 29 31 39 . 1215 + 9516 63 0484 40 U> 34 31 . 8430 . P.j'.i . 8670 1330 . 9769 63 63 , 0231 19 in 28 33 . P578 . 1422 . 8555 1445 ■f.pl'U.'l .039077 38 32 32 33 , B716 . 19*4 - B439 156] 0277 1 63 63 , §793 37 ■1* 36 34 . 8855 1L45 r:i,'| . 1676 053t i 9409 36 H 40 85 . 8993 34 34 34 34 34 . 1007 ■ 8209 39 29 39 29 30 ► 1701 07?H 63 63 63 63 A3 . 9316 m in 44 36 | . 9131 . 9809 . 8003 1907 l03-< + 8003 34 ifi 48 37 ■ WJ , 0731 , 7978 3023 1201 . 8700 33 12 52 39 . 9407 . OK»3 . 7863 2<38 . 1545 , 8455 33 d 56 39 . 9546 . 01. 54 7747 . 9253, 17V9 , 8301 31 4 90 30 9683 34 3* 34 34 34 , 031? . 7631 39 30 29 3a , 2309 . 2054 63 , 794F 30 10 4 31 Wtil . 0179 . 7515 . 24*5 ■-MU! . 7«H14 29 5(> 8 33 . 9959 • MHI 7300 3601 . 2560 63 63 . 7440 38 ■jj 12 33 s lOOOfl .160004 , 72*3 . 2717 2-13 . 7187 37 48 16 34 . 0234 . 9766 . 7107 . 2*33 3087 63 . 0033 26 44 20 35 0172 34 31 34 34 94 0628 t 7051 20 29 29 39 29 30411 . 3391 61 63 63 6670 95 id 24 36 g 051 fl I 0401 . 6915 3015 . 3574 . 0426 24 36 28 37 . IN| 0154 . 6*19 , 3181 . 3*27 . 6173 33 t'2 32 38 07*1 . Wiyj . 6703 . 32 >7 . 40*1 63 . 5919 22 2-i 24 36 39 0921 . 9079 s 65^ 3414 . 4335 63 . 5605 21 40 40 . 105* 34 34 34 34 31 IMS 6470 -i 20 30 30 20 . 3530] . 3647 1,1-H 03 , 5412 20 30 18 r: 8 44 41 II •-- . Rho.'i . 6353 4842" 63 . 515H 19 48 43 . 133) , 8«a8 6217 , 37K3 . 50 >5 63 63 4^195 18 52 43 . urn . R531 6120 , 3*80 5311 . 4651 17 56 44 . loos , 8394 6004 . 3906 5603 63 . 1398 16 4 91 45 . 1743 34 -_v,- . S&7 39 30 39 29 29 * 41 13 . &$5 63 4145 15 56 52 48 44 4 46 1*179 . 8121 5770 42M1 ♦ 610* 63 63 3891 14 8 47 . 30 U 34 34 34 34 . 7985 4 5651 4347 , 6362 , 363P 13 12 48 . 3153 . 7^48 . 553h MM 63 f3 . 31*4 12 16 49 3988 . 7712 . 54 r9 . 45*1 . 6*69 , 3131 11 20 50 . 2425 ft 31 . 7575 5107 29 29 29 29 29 , 460* i 7123 63 9877 i 4815 , 7376 63 , 3621 9 28 53 ■MC 7303 „ 5068 ras , 70*9 *,:\ , 2371 8 32 53 . 2833 34 34 , 7K7 . 4050 5050 >- :i 63 . 3117 7 36 54 Ml 7031 4-13 , 5 167 . ^136 3 . 1864 6 40 55 3im mg . 4716 29 99 29 29 20 p <52*4 , 8380 63 63 63 63 63 1611 5 26 16 13 44 56 1941 '1 F 6751 . 4ifW , 5492 k 8643 . 1357 4 48 57 071 34 , 6023 . 4481 , 5519 *Plfi . 1104 3 52 58 B 1 1 M 64sfl . 4301 9tSfl j 91 *'l 6851 2 8 4 n 56 59 i ' 4- 34 34 6352 42 tf 575.5 . 940C1 0597 1 i 31 60 60 1 Ot 110117 9H1H127 0,133*73 o.onmw ri inn ■ < ~ i • i roir far 15" TViiT. fet 15" for Hours. De«. L Co*. L. Ik. L. Sin. L. Cn**r. L cm It, Tint, n ; J* Digitized by VjOOQIC 74 TABLE II.— LOG. SINES, TANG's, &C. m 430 ] • — 15" 1-— 15' 1» — 150 19«o » WC DitT I-.: Htiori. Nf- L. Siiir for 15' r L. CostCp L (.'.-.*> for 15" L8*c L. T*ng. Tot L,Cot. P*f- H^rm m • 1 OT 1* oi r or 1' I ■ ' 5* 9 9.S33TKI 34 34 34 34 34 O.1&03L7 9.N01I27 3d 39 39 34> J.i 0,135n73 , g.Bgfl&a 03 63 r»3 03 63 04>3Ami 60 f • i i , IfcUU . OOtil , 4010 . h»K>» . Oi'OO . 00OI 50 H H . 4Etf4 . 5*40 - 3rtK2 . CilOri .970lii2 Oi - 5B J H 3 . MOO t 5310 . S774 . urn . 04i>i , W*4 57 * to 4 i 4335 . 5075 30511 , iv:ui . 0009 i 9331 5» « 5 , 4400 34 31 :n 34 34 5540 . 3538 30 30 39 30 39 . nil P 0033 63 63 63 03 63 . VOTE 55 L 24 ft . -i.V'."i . 5405 . 34 lit ;• 05f*l . 1177 , BS* 54 n 7 - 4J30 . 5370 i 3301 . 60W . 145;! PA71 -VI E 1 4J^iJ . 5135 . 31P3 , 6P17 11193 i 631^ 52 C 93 S , 4990 ♦ 5001 . 3004 , 6930 . 1U3A . 0OO5 51 E ■in 10 . sm 34 34 34 34 34 ■ 4860 . 30415 30 39 30 30 30 . 7054 . 21?^ 63 63 93 m 63 , 7S1S 5ft V ii 11 . Mm* . 4731 i Srtaa ■ 7175 . 2141 , 7559 49 i» i- 13 , 5403 « 4507 270P 75 J I . %Wt . T^Jti 4** P n i:i . 5538 . 44012 . 3500 . 74 ro . £M* . ^152 47 t ft U i 507a , 1318 . 3471 . W91 . 3201 07W |J 1 SB | ia , 5^7 33 33 33 33 33 I 4103 . 3351 30 30 30 30 30 . TM| + 3454 53 m 93 63 . 6546 45 »k 4 in 5141 , 4059 . 2534 . 770fl . 3707 . 6233 44 W B 17 . 0075 , 3935 I 2115 7HR5 , 3»oo ruin 43 B i-j is , B90S1 i 371U , liWri . HU04 . 4313 . 57^7 42 « hi HI , 0343 . 3057 , ltf77 , fl53 . 4400 . 5534 4J K 90 30 * 6477 33 33 33 :a 33 « 3523 , WW 30 30 30 30 30 . W24S > 4719 93 63 63 63 63 ♦ 53HI 40 * 94 at > Bfl 1 1 > 33H0 . 1«38 . «H'ri! . 4EI73 . «rt7 m 2 ■- 22 . K745 . 3253 ISlfl ■ i- • 3 r*i . 4774 m » n . 6*79 3151 . 1400 ^.lUI . 5479 . 4$9l 3T » 34 . 7013 , 2Q8S 1380 , *T»\ ■ A735£ . 42*8 V HI 33 . 71 10 33 33 33 ;a 33 2*54 . llfil 30 30 30 34) 30 , WM , 30B5 63 ,:,a 63 63 63 . 40**, :\\ a i-l 36 . wn> . ma i 1041 . KWJ Bt3« p 3T«3 M i 4rf 97 74i:i . 2A?7 , Q99S . 007H . 0*11] . avM a H 59 2rf . 7510 . 3454 , w-og . $m , 0744 . $230 m ■• ; f u 39 - 1670 - 3331 i mm , W1H . 0017 30GC1 at * 94 30 7W19 33 3Ct . sis* t 0502 30 30 31} . M . 7250 63 63 61 63 , S7S* 30 « f i 91 . 7043 - 12055 . 0445 . B55 J 75(13 fc 24W7 £J ^ * 32 . SOTh 33 . 1925 i 0339 . fN17H 775C . *H4 29 V i-j ii . P211 S3 . JTT^a , mjffii 30 30 , P71W MOO 1901 *7 19 34 -34-1 S3 . ItiSfl ; oos"-j . P018 m J13R « r ■_vi 30 . P477: 1'1 . 1523 JSW09 30 30 30 30 30 ,14003^ , R513 63 03 63 63 63 . 14^3 25 L ■Jl 31 WIO 33 33 33 . 1390 , Ortl'J . 015A , PTtiH . 1331 24 (9 18 srt ST4S . 123* , OT-31 . 0270 . poai Mil fi ■ a 38 6*75 . nsd . 960] Q3 n . Wi i , 07* m | ::i, 33 OM7 33 ; 0993 . 04K1 . nsm . &33T , 0173 u r in 4a . Olio 33 S3 ?:\ 31 , nwo . 0300 30 30 ,10 30 30 , o«to , 07rt» 63 III 63 63 03 . 0230 90 !* il 41 . 0273 . OW . w.ni . 0701 .UH'i'ltl ,01W*7 19 ii «a 43 . ' . 05% . fttfl i W+*i n>r, . 0714 Ifl R 43 . osa-i - AIM , iwe . 1005 , 05.W Mf.« IT • :n; 44 1H,I„- 33 - 0333 . 8H77 . n£i 0791 O30J* 19 ♦ 95 45 . iwvi 3 it 0300 , 1*7.^1 SO 30 30 SO . 1311 . 1914 93 Q 63 r,i K'W is p • 1 40 , \nm sii to 31 30 , OfhiH . wi-« Bfli . I*'I7 , KTU3 it i H 47 .841)0/1 ,130030 ♦ PAH no . 1330 - 6*50 11 r I? 48 . moo . (WM . Kill inor MK1 ; ^1^ If » Hi 40 , ooa* , 0075 . sm i:> , 9056 , 7044 II • 20 :.i. , W.5-* J hah . l?f,SW 30 30 30 30 30 i^-vi . 3300 03 03 .1 63 63 ■woi 19 it 31 n;ii » 94Q0 . «^» vr t ] OB9 . 74> 9 ■J* 09 9719 0*> . 7*Mk=l 20fl2 . 3«I4 :i ■ (T :w 51 PS3 . 9U7 . 77^1^ , 24H 30A7 ri:i:i ? 3d :.i 0UM s . 001* , mi 533.1 . 33SO 66H» « in Vi . UK 33 . ftftM i 7513 30 30 an M 30 $447 ♦ »na R» 63 63 . 04^17 5 P 11 .M 1247 33 33' . 8TC3 . 7451 . 337* 3»30 . 6.7* 4 1" 57 i:rrv 1 -1 . T3fK| 37snf 407!> , Ml a :*i Act . 1510 11 Ml'tfl . ?178 • m , *w • • .'hi ini IMO S3 HftHI t 71»'-ii . 3^44 4.VM . 341*1 I i 95 «rf) tt 841771 i.tam Bltif9S4 I43P0D 0!»*i-:c iiu« 1 # * • r L.C<*. n»it ' for 1.1" 1 or 1* L Bcf , L. Pin. iiiir. for I.V T. I'.ni'f r^coi. for mi r l~ T*n f * Flour* Hef. D, t itoi« |l |1 ,*s V - 4* 1$ - r ■ P m Digitized by VjOOQIC TABLX II. LOO. SINES, TANG V 8, &C. flft 440 1 • — 15" 1" -15' 1» — 150 I350 -9* thtt 1 L.COMC. L.OM. Uiff. bit warm. Deff. L.8io. for 15" for 15" orl* L.8r*. L.Tang. for 15" or V L.Cot. Dog. Hon ■ • o $ i * « 9.841771 33 33 33 0.1 6*339 9.856934 30 30 30 30 31 0.143066 9.984837 63 63 63 63 63 0.015163 60 8 4 1 . 1903 80U8 . 6813 . 3188 . sono . 4910 59 8 3 3033 . 7907 . 6690 . 3310 . 5343 . 4657 58 1*2 3 . 3164 . 7836 . 6568 . 3433 . 5596 . 4404 57 16 4 . 3994 33 33 . 7706 .. 6446 . 3554 . 5848 . 4153 56 30 5 . 9434 33 39 7576 6333 31 31 31 31 31 3677 . 6101 63 63 8 63 . 3899 55 34 6 . 3555 . 7445 . 6301 . 3799 . 6354 . 3648 54 -28 7 . 3885 . 7315 . 6078 . 3993 . 6607 3393 53 33 8 . 9816 39 . 71?4 . 5956 . 4044 . 6860 . 3140 58 36 . 3946 39 39 . 7054 . 5834 . 4166 . 7113 . 3888 51 40 10 3076 33 33 33 33 33 . 6934 . 5711 31 31 31 31 31 . 4390 . 7365 63 63 63 . 3635 50 44 11 . 3906 . 6794 . 5588 . 4413 . 7618 3383 49 4S 13 . 3336 . G664 . 5465 . 4535 . 7871 3139 48 5*3 13 . 3465 6535 . 5343 . 4658 . 8133 63 1877 47 56 14 . 3595 . 6405 . 5319 . 4781 . 8376 63 1634 46 ST 15 . 3735 39 . 6375 . 5096 31 31 31 31 31 . 4904 . 8639 63 63 63 63 . 1371 45 8 4 16 . 3855 . 6145 . 4973 . 5037 8683 . 1118 44 8 17 . 3084 32 39 33 39 . 6016 . 4850 . 5150 . 9134 0666 43 13 18 . 4114 . 5886 . 4737 5373 . 9387 0613 48 16 19 . 4343 . 5757 . 4603 . 5397 . 9640 63 0360 41 30 30 4373 5637 . 4480 31 31 31 31 31 . 5530 . 9893 63 63 . 0107 40 34 31 . 4503 33 33 . 5496 . 4357 . 5643 .990145 .009855 30 38 33 . 4631 . 5369 4333 5767 0308 63 9603 38 33 S3 4760 39 33 39 . 5340 . 4109 . 5891 . 0651 63 9349 37 3ft 34 . 4880 . 5111 . 3988 . 6014 . 0903 63 9097 36 40 SS . 5018 33 . 4989 . 3863 31 31 31 31 31 . 6138 . 1156 63 . 8844 35 44 36 . 5147 . 4853 . 3738 6309 . 1400 63 8591 34 48 37 . 5376 38 4734 . 3614 . 6386 1663 63 63 63 8338 33 53 38 . 5404 39 . 4596 . 3490 . 6510 . 1914 8086 38 56 90 . 5533 39 39 . 4467 . 3366 . 6834 . 8167 7833 31 58 30 5069 . 4338 . 3343 31 31 31 31 31 . 6758 . 8430 63 . 7580 30 8 4 31 . 5790 39 . 4310 . 3118 . 6883 . 3673 63 7338 89 8 33 . 5919 33 . 4081 . 3994 . 7006 . 3935 63 7075 38 13 33 . 6047 39 . 3953 . 3869 . 7131 . 3178 63 6833 37 16 34 . 6175 39 33 . 3835 . 3745 . 7355 . 3430 63 . 6570 86 30 35 6303 . 3697 . 3630 31 31 31 31 31 7380 3663 63 . 6317 35 34 36 6433 33 3568 . 3496 . 7504 . 3936 63 6064 34 38 37 . 6560 39 3440 . 9371 7639 . 4189 63 5811 83 33 38 6686 33 3319 . 3347 . 7753 . 4441 63 5550 38 36 39 .' 6816 33 33 . 3184 . 3133 7878 . 4694 63 5300 31 40 44 48 53 56 40 41 49 43 44 . 6044 . 7071 . 7199 7337 . 7454 33 33 33 33 39 . 3056 . 3939 . 3801 . 3673 . 3546 . 1997 . 1873 . 1747 1633 1497 31 31 31 31 31 8003 . 8138 . 8353 8378 . 8503 . 4947 . 5199 . 5453 . 5705 . 5957 63 63 63 63 63 : SR . 4548 . 4395 . 4043 30 19 18 17 16 59 45 7583 . 3418 . 1373 31 31 31 31 31 8638 . 6810 63 . 3790 15 1 4 8 13 46 47 48 . 7709 . 7836 7964 33 33 33 . 3391 . 3164 . 3036 . 1346 . 1131 . 0906 . 8754 . 8879 . 0004 . 6463 . 6715 . 6968 63 S 3537 . 3385 . 3033 14 13 13 16 40 . 8001 33 33 . 1900 . 0870 . 9130 . 7331 63 3779 11 30 50 8318 1783 . 0745 31 31 31 31 31 . 9955 . 7473 63 . 3537 10 34 51 . 8345 33 1655 . 0619 . 9381 . 7736 63 9374 9 38 33 53 53 . 8473 8599 33 33 . 1538 1401 . 0493 . 0368 . 9507 . 9633 . 7979 . 8331 63 63 9031 . 1769 8 7 6 36 54 . 8736 33 39 . 1374 . 0343 . 9758 8484 63 1516 59 40 44 48 53 56 60 55 56 57 58 50 60 . 8853 . 8979 . 9106 9333 . 9358 9.849485 33 33 33 33 33 . 1147 1031 . 0894 0768 . 0643 0.150515 . 0116 .849990 . 9864 9737 . 9611 9.840485 31 31 31 31 31 . 9884 .150010 . 0138 0363 0389 O.150515 8737 . 8989 . 9343 . 9495 . 9747 0.000000 63 63 63 63 63 . 1363 . 1011 . 0758 . 0505 . 0353 0.000000 5 4 3 9 1 O m a t LCcm. Diff. for 15" orl* L.80C L.8in. Diff for 15" orl» L.OOMC L.COC DUE for 15" orl* L. Tang. * a D* Soon. D* Hoi " 8* 1& 13 1'- ■ 4» I© -4" "* 4 50 — 8\ Digitized by VjOOQIC Digitized by VjOOQIC TABLE III. PROPORTIONAL LOGARITHMS. Digitized by VjOOQIC TABLE HI.— PROPORTIONAL LOGARITHMS. 79 II o° c OO v OO 2' OO 3' OO 4' OO 5' OO 6' oo r OO 8' it 9 9.9553 1.9549 1.7789 1.6539 1.5563 1.4771 1.4103 1.3522 1 4.0334 .3481 .9506 .7757 .6514 .5549 .4759 .409) .3513 1 3 3.7334 5410 .9471 .7734 £406 £534 .4747 .408) .3504 2 3 .5563 5341 .9435 .7710 .6478 £590 .4735 .4071 .3495 3 4 .4314 5979 .9400 .7686 .6460 £508 .4793 .4061 £486 4 5 3345 5905 5 6 .9553 .9139 .9331 .7639 .6495 £477 .4699 .4040 £468 6 7 .1883 5073 .9996 .7616 .6407 £463 .4688 .4030 .3459 7 8 .1303 5009 .9969 .7593 .6390 £449 .4676 .4020 .3450 8 9 .0793 .1946 .9998 .7570 .6379 £435 .4664 .4010 .3441 9 10 .0334 .1883 .9195 .7547 .6355 £491 .4659 .4000 .3439 10 11 9.9990 .1823 .9169 .7594 .6338 £407 .4640 £989 .3493 11 13 .9549 .1761 .9198 .7501 .6390 £393 .4699 £979 .3415 19 13 .9195 .1701 .9098 .7479 .6303 £379 .4617 £969 £406 13 14 .8873 .1649 .9063 .7456 .6286 £365 .4606 £959 £397 14 15 .8573 .1584 .9031 .7434 .6969 £351 .4594 £949 .3388 15 16 .8993 .1596 8999 .7419 .6953 £337 .4589 £939 .3379 16 17 .8030 .1469 wtn .7390 .6935 £394 .4571 £999 £371 17 18 .7789 .1413 .8935 .7368 .6918 £310 .4559 .3919 .3369 18 19 .7547 .1358 .8904 .7346 .6901 £998 .4548 .3910 .3353 19 90 .7394 .1303 .8873 .7394 .6185 .5283 .4536 .3900 .3345 90 SI .7119 .1949 .8849 .7309 .6168 .5969 .4595 .3890 .3336 91 93 1010 .1196 .8811 .7981 .6151 £956 .4514 .3880 .3397 99 93 .6717 .1143 .8781 .7959 .6135 £949 .4509 £870 .3319 93 94 .6533 .1091 .8751 .7938 .6118 £999 .4491 £860 £310 94 SS .6355 .1040 .879! .7917 .6103 .5915 .4480 £851 £301 95 90 .6185 .0989 .8691 .7196 .6085 £909 .4468 .3841 £993 96. 97 .6091 .0939 .8661 .7175 .6069 £189 .4457 £831 , .3984 97 98 .5863 .0889 .8639 .7154 .6053 £174 .4446 .3821 3976 98 99 .5710 .0840 .8602 .7133 .6037 £163 .4435 £813 £967 99 30 .5563 .0799 .8573 .7119 .6021 £149 .4494 .3802 £959 30 31 .5491 .0744 .8544 .7091 .6005 £136 .4412 .3792 .3950 31 39 .5983 .0696 .8516 .7071 .5989 £193 .4401 .3783 £949 39 33 .5149 .0649 .8487 .7050 £973 £1)0 .4390 £773 £933 33 34 .5019 .0603 .8459 .7030 £957 £097 .4379 3764 £995 34 35 .4894 .0557 .8431 .7010 .5041 £084 .4368 £754 £916 35 30 .4771 .0519 £403 .6990 .5925 .5071 .4357 £745 .3908 36 37 .4659 .0467 .8375 .6970 .5809 £058 .4346 .3735 £199 37 38 .4536 .0493 £348 .6950 £894 £045 .4335 £796 £191 38 39 .4494 .0378 .8390 .6930 £878 £039 .4325 .3716 £183 39 40 .4314 .0334 .8293 .0910 .5863 £019 .4314 .3707 £174 40 41 .4906 .0291 £966 .6890 £847 .5006 .4303 .3697 .3166 41 43 .4103 .0948 .8239 .6871 £833 .4994 .4992 £688 £158 49 43 .4000 .0906 .8212 .6851 £816 .4981 .4981 .3678 £149 43 44 .3900 .0164 £186 .6839 £801 .4968 .4970 £669 £141 44 45 .3809 .0199 .8159 .6819 .5786 .4956 .49T0 .3060 £133 45 46 .3707 .0081 .8133 .6793 £771 .4943 .4249 £650 £134 46 47 .3613 .0040 .8107 .6774 £755 .4931 .4238 .3641 £116 47 48 .3599 .0000 ■8081 .6755 £740 .4918 .4998 .369 £108 48 49 .3439 1.9960 £055 .6736 £735 .4906 .4917 £100 49 50 .3345 .9990 £030 £717 .5710 .4894 .4906 £613 £091 50 51 .3259 .9681 .8004 .6698 .5695 .4881 .4196 £604 £083 51 59 .3174 .9842 .7979 .6679 £680 .4869 .4)85 .3595 .3075 59 53 .1091 .9803 .7954 .6661 .5666 .4856 .4175 .3586 .3067 53 54 .3010 .9765 .7939 .6649 £651 4844 .4164 .3576 £059 54 55 .9931 .9797 .7904 .6694 £636 .4839 .4154 .3567 £051 55 56 .9H53 .9690 .7879 .66J05 £691 .4890 .4143 £558 £043 56 57 .9775 .9659 .7855 .6587 .5607 .4808 .4133 £549 £034 57 58 5700 .9615 * .7830 .6568 £599 .4795 .4)99 .3540 .3096 58 59 9.3896 1.9579 .7806 .6550 £578 .4783 .4119 £531 .3018 59 t i \ OO ' OO 1 ' OO 9 ' OO 3 ' OO 4 ' OO 5 ' OO 6 ' OO 7 0° » • Digitized by VjOOQIC 80 TABLE III.-— HUMPORTIONAL LOGARITHMS. II 0O 9' OO 10' OO ii' OO 19' OO 13' OO 14' OO 15* 00 16» "1 oo ir it 1.3010 1.9353 1JU39 1.1761 1.1413 1.1091 1.0799 1.0519 1.0948 1 . 09 . 45 . 39 . 55 . 08 . 86 . 87 . 07 . 44 1 3 .9994 . 38 . 96 . 49 . 09 . 81 . 83 . 09 . 40 2 3 . 86 . 31 . 19 . 43 .1397 . 76 . 77 .0498 . 35 3 4 . 78 5 . 70 . 17 . 06 . 31 . 86 . 66 . 68 . 89 . 77 5 6 . 69 . 10 .9099 . 95 . 80 . 61 . 63 . 84 . 93 6 7 . 54 . 09 . 93 . 19 . 74 . 55 . 58 . 80 . 19 7 8 . 46 .3495 . 86 . 13 . 69 . 50 . 53 . 75 . 14 8 9 . 39 . 88 . 89 . 07 . 63 . 45 . 49 . 71 . 10 9 10 . 31 . 81 . 73 . 01 . 58 . 40 . 44 . 67 . 06 10 11 . 93 . 74 . 67 .1895 . 59 . 35 . 39 . 69 . 09 11 IS . 15 . 67 . 61 . 89 . 47 . 30 . 34 . 58 .0197 19 13 . 07 . 60 . 54 . 83 . 49 . 95 . 30 . 53 . 93 13 14 .9899 . 53 . 48 . 77 . 36 . 90 . 95 . 49 . 8* 14 15 . 91 . 45 . 41 . 71 . 31 . 15 . 90 . 44 . 85 15 16 . 88 . 38 . 35 . 65 . 95 . 09 . 15 . 40 . 81 16 17 . 76 . 31 . 98 . 60 . 90 . 04 . 11 . 35 . 76 17 18 . 68 . 94 . 99 . 54 . 14 .0099 . 06 . 31 . 79 H 19 . 60 . 17 . 16 . 48 . 09 . 94 . 01 . 96 . 68 19 90 . 59 . 10 . 09 . 49 . 03 . 89 .0896 . 93 . 64 90 91 . 45 . 03 . 03 . 36 .1998 . 84 . 99 . 18 . 60 91 99 . 37 .93396 .1996 . 30 . 99 . 79 . 67 . 13 . 56 S3 S3 . 99 . 89 . 90 . 94 . 87 . 74 . 89 . 09 . 51 93 94 . 91 . as . 84 . 19 . 89 . 69 . 78 . 04 . 47 94 95 . 14 . 75 . 77 . 13 . 76 . 64 . 73 . 00 . 43 95 96 . 08 . 68 . 71 . 07 . 71 . 59 . 68 .0395 . 39 96 97 .9798 . 69 . 65 . 01 . 68 . 54 . 63 . 91 . 35 27 98 * 91 . 55 . 58 .1595 . 60 . 49 . 59 . 87 . 31 98 99 . 83 . 48 . 59 . 89 . 55 . 44 . 54 . 89 . 96 99 30 . 75 . 41 . 46 . 84 . 49 . 39 . 49 . 78 . 93 30 31 . 68 . 34 . 39 . 78 . 44 . 34 . 45 . 74 . 18 31 33 . 60 . 97 . 33 . 79 . 39 . 99 . 40 . 69 . 14 33 33 . 53 . 90 . 97 . 66 . 33 . 94 . 35 . 65 . 10 33 34 . 45 . 13 . 91 . 61 . 98 . 19 . 31 . 60 . 06 34 35 . 38 . 07 . 14 . 55 . 93 . 14 . 96 . 58 . 03 35 36 . 30 . 00 . 08 . 49 . 17 . 09 . 91 . 59 .0038 36 37 . 99 .99393 . 09 . 43 . 19 . 04 . 17 . 47 . 93 37 38 . 15 . 86 .1896 . 38 . 07 .0899 . 19 . 43 . 89 38 39 . 07 . 79 . 89 . 39 . 01 . 94 . 08 . 39 . 85 39 40 . 00 . 79 . 83 . 96 .1196 . 89 . 03 . 34 . 81 40 41 .93899 . 66 . 77 . 90 . 91 . 84 .0598 . 30 . 77 41 49 . 85 . 59 . 71 . 15 . 86 . 80 . 94 . 96 . 73 49 43 . 78 . 59 . 65 . 09 . 80 . 75 . 89 . 91 . 69 43 44 . 70 . 45 . 59 . 03 . 75 . 70 . 85 . 17 . 65 44 45 . 63 . 39 . 59 .1498 . 70 . 65 . 80 . 13 . 61 45 46 . 55 . 39 . 46 . 99 . 64 . 60 . 75 . 08 . 57 46 47 . 48 . 95 . 40 . 86 . 59 . 55 . 71 . 04 . 53 47 48 . 40 . 18 . 34 . 81 . 54 . 50 . 66 . 00 . 49 48 49 . 33 . 19 . 98 . 75 . 49 . 45 . 69 .0995 . 44 49 50 . 96 . 05 . 99 . 69 . 43 . 40 . 57 . 91 . 40 50 51 . 18 .9198 . 16 . 64 . 38 . 35 . 59 . 87 . 36 51 59 . 11 . 99 . 09 . 58 . 33 . 31 . 48 . 89 . 33 53 53 . 04 . 85 . 03 . 59 . 98 . 96 . 43 . 78 . 98 53 54 .9596 . 78 .1T97 . 47 . 93 . 91 . 39 . 74 . 94 54 55 . 89 . 79 . 91 . 41 . 17 . 16 . 34 . 70 . SO 55 58 . 89 . 65 . 85 . 36 . 19 . 11 . 30 . 65 . 16 56 57 . 74 . 59 . 79 . 30 . 07 . 06 . 95 . 61 . 19 57 58 . 67 . 59 . 73 . 94 . 09 . 01 . ~n . 57 08 58 59 . 69 . 45 . 67 . 19 .1097 .0797 . 16 . 59 . 04 59 ii ■ QO V OO 10' OO 11' OO 19' OO 13' 00 14' OO 15' OO 16' OO 17' • Digitized by VjOOQIC TABLB IH.— PBOFOBXIOlf At LOOABITBItt. 81 " QO 18» DOW 0O90' 0O91' DOS* DO 23' DO 34' DO 25' 0O86' 0O ST 90 88' »' 89' a 10000 9765 9549 9331 9198 8935 8751 8973 8408 8939 8981 7999 1 9906 61 39 97 35 32 '48 70 00 36 79 96 1 3 09 58 35 94 39 89 45 68 8397 34 76 94 3 3 88 54 32 90 19 98 43 65 95 31 73 91 3 4 84 50 98 17 15 S3 39 63 99 88 71 19 4 5 80 46 94 6 76 49 91 10 09 17 33 56 86 83 68 14 6 7 79 39 17 06 06 13 30 53 84 80 63 11 7 e 68 35 14 03 09 10 37 50 81 18 61 09 6 9 64 31 10 00 9909 07 34 47 78 15 68 66 9 10 60 97 06 95006 96 04 31 44 75 13 55 64 10 11 56 93 03 03 99 01 18 48 79 10 63 01 11 IS 59 90 94V90 60 80 8696 15 39 70 07 50 7890 19 13 48 16 06 86 86 95 13 36 67 04 48 96 13 14 44 19 99 83 83 93 09 33 64 03 45 94 14 IS 40 08 88 79 79 88 06 30 61 8199 43 91 15 M 36 05 85 76 76 85 03 37 50 96 40 89 16 17 39 01 81 72 73 89 00 34 56 94 37 67 17 18 98 9607 78 60 70 79 8697 33 53 91 35 64 18 19 94 03 74 66 66 76 94 10 50 88 33 89 19 90 90 90 71 69 63 73 91 16 48 86 30 79 80 91 16 86 67 59 €0 70 88 13 45 83 97 77 21 99 19 89 64 55 57 67 85 10 49 81 35 74 32 93 08 78 60 52 53 64 83 07 39 78 93 79 93 94 05 75 56 49 60 61 79 04 37 75 80 69 34 95 01 71 53 45 47 57 76 08 54 73 17 67 35 96 9997 67 40 49 44 54 73 8480 31 70 14 64 96 97 63 64 46 39 41 51 70 96 38 67 12 C2 97 98 80 60 49 35 37 48 67 93 36 65 09 59 98 99 85 56 39 39 34 45 64 90 33 69 07 57 99 30 81 52 35 98 31 43 61 87 90 SO 04 55 30 31 77 49 39 95 38 39 58 84 18 57 03 fi 31 39 73 45 98 92 94 36 55 89 15 54 79*9 33 33 69 41 35- 18 91 33 59 79 13 59 97 47 33 34 65 38 91 15 18 30 40 76 09 49 94 45 34 39 61 34 18 13 15 37 46 73 07 46 93 49 35 38 58 30 14 08 19 84 43 70 04 44 89 40 36 37 54 96 11 05 08 31 40 67 01 41 f 7 37 37 36 50 33 07 01 05 17 37 65 89J88 38 84 35 38 39 46 19 04 9108 09 14 35 69 96 36 81 39 39 40 49 15 00 05 8999 11 39 59 93 33 79 30 40 41 38 13 9307 91 06 08 99 58 90 31 76 88 41 49 34 08 93 88 99 05 86 ' 53 88 88 74 35 49 43 30 04 90 85 80 03 83 51 85 85 71 83 43 44 97 01 66 61 86 6999 80 48 89 83 69 80 44 45 93 9997 83 78 83 96 17 45 79 80 68 18 45 48 19 93 79 75 80 93 14 49 77 17 64 15 46 47 15 90 76 71 77 90 11 39 74 15 61 13 47 48 11 86 79 68 73 87 08 37 S 19 59 10 48 49 07 89 69 65 70 84 05 34 10 56 08 49 50 03 79 65 69 67 81 09 31 66 07 54 06 50 51 00 75 69 58 64 78 8500 38 63 04 51 03 51 *• 9996 71 58 65 61 75 97 85 61 09 40 01 59 53 99 68 55 59 58 79 04 83 58 8990 46 7798 53 1 M 98 64 51 48 54 69 91 80 55 97 44 96 54 55 84 61 48 45 51 68 88 17 53 94 41 94 55 58 80 57 44 49 48 63 85 14 50 91 39 91 56 57 77 53 41 38 45 60 88 11 47 80 36 89 57 58 73 50 37 35 49 57 79 09 44 86 34 86 58 59 69 46 34 33 39 54 76 06 49 64 31 84 50 it 00 18' 0O 19 0O90 1 0O21' i'" 0O98' 0O33' 00 34' 0O25' 0O36' ©0 27' 0O28' 0O89' ii Digitized by VjOOQIC ft. TABLE III.— -FB0FOJKX1ONAL LOOA1UTHM8. It ©0 30' 0O31' ©0 38' 0© 33' 0O34' OP 35' 0036* 0O37' OO 38' OO 30' OO 40* OO 41' ~o" 7788 7039 7501 7368 7938 7113 6990 6871 6755 6643 6538 6485 1 79 37 7499 65 36 , 10 88 69 53 40 30 83 1 8 . 77 ! 34 97 63 34 * 08 86 67 51 38 89 81 3 3 ; 74 38 94 61 32 06 84 65 49 37 87 80 3 4 1 78 30 98 59 89 04 88 63 47 35 35 18 4 5 69 5 6 67 85 88 54 85 00 78 59 43 31 31 14 6 7 65 83 65 53 83 7098 76 57 48 89 19 13 7 6 68 80 83 50 81 96 74 55 40 87 18 11 8 60 18 61 48 19 93 73 53 38 85 16 09 10 57 16 79 46 17 91 70 51 36 84 14 07 10 11 55 13 76 44 15 80 68 49 34 83 18 06 11 IS 53 11 74 41 13 87 66 47 33 80 10 04 13 13 50 09 78 39 10 85 64 45 30 18 09 08 13 14 48 07 70 37 06 83 63 43 88 16 07 00 14 15 45 04 67 39 06 81 60 48 86 14 05 6308 15 16 43 03 65 33 04 79 58 40 85 IS 03 07 16 17 41 00 63 39 03 77 56 38 83 11 01 95 17 18 38 7597 61 88 00 75 54 36 81 09 00 93 18 19 36 09 58 86 7196 73 53 34 19 07 6498 01 19 ' 90 34 03 56 84 06 71 50 38 17 05 06 00 80 31 31 00 54 88 93 69 48 30 15 03 04 68 81 !» 89 88 53 80 01 67 46 88 13 01 OS 66 88 83 8 86 50 17 80 65 44 86 11 00 01 84 93 84 63 47 15 87 63 48 84 09 6598 80 83 84 85 88 81 45 13 85 61 40 88 08 06 67 81 89 86 10 79 43 U 63 50 38 80 06 94 89 70 86 87 17 77 41 09 81 57 36 18 04 93 84 77 87 88 14 74 38 07 70 55 34 16 03 90 88 76 88 80 18 78 36 04 77 53 33 14 00 89 80 74 89 30 10 70 34 08 75 50 30 13 6698 87 78 78 30 31 07 67 38 00 78 48 88 11 06 85 76 71 31 38 09 69 89 7»98 70 46 86 09 94 83 75 69 38 33 03 63 87 06 68 44 84 07 08 81 73 67 33 34 00 69 85 04 66 43 83 05 91 79 71 65 34 39 7608 58 83 01 64 40 80 03 89 78 68 64 39 36 06 56 81 89 68 38 18 01 87 76 67 68 36 37 03 54 18 87 60 36 16 6799 65 74 66 60 37 38 01 51 16 65 58 34 14 97 83 73 64 58 38 30 68 49 14 83 56 38 18 OS 81 70 68 57 30 40 88 47 18 81 54 30 10 03 79 68 60 59 40 41 64 44 09 79 58 88 08 01 77 67 50 53 41 48 81 48 07 76 49 86 08 80 76 65 57 51 48 43 70 40 05 74 47 84 04 87 74 63 55 50 43 44 77 38 03 78 45 83 OS 85 78 61 53 48 44 45 74 39 01 70 43 80 00 84 70 50 51 46 45 46 78 33 7898 68 41 18 6808 88 68 58 50 44 46 47 70 31 06 66 39 16 06 60 66 56 48 43 47 48 67 88 04 64 37 14 04 78 04 54 46 41 48 40 69 86 08 61 35 13 08 76 63 53 44 30 40 50 63 84 00 50 33 10 90 74 61 50 43 38 50 51 60 88 87 57 31 08 88 78 50 48 41 36 51 58 58 10 85 ' 59 89 06 86 70 57 47 39 34 58 53 55 17 83 53 87 04 84 68 55 45 37 as 53 54 53 15 81 51 84 03 83 66 53 43 39 31 54 59 51 13 79 49 83 00 81 64 51 41 34 89 55 56 48 10 76 46 80 6998 79 63 50 39 38 87 56 57 46 08 74 44 18 96 77 61 48 38 30 89 57 58 44 06 78 48 16 04 75 50 46 36 88 84 58 50 41 03 70 40 14 83 73 57 44 34 87 83 50 tt ft© 30* 0°31' 90 38' Oo 33' OO34' 0O39' OO 36' 0©37' OO 38' OO 30' OO 40* OO 41' • Digitized by VjOOQIC TABLE III.— PROPORTIONAL LOGARITHMS. 8ft II OO 49' 03 43' 0O 44' 00 45' OO 46' 0©47' OO 48' OO 49' (P58' OO 51' 0O59' 0O53' ii 6320 6416 6118 6021 5995 5833 5740 5651 5503 5477 5393 5310 1 19 16 17 19 94 30 39 49 63 76 91 OJ 1 9 17 15 15 17 93 39 37 48 60 74 90 07 9 3 15 13 13 16 30 97 36 46 59 73 89 06 3 4 13 11 19 14 19 96 34 45 57 71 87 05 4 5 19 .10 6 10 08 08 16 54 7 08 08 07 03 14 91 30 40 53 67 83 00 7 8 06 05 05 08 13 19 98 39 51 66 89 5*99 8 9 05 03 03 06 11 18 97 37 50 64 80 98 9 10 03 01 09 05 09 16 95 36 49 63 79 98 10 11 01 00 00 03 08 15 94 35 47 61 77 95 11 IS 00 6198 6099 01 06 13 99 33 46 60 76 94 19 13 6998 96 97 00 05 19 91 39 44 59 75 99 13 14 96 95 95 6038 03 10 19 30 43 57 73 91 14 15 94 93 94 97 09 09 18 99 41 56 79 90 15 16 93 91 99 95 00 07 16 97 40 54 70 88 16 17 91 90 00 93 5898 06 15 96 38 53 69 87 17 18 89 88 89 99 97 04 13 94 37 59 68 85 18 19 88 86 87 90 95 03 19 93 36 50 66 84 19 90 86 85 85 89 94 01 10 91 34 49 65 83 90 91 84 83 84 87 99 00 09 90 33 47 64 81 91 99 ' 83 81 89 85 91 5798 07 18 31 46 68 80 99 93 81 79 61 84 89 98 08 17 30 45 61 79 93 94 79 78 79 89 88 95 04 15 98 43 59 77 94 95 78 76 77 81 86 93 03 14 27 49 58 76 95 96 76 74 76 79 84 99 01 13 96 40 57 75 96 97 74 73 74 77 83 90 00 11 94 39 55 73 97 98 79 71 79 76 81 89 5698 10 93 37 54 79 98 99 71 69 71 74 80 87 97 08 91 36 53 71 99 30 69 68 69 73 78 86 95 07 90 35 51 69 30 31 67 66 67 71 77 1 84 94 05 18 33 SO 68 31 39 65 65 68 69 75 83 93 04 1? 39 48 66 39 33 64 63 64 68 74 81 91 09 16 30 47 65 33 34 69 61 63 68 79 80 89 01 14 99 46 64 34' 35 60 60 61 65 70 78 88 5599 13 98 44 69 35 36 59 58 59 63 09 77 86 98 11 96 43 61 36 37 57 56 58 61 67 75 85 96 10 95 41 60 37 38 55 55 56 60 66 74 83 95 08 93 40 58 38 39 54 53 55 58 64 79 83 94 07 99 39 57 39 40 59 51 53 57 63 71 80 99 08 91 37 50 40 41 50 50 51 55 61 69 79 91 04 19 36 54 41 49 48 48 50 54 60 68 77 89 03 18 35 53 49 43 47 46 48 59 58 68 76 88 01 16 33 59 43 44 45 45 46 50 56 65 74 86 00 15 39 50 44 45 43 43 45 49 55 63 73 85 5498 14 31 49 45 46 49 41 43 47 53 61 71 83 97 19 99 48 46 47 40 40 49 46 59 60 70 89 96 11 98 46 47 48 38 38 40 44 50 58 69 80 94 09 96 45 48 49 37 36 38 49 49 57 67 79 93 08 95 44 40 50 35 35 37 41 47 55 68 78 91 07 94 49 50 51 33 33 35 39 46 54 64 76 90 05 99 41 51 59 38 31 33 38 44 59 63 75 88 04 91 40 59 53 30 30 39 36 43 51 61 73 87 OS 90 38 53 54 98 98 30 35 41 49 60 79 86 01 18 37 54 55 96 96 99 33 39 48 58 70 84 00 17 35 55 56 95 95 97 31 38 46 57 09 63 5398 15 34 56 57 93 93 95 30 36 45 55 07 81 97 14 33 57 58 91 91 94 98 35 43 54 66 80 95 13 31 58 59 90 90 99 97 33 49 53 64 78 94 11 30 59 " ¥> 49* Y>43' P44'C Ptf'O P46M K> 47' &0 48'< K> 49' C K>50'( K>51'C P 53' I0 53' u ' •• —J Digitized by VjOOQIC 8J». TABUt III.— PHOPOBT10NAL LOOABRH1U. II 0O30' 0O31' 0O39' 0°33' O034' OP 35' 00 » 00 37' 0o» 0039/ OO w OO 41' • 7788 7039 7501 7368 7938 7118 OO90 0071 0755 0043 0539 0495 1 79 37 7499 65 36 . 10 88 60 53 40 30 S3 1 9 . 77 > 34 97 63 34 ' 08 86 67 51 38 99 91 9 3 ; 74 38 94 61 38 06 84 65 49 37 97 90 3 ; 4 i 78 30 99 59 89 04 83 63 47 35 95 18 4 1 5 60 87 5 6 67 85 88 54 95 00 78 59 43 31 91 14 6 7 65 83 85 58 93 7096 76 57 49 89 19 13 7 8 69 80 83 50 31 96 74 55 40 87 18 11 8 60 18 61 48 19 93 78 53 38 85 16 09 9 10 57 16 79 46 17 91 70 51 36 84 14 07 10 11 55 13 78 44 15 89 68 49 34 89 19 06 11 18 53 11 74 41 19 87 66 47 38 90 £ 04 19 13 50 09 78 39 10 85 64 45 30 18 08 13 14 48 07 70 37 08 63 69 43 98 16 07 00 14 15 45 04 67 35 06 81 60 49 96 14 05 0398 15 16 43 03 65 33 04 79 58 40 95 19 03 97 16 17 41 00 63 39 08 77 56 38 93 11 01 95 17 18 38 7597 61 88 00 75 54 36 31 09 00 93 18 19 38 95 58 96 7198 73 53 34 19 07 0498 91 19 90 34 93 56 84 96 71 50 38 17 05 96 96 90 SI 31 90 54 88 93 09 48 30 15 03 94 88 91 93 89 88 58 90 91 67 46 98 13 01 98 66 98 S3 S 88 50 17 89 65 44 96 11 00 91 84 93 94 83 47 15 87 63 49 84 09 0098 89 83 84 95 88 81 45 13 85 61 40 88 08 96 87 81 95 86 19 79 43 11 83 59 38 90 06 94 85 79 96 87 17 77 41 09 81 57 36 18 04 99 84 77 97 88 14 74 38 07 79 55 34 16 OS 90 83 70 SB 89 19 78 86 04 77 53 39 14 00 80 80 74 99 30 10 70 34 03 75 50 30 19 0098 87 78 73 30 31 07 67 33 00 79 48 98 11 96 85 76 71 31 31 05 65 89 7*98 70 46 96 09 94 83 75 69 39 33 03 63 97 96 68 44 94 07 98 61 73 67 35 34 00 60 85 94 66 48 99 05 91 79 71 65 34 36 7698 58 83 91 64 40 80 03 89 78 60 64 35 36 96 56 81 89 69 38 18 01 87 76 67 68 36 37 93 54 18 87 60 36 16 0799 65 74 66 00 37 38 91 51 16 85 58 34 14 97 83 79 64 58 38 30 88 49 14 83 56 38 18 95 81 70 69 57 30 40 86 47 18 61 54 30 10 93 79 68 60 55 40 41 84 44 00 79 53 98 08 91 77 67 SO 53 41 48 81 49 07 76 49 96 06 89 76 65 57 51 49 43 79 40 05 74 47 84 04 87 74 63 55 50 43 44 77 38 03 78 45 83 08 85 78 61 53 48 44 45 74 35 01 70 43 80 00 84 70 59 51 46 45 46 78 33 7998 68 41 18 0898 83 68 58 50 44 40 47 70 31 96 66 39 16 96 80 66 56 48 43 47 48 67 88 94 64 37 14 94 78 64 54 46 41 48 49 65 86 98 61 35 18 99 76 63 53 44 39 49 50 63 84 00 59 33 10 90 74 61 50 43 38 50 51 60 88 87 57 31 08 88 79 59 48 41 36 51 58 58 19 85 55 99 06 86 70 57 47 39 34 59 53 55 17 83 53 87 04 64 68 55 45 37 38 53 54 53 15 81 51 84 03 63 66 53 43 35 31 54 55 51 13 79 49 99 00 81 64 51 41 34 89 55 56 48 10 76 46 80 0998 79 63 50 39 39 87 56 57 46 08 74 44 18 96 77 61 48 38 30 85 57 58 44 06 79 49 16 94 75 50 40 36 88 94 58 50 41 03 70 40 14 99 73 57 44 34 87 99 59 ii $ 0O30' 0O31' 0°33' O033/ O034' 0O 35' 0O 36' 0o 37' 00 3B' OO 39' OO 40* OO «' • Digitized by VjOOQIC TABLE til.— PROPORTIONAL LOGARITHMS. 8ft II OO 49' 03 43' 0O 44' 00 45' OO 46 0O4T OO 48' 0O49' 0*50' OO 51' 0O53' 0O53» 6320 6916 6118 6021 9925 5833 5740 5651 55G3 5477 3393 3310 1 19 16 17 19 34 30 39 49 63 76 91 09 1 3 17 15 15 17 33 39 37 48 60 74 90 07 3 3 15 13 13 16 SO 37 36 46 59 73 89 06 3 4 13 11 19 14 19 36 34 45 57 71 «7 05 4 > 5 19 .10 6 10 08 7 08 08 07 03 14 31 30 40 53 67 83 00 7 8 06 05 05 08 13 19 88 39 51 66 83 38)99 8 9 05 03 03 08 11 18 37 37 50 64 80 98 9 10 03 01 09 05 09 16 85 36 49 63 79 96 10 11 01 00 00 03 08 15 84 35 47 61 77 95 11 IS 00 6198 6099 01 06 13 33 33 46 60 76 94 13 13 6838 96 97 00 05 IS 31 39 44 59 75 93 13 14 96 95 95 5038 03 10 19 30 43 57 73 91 14 15 94 93 94 97 03 09 18 39 41 56 73 90 15 16 93 91 99 95 00 07 16 97 40 54 70 88 16 17 91 90 90 93 5898 06 15 86 38 53 69 87 17 18 89 88 80 93 97 04 13 34 37 53 68 85 18 19 88 86 87 90 95 03 13 S3 36 50 66 84 19 90 86 85 85 89 94 01 10 31 34 49 65 83 80 91 84 83 84 87 99 00 09 80 33 47 64 81 31 99 ' 89 81 83 85 91 3798 07 18 31 46 63 80 33 33 81 79 81 84 89 96 08 17 30 45 61 79 S3 94 79 78 79 89 88 95 04 15 88 43 59 77 34 95 78 76 77 81 86 93 03 14 27 43 58 78 35 96 76 74 76 79 84 99 01 13 80 40 57 75 86 97 74 73 74 77 83 90 00 11 34 39 55 73 37 98 79 71 79 76 81 80 5698 10 83 37 54 79 88 99 71 69 71 74 80 87 97 08 31 36 53 71 89 30 69 68 69 73 78 86 95 07 30 35 51 69 30 31 67 66 67 71 77 ' 84 94 05 18 33 SO 68 31 39 65 65 66 89 75 83 93 04 1? 33 48 66 39 33 64 63 64 68 74 81 91 03 16 30 47 65 33 34 69 61 63 66 73 80 89 01 14 89 46 64 34 35 60 60 61 65 70 78 88 5599 13 SB 44 63 35 36 59 58 59 63 69 77 86 98 11 36 43 61 36 37 57 56 58 61 67 75 85 96 10 85 41 00 37 38 55 55 56 60 66 74 83 95 08 83 40 58 38 39 54 53 55 58 64 73 89 94 07 S3 39 57 39 40 59 51 53 57 63 71 80 98 06 81 37 56 40 41 50 50 51 55 61 69 79 91 04 19 36 54 41 49 48 48 50 54 60 68 77 89 03 18 £ 53 48 43 47 46 48 53 58 66 76 88 01 16 £ 53 43 44 45 45 46 50 56 65 74 86 00 15 33 50 44 45 43 43 45 49 55 63 73 85 5498 14 31 49 45 46 49 41 43 47 53 61 71 83 97 19 89 48 46 47 40 40 49 46 53 60 70 88 96 11 88 46 47 48 38 38 40 44 50 58 69 80 94 09 86 45 48 49 37 36 38 43 49 57 67 79 93 68 85 44 49 50 35 35 37 41 47 55 66 78 91 07 84 43 50 51 33 33 35 39 46 54 64 76 90 05 89 41 51 53 39 31 33 38 44 53 63 75 88 04 81 40 58 53 30 30 33 36 43 51 61 73 87 09 80 38 53 54 98 98 30 35 41 49 60 73 86 01 18 , 37 54 55 96 96 39 33 39 48 58 70 84 00 17 35 55 56 95 95 97 31 38 46 57 69 83 < 1398 15 34 56 57 93 93 95 30 36 45 55 67 81 97 14 33 57 58 91 91 94 38 35 43 54 66 80 95 13 31 58 59 90 90 39 97 33 49 59 64 78 94 11 30 59 " P49M K>43'( K>44' P45*0 ©46M K>47'fl O 48' C O49'0 50* C K>51'0 P58'0 53' ii *"l '"1 s 1 Digitized by VjOOQIC •4 TABU M- — PBOFOBTIOMAL LOOAUTHMS. $t 0O54' 0O55' 0O56' 0O57' 00 58' 0O50' 1O0' lo 1' 10 9 1 IP 3' 1°4' V> V • it 5939 5149 5071 4994 4918 4844 4771 49S9 4638 4559 4491 4484 1 27 48 70 03 17 43 70 98 37 58 90 33 1 t 86 46 68 91 16 42 69 67 86 57 89 21 9 3 85 45 67 90 15 41 68 96 35 56 88 80 3 . 4 83 44 66 89 13 39 68 95 34 55 88 19 4 5 88 43 5 6 81 41 63 86 11 37 64 93 83 53 84 17 6 7 19 40 88 85 10 36 63 91 31 51 83 16 7 6 18 39 61 84 08 34 88 00 19 50 83 15 8 9 17 37 59 83 07 33 60 80 18 40 81 14 1ft 15 86 58 81 06 33 59 88 17 48 80 IS 10 U. 14 35 57 80 05 31 58 88 16 47 70 11 11 1* 13 33 55 79 03 30 57 85 15 46 77 10 13 13 11 38 54 77 OS 88 56 84 14 44 76 00 13 14 10 31 53 76 01 87 54 83 18 43 75 08 14 15 09 89 61 75 00 96 53 83 11 43 74 07 15 16 07 88 50 74 4899 85 53 80 10 41 73 06 96 17 06 87 40 78 97 83 51 70 09 40 79 05 17 18 05 SJ 48 71 06 83 50 78 08 39 71 04 18 10 03 94 46 70 05 31 48 77 07 38 60 09 19 *P OS § 45 60 04 80 47 78 08 36 68 01 90 i 01 44 67 93 19 46 75 04 35 67 00 91 5199 90 43 66 91 17 44 73 03 34 66 4390 99 S3 06 19 41 65 90 16 44 73 03 33 65 98 99 84 07 18 40 64 89 15 48 71 01 33 64 07 99 25 05 16 39 OS 87 X* 41 70 00 31 63 06 95 86 04 15 37 61 88 13 40 69 4599 30 03 95 96 87 03 14 36 60 85 11 39 68 97 88 60 04 97 38 01 13 35 59 84 10 38 68 96 87 50 93 86 89 00 11 34 57 83 09 36 65 95 88 58 91 99 30 tt 10 38 56 81 07 35 64 94 85 57 00 30 31 87 08 31 55 80 08 34 63 93 84 56 80 31 38 86 07 30 54 79 05 33 63 99 83 55 88 39 33 85 08 88 53 77 04 38 60 00 33 54 87 33 34 fc 05 87 51 76 03 30 50 89 80 53 86 34 35 9 03 96 50 75 01 89 58 88 19 53 85 35 36 ql OS 95 40 74 00 88 57 87 18 50 84 36 37 9 01 93 47 73 4799 87 56 88 17 49 83 37 38 w 5990 93 46 71 08 86 55 85 16 48 81 39 39 77 98 91 45 70 07 84 53 84 15 47 80 30 40 75 07 10 43 60 05 93 59 83 14 46 79 40 41 71 05 18 43 68 94 83 51 81 18 45 78 41 43 73 04 17 41 66 03 81 50 80 11 44 77 49 43 78 83 16 40 65 93 80 49 79 10 43 70 43 44 » 09 14 38 64 01 18 48 78 09 41 75 44 45 80 00 13 37 63 89 17 46 77 08 40 74 46 46 08 80 19 36 61 88 16 45 75 07 39 73 06 47 86 83 11 35 80 87 15 44 74 08 38 73 47 48 65 88 09 33 59 86 14 43 73 05 37 70 48 49 61 66 08 39 58 85 13 49 79 03 36 80 40 60 OS 84 07 31 56 83 11 40 71 09 35 68 50 51 !1 89 05 30 55 88 10 39 70 01 34 S 51 58 60 81 04 98 54 81 09 38 60 00 33 59 53 .* 80 03 97 53 80 08 37 67 4409 31 65 59 54 57 10 09 96 53 78 06 36 08 08 30 04 54 55 56 77 52 95 50 77 OS 35 65 07 99 63 59 56 54 76 4900 93 40 76 04 33 64 05 96 09 59 57 53 79 08 99 48 75 03 39 63 94 97 61 57 58 58 73 07 91 47 74 09 91 69 03 96 50 58 59 50 79 05 90 45 78 01 30 60 OS 85 58 59 n 00 54' 00 55' 0°56' 0O57« 0O58' 0O59' 10 0' lo i» lOS* 10 3' 10 if 10 5/ ti • i" r M-l Digitized by VjOOQIC TABU III.— PROPORTIONAL LOGARITHMS. 85 II 10§' lo r lo 8' lo v lo W 1° 11' lo 12' lo 13' lo 14' lo 15' lo Ifi/ 10 17' ii 4357 *ao9 4988 4164 4108 4040 3079 3019 3860 3803 3745 3688 1 59 91 87 63 01 39 78 18 59 01 44 87 1 9 55 90 86 63 00 38 77 18 58 00 43 86 3 3 54 89 84 61 4099 £ 76 17 57 3799 43 85 3 4 53 88 83 60 98 75 16 56 98 41 84 4 5 58 86 6 51 85 81 58 96 34 73 14 55 96 39 83 6 7 50 84 90 57 95 33 73 13 54 95 38 81 7 8 49 83 19 56 93 32 71 18 53 94 37 80 8 9 47 89 18 55 98 31 70 11 53 93 36 79 9 10 46 81 17 54 91 30 69 10 51 93 35 78 10 11 45 80 16 53 90 89 68 09 50 93 34 77 11 18 44 79 15 58 89 88 67 08 49 91 33 77 13 13 43 78 14 51 88 87 66 07 48 90 33 76 13 14 48 77 13 50 87 86 65 06 47 89 31 75 14 15 41 76 18 48 86 85 64 05 46 88 30 74 15 16 40 75 11 47 85 84 63 04 45 87 89 73 16 17 39 74 10 46 84 83 63 03 44 86 88 73 17 18 38 73 09 45 83 83 61 03 43 85 87 71 16 19 36 71 07 44 89 81 60 01 48 84 87 70 19 90 35 70 06 43 81 80 59 00 41 83 36 69 & 81 34 69 05 48 80 19 58 3899 40 83 85 68 89 33 68 04 41 79 18 57 98 39 81 84 67 88 83 38 67 03 40 78 17 56 97 38 80 S3 66 83 84 31 60 08 39 77 16 55 96 37 79 33 65 84 85 30 65 01 38 76 15 54 95 36 78 31 64 85 96 89 64 00 37 75 14 53 94 35 77 30 63 86 87 88 63 4199 36 74 13 53 93 34 76 19 63 87 88 87 68 98 35 73 13 51 93 33 75 16 63 88 89 88 61 97 34 73 11 50 91 33 74 17 61 39 30 83 60 96 33 71 10 49 90 31 73 16 60 30 31 83 59 95 39 70 09 48 89 30 78 15 59 31 38 88 58 94 31 69 08 47 86 39 71 14 58 38 33 81 56 93 30 68 07 46 87 38 70 13 57 33 34 80 55 93 89 67 06 45 86 87 69 18 56 34 35 19 54 91 88 66 05 44 85 86 09 11 55 35 36 18 53 89 87 65 04 43 84 85 68 10 54 36 37 17 53 88 86 64 03 43 83 34 67 09 53 37 38 16 51 87 85 63 03 41 83 33 66 09 53 38 39 15 50 89 83 63 01 40 81 33 65 08 51 30 40 14 49 85 83 61 00 39 89 81 64 07 50 40 41 13 48 84 81 60 3999 38 79 31 63 08 49 41 48 11 47 83 80 59 98 37 78 80 63 05 49 49 43 10 46 88 19 58 97 56 77 19 61 04 48 43 44 09 45 81 18 57 96 35 76 18 60 03 47 44 45 08 44 80 17 55 94 34 75 17 59 08 46 45 46 07 43 79 16 54 93 33 74 16 56 01 45 46 47 06 41 78 15 53 93 33 73 15 57 00 44 47 48 05 40 77 14 53 91 31 73 14 56 3699 43 48 49 04 39 76 13 51 90 30 71 13 55 98 48 49 59 03 38 75 18 50 89 89 70 13 54 97 41 50 51 03 37 74 11 49 88 88 69 11 53 96 40 51 58 01 36 73 10 48 87 37 68 10 53 95 39 58 53 00 35 78 09 • 47 86 86 67 09 51 94 38 53 54 4999 .34 • 71 08 46 85 85 66 08 50 93 37 54 55 98 33 69 07 45 84 84 65 07 49 93 96 55 56 96 SB 68 06 44 83 83 64 06 48 98 35 56 57 95 31 67 05 43 88 83 63 05 47 91 35 57 58 94 30 66 04 48 81 31 68 04 46 90 34 58 59 93 89 65 03 41 80 80 61 03 46 80 33 59 ii • 10 6' lo 7' 10 8' lo 9' lo 10' 10 11' IP 18' lo 13» lo 14' lo 15' lo 16' lo 17' it Digitized by VjOOQIC 80 TABLE IIJ.— PROPORTIONAL LOOARITHIM. • II lo 18' lO 10' lo SO* lOSl' lOSS' 10 93' lo 84' 10 95' I© 86' 10 37' lo 28* lo 89' #/ 3632 3576 3538 3468 3415 3368 3310 3359 3308 3158 3108 3059 1 31 76 31 67 14 61 09 58 07 57 07 58 1 s 30 75 80 66 13 60 08 57 06 56 08 57 9 3 93 74 19 65 13 59 •7 56 05 55 05 56 3 4 3d 73 18 5 «7 78 17 63 10 58 06 54 04 53 04 55 5 6 86 71 16 63 09 57 05 53 03 53 03 54 6 7 85 70 15 63 08 56 04 53 09 53 03 53 7 8 34 69 15 61 08 55 03 59 01 51 01 59 8 83 68 14 60 07 54 03 51 00 50 01 59 9 10 33 67 13 59 06 53 01 50 3199 49 00 51 10 11 38 66 iSt 58 05 53 00 49 98 48 3099 50 11 IS 31 65 11 57 04 51 00 48 98 48 98 49 IS 13 30 65 10 56 03 51 3999 47 97 47 97 48 13 14 19 64 09 55 03 50 98 47 06 46 96 47 14 15 18 63 06 54 01 49 97 46 95 45 96 47 15 16 17 63 07 54 00 48 96 45 94 44 95 46 16 17 16 61 08 53 00 47 95 44 93 43 94 45 17 18 15 60 06 53 3399 46 94 43 93 43 93 44 18 19 14 59 05 51 98 45 94 49 93 49 98 43 19 80 13 58 04 50 97 45 93 49 91 41 91 43 90 31 IS 57 03 49 96 44 98 41 90 40 91 49 91 23 11 56 03 48 95 43 91 40 89 39 90 41 99 S3 10 55 01 47 94 43 90 39 8* 38 89 40 83 24 10 55 00 46 93 41 89 38 88 38 88 39 84 95 09 54 3499 46 93 40 88 37 87 37 87 30 85 96 08 53 98 45 99 39 88 36 86 36 87 38 86 87 07 58 97 44 91 38 87 36 85 35 86 37 87 98 08 51 97 43 90 38 86 35 84 34 85 36 88 89 05 50 96 49 89 37 85 34 83 33 84 35 39 30 04 49 95 41 88 36 84 33 83 33 63 34 30 31 03 48 84 40 87 35 83 33 88 38 88 34 31 38 08 47 93 39 86 34 83 31 81 31 83 33 38 33 01 46 98 38 86 33 83 31 80 30 81 38 33 34 00 45 91 38 85 33 81 30 79 99 80 31 34 35 3599 45 90 37 84 38 80 99 78 99 79 30 35 36 98 44 89 36 83 31 79 88 78 88 78 30 36 37 98 43 88 35 83 30 78 37 77 S7 78 99 37 36 97 48 88 34 81 99 77 36 76 86 77 98 38 39 96 41 87 33 80 98 76 95 75 85 76 87 39 40 95 40 86 39 79 97 76 95 74 84 75 86 40 41 94 39 85 31 79 96 75 84 73 94 74 88 41 43 93 38 84 31 78 85 74 S3 73 S3 73 95 49 43 98 37 83 30 77 85 73 89 78 98 73 94 43 44 91 36 88 89 76 84 78 91 71 91 78 S3 44 45 90 35 81 98 75 S3 71 SO 70 90 71 99 45 46 89 35 80 87 74 39 70 90 69 19 70 99 46 47 88 34 80 96 73 31 70 19 68 19 69 91 47 48 87 33 79 35 78 80 69 18 68 18 69 90 48 49 87 38 78 84 78 19 68 17 67 17 68 19 49 50 86 31 77 S3 71 19 67 16 66 16 67 18 50 51 85 30 76 83 70 18 08 15 65 15 66 18 51 59 84 39 75 38 69 17 65 14 04 14 65 17 58 53 83 88 74 81 68 16 65 14 63 14 65 16 53 54 88 37 73 SO 67 15 64 13 63 13 64 15 54 55 81 96 78 19 06 14 63 19 69 19 63 14 55 56 80 85 71 18 65 13 09 11 61 11 68 14 56 57 79 95 71 17 65 13 61 10 60 10 61 13 57 58 78 94 70 16 64 IS 60 09 59 10 00 19 58 59 77 93 69 15 63 11 59 00 58 09 60 11 5» tt lo 18' lo 19' 1O80' 10 31' 10 99* 1«93' l°84' I© 35' lo 96' •• lo 87' 10 98' 10 gp n Digitized by VjOOQIC TABLE III.— PROPORTIONAL LOGARITHMS. 87 1 1 1O30* 10 31' lo 38» 10 33' 10 34' 1° 35' 10 36' 10 3T lo 38' 10 39' lo 40' 10 41' // 3O10 9989 9915 9868 9831 9775 9730 9685 9640 9598 9553 9510 1 09 69 14 67 31 75 99 84 40 98 53 09 1 3 03 61* 13 66 30 74 99 84 39 9fr 51 06 9 3 08 60 13 66 19 73 38 83 38 94 51 07 3 4 07 59 IS 65 18 79 97 89 38 93 50 07 4 5 08 58 e 05 58 10 63 17 71 95 81 36 93 48 05 6 7 05 57 09 69 18 70 95 80 35 91 48 04 7 8 04 56 09 69 15 69 34 79 35 91 47 04 8 03 55 08 61 15 69 93 78 34 90 46 03 9 10 09 54 07 60 14 68 93 78 33 89 45 09 10 11 01 54 06 59 13 67 99 77 39 88 45 03 11 IS 01 53 05 59 IS 66 31 76 33 88 44 01 IS 13 00 59 05 58 11 66 90 75 31 87 43 00 13 14 9999 51 04 57 11 65 19 75 30 86 43 9499 14 15 98 50 03 56 10 64 19 74 99 85 49 99 15 16 97 50 09 55 09 63 18 73 99 85 41 98 16 17 97 49 01 55 08 63 17 73 98 84 40 97 17 18 98 48 01 54 08 63 16 73 87 83 40 97 18 19 95 47 00 53 07 61 16 71 96 83 39 96 19 90 94 46 9899 59 06 60 15 70 96 83 38 95 90 91 93 46 98 59 05 60 14 69 95 81 38 94 91 93 93 45 98 51 05 59 13 69 34 80 37 94 S3 S3 99 44 97 50 04 56 13 68 34 80 36 93 S3 94 91 43 96 49 03 57 13 67 S3 79 35 93 94 95 90 49 95 48 OS 56 11 66 99 78 35 98 95 96 89 49 94 48 01 56 10 66 91 77 34 91 96 97 89 41 94 47 01 55 10 65 91 77 33 90 97 98 88 40 93 46 00 54 09 64 90 76 33 89 98 90 87 39 99 45 9799 53 08 63 19 75 39 89 99 30 86 39 91 45 96 53 07 63 18 74 31 88 30 31 85 38 91 44 98 53 07 63 18 74 30 87 31 39 85 37 90 43 97 51 06 61 17 73 30 87 39 33 84 36 89 43 98 50 05 60 16 73 99 86 33 34 83 35 86 49 95 50 04 60 15 73 98 85 34 35 89 35 87 41 95 49 04 59 15 71 97 85 35 36 81 34 87 40 94 48 03 58 14 70 97 84 36 37 81 33 86 39 93 47 03 57 13 69 96 83 37 38 80 39 85 38 93 47 01 57 13 69 95 89 38 39 79 31 84 38 99 46 01 56 IS 68 35 83 39 40 78 31 83 37 91 45 00 55 11 67 34 81 40 41 77 30 83 36 90 44 9699 55 10 66 93 80 41 49 77 99 83 35 89 44 98 54 10 66 S3 80 49 43 76 98 81 35 88 43 98 53 09 65 S3 79 43 44 75 97 89 34 88 43 97 53 08 64 31 78 44 45 74 97 80 33 87 41 98 53 07 64 90 77 45 46 73 96 79 39 86 41 95 51 07 63 e 77 46 47 73 95 78 31 85 40 95 50 06 OS 76 47 48 79 94 77 31 85 30 94 49 05 61 18 75 48 40 71 94 76 30 84 38 P 49 04 61 17 75 49 50 70 93 76 99 83 38 93 48 04 60 17 74 50 51 69 99 75 98 89 37 93 47 03 59 16 73 51 59 69 91 74 98 83 36 91 46 03 59 15 79 59 53 68 90 73 97 81 35 90 46 01 58 15 73 53 54 67 90 73 96 80 f35 89 45 01 57 14 71 54 55 66 19 79 95 79 34 89 44 00 56 13 70 55 56 65 18 71 85 79 33 88 43 9599 56 19 70 56 57 65 17 70 94 78 39 87 43 99 55 19 69 57 58 64 16 69 93 77 33 87 43 98 54 11 68 58 59 63 16 69 93 76 31 86 41 97 53 10 67 59 u $ ii 10 3Q' 10 31 1<>39' lo 33 10 34' lo 36* 10 36' 10 37' 10 38' lo 39' lo 40' l©4i' Digitized by VjOOQIC TABLE III.— PROPOftTIONAL LOGARITHMS. r t k » lo «? 10 43' 1*44' l» 45' lo 46' lo 47' 1© 48' 10 49* JO 50' 10 51' 10 53/ lo 53* 11 9Ao7 3424 9383 9341 9300 995>> 9918 9178 9139 9099 94)61 9023 1 66 34 82 40 99 J9 58 18 78 > 38 99 60 31 1 9 65 33 81 3J 98 58 17 77 37 98 59 31 9 3 65 32 80 39 98 57 16 76 37 98 59 30 3 4 64 93 80 38 97 56 16 76 36 97 58 19 4 5 63 81 79 37 36 5 6 63 90 78 37 98 55 14 74 35 96 57 18 6 7 63 19 78 36 95 54 14 74 34 95 56 17 7 8 61 19 77 35 94 53 13 73 34 94 55 17 8 9 60 18 76 35 94 53 IS 73 33 94 55 16 9 10 60 17 75 34 93 53 13 73 33 93 54 16 10 11 59 17 75 33 93 51 11 71 33 93 53 15 11 8 58 16 74 33 91 51 10 70 31 93 53 • 14 13 58 15 73 33 91 50 10 70 30 91 53 14 13 14 57 15 73 31 90 49 ov 09 39 90 53 J3 14 15 56 14 72 31 89 49 08 69 99 90 51 13 15 16 55 13 71 30 89 48 08 68 38 89 50 IS 16 17 55 12 71 39 88 47 07 67 88 88 50 11 17 18 54 12 70 3d 87 47 06 67 97 68 49 10 18 19 53 11 69 38 87 46 06 68 96 87 48 10 19 90 53 10 68 97 86 45 05 65 96 86 48 09 90 91 52 10 68 96 85 45 04 65 95 86 47 OJ 91 99 51 09 67 96 85 44 04 64 94 85 46 08 93 93 50 08 68 95 84 43 03 63 94 85 46 07 93 94 50 08 66 94 83 43 03 63 93 84 45 07 94 95 49 07 65 94 83 43 03 63 99 83 44 06 95 96 48 08 64 33 82 41 01 61 83 83 44 05 90 97 48 05 64 32 81 41 00 61 91 69 43 05 97 98 47 05 63 92 81 40 00 60 90 81 49 04 98 99 46 04 69 91 80 39 9199 59 90 61 49 03 99 30 45 03 69 90 79 39 98 59 19 80 41 03 30 31 45 03 61 90 79 38 98 58 16 79 41 03 31 33 44 03 60 19 78 37 97 57 M 79 40 01 33 33 43 01 59 18 77 37 98 57 1? 78 39 01 33 34 43 01 59 17 77 36 96 56 16 77 39 60 34 35 49 00 53 17 76 35 95 SS 16 77 38 00 35 36 41 3J399 57 16 75 35 94 55 15 76 37 10J9 36 37 41 98 57 15 74 34 94 54 15 75 37 98 37 33 40 98 56 15 74 33 93 53 14 75 36 98 38 39 39 97 55 14 73 33 93 53 13 74 35 07 39 40 39 96 55 13 73 33 93 53 13 73 35 96 40 41 38 96 54 13 73 31 91 51 12 73 34 98 41 43 37 95 53 IS 71 31 90 51 11 73 33 95 49 43 36 94 53 11 70 30 90 50 11 73 33 94 43 44 36 94 53 11 70 99 89 49 10 71 32 94 44 45 35 93 51 10 69 99 88 49 09 70 33 93 45 46 34 93 50 09 68 98 88 48 09 70 31 93 46 47 33 91 50 09 68 87 87 47 08 69 30 93 47 48 33 91 49 08 87 37 86 47 07 68 30 91 48 49 39 90 48 07 66 96 86 46 07 68 99 91 40 50 31 89 48 07 66 95 85 45 06 67 98 90 59 51 31 89 47 06 65 95 84 45 05 66 98 80 51 59 30 88 46 05 64 94 84 44 05 66 97 80 59 53 99 87 46 04 64 93 83 43 04 65 96 88 53 54 99 87 45 04 63 93 83 43 03 64 96 87 54 55 98 86 44 03 69 93 83 49 03 64 95 87 55 56 97 85 44 09 03 91 81 41 03 63 95 88 56 57 96 84 43 09 61 90 80 41 01 03 94 86 57 58 96 84 43 01 60 90 80 40 01 63 93 85 58 59 95 83 49 00 60 19 79 J9 00 61 93 84 50 it 10 42' 1<>43' 10 44' 10 45' I© 46' 1«47' 10 48' I© 49' 1O30' 10 51' 10 53* lo 53* n Digitized by VjOOQIC TABLE HI.— PROPORTIONAL LOGARITHMS. 89 • It lO 54' lo 55' 10 56' 10 57' 10 58' 10 59' SO (P 30 1' 90 3' 30 3' 8O4' • 01 1984 1946 1908 1871 1834 1797 1761 1735 1689 1654 1619 1 83 45 08 70 33 97 60 34 89 53 18 1 9 83 44 07 7Q 33 96 60 34 88 53 17 3 3 83 44 06 69 33 95 59 23 87 52 17 3 4 81 43 06 68 31 95 59 33 87 51 16 4 5 81 43 05 68 5 e 80 43 04 67 30 94 57 31 86 50 15 6 7 79 41 04 67 30 93 57 81 85 50 14 7 8 79 41 03 66 39 93 56 SO 84 49 14 8 9 78 40 03 65 38 93 55 19 84 48 13 9 10 77 39 OS 65 88 91 55 19 83 48 13 10 11 77 39 01 64 87 91 54 18 83 47 13 11 13 76 38 01 63 87 90 54 18 83 47 18 IS 13 75 38 00 63 36 89 53 17 81 46 11 13 14 75 37 1899 63 35 89 53 17 81 45 10 14 15 74 36 99 ' 63 35 88 53 16 60 45 10 15 16 74 36 98 61 34 88 51 15 80 44 09 16 17 73 35 96 60 33 87 51 15 79 44 09 17 18 73 34 97 60 S3 86 50 14 78 43 08 18 19 73 34 96 59 S3 86 49 14 78 43 07 19 SO 71 33 96 59 83 85 49 13 77 48 07 30 31 70 33 95 58 21 85 48 13 77 41 06 81 33 70 33 94 57 30 84 48 12 76 41 06 33 83 69 31 94 57 30 83 47 11 76 40 05 S3 84 68 31 93 56 19 83 46 11 75 40 05 84 35 68 30 93 55 19 83 46 10 74 39 04 85 86 67 39 93 55 18 81 45 09 74 38 03 86 87 67 39 91 54 17 81 45 09 73 38 03 87 88 66 38 91 54 17 80 44 08 73 37 OS 88 39 65 38 90 53 16 80 43 08 72 37 03 89 30 65 87 89 53 16 79 43 07 71 36 01 30 31 64 36 89 53 15 78 43 06 71 35 00 31 33 63 36 88 51 14 78 43 06 70 35 00 33 33 63 35 88 50 14 77 41 05 70 34 1599 33 34 63 34 87 50 13 77 40 05 69 34 99 34 35 63 34 86 49 13 76 40 04 68 33 98 35 36 61 33 86 49 13 75 39 03 68 33 98 36 37 60 33 85 48 11 75 39 03 67 33 97 37 38 60 33 84 47 11 74 38 03 67 31 96 38 39 59 31 84 47 10 74 37 03 66 31 96 39 40 58 81 83 46 09 73 37 01 65 30 95 40 41 58 30 83 46 09 73 36 00 65 30 95 41 43 57 19 82 45 08 73 36 00 64 39 94 43 43 56 19 81 44 08 71 35 1699 64 38 93 43 44 56 18 81 44 07 71 34 99 63 38 93 44 45 55 18 80 43 06 70 34 98 63 37 93 45 46 55 17 80 43 06 69 33 97 63 37 93 46 47 54 16 79 42 05 69 33 97 61 86 91 47 48 53 16 78 41 05 68 33 96 61 30 91 48 49 53 15 78 41 04 68 31 96 60 35 90 49 50 53 14 77 40 03 67 31 95 60 84 89 50 51 51 14 76 39 03 66 30 94 59 84 89 51 53 51 13 76 39 02 66 30 94 58 .33 88 53 53 50 13 75 38 03 65 39 93 58 33 88 53 54 50 13 75 38 01 65 3d 93 57 33 87 54 55 49 11 74 37 00 64 38 93 57 31 87 55 56 49 11 73 36 00 63 37 92 56 31 86 56 57 48 10 73 36 1799 63 37 91 55 30 85 57 58 47 09 72 35 98 63 36 90 55 80 85 58 59 46 09 71 35 98 63 35 90 54 19 84 59 • 10 54' 10*5' 10 56' 10 57' 10 58' 10 59' 3o 0' SO 1' 30 3' SO 3' SO 4' • Digitized by VjOOQIC 90 TABU III.— PROPORTIONAL LOGARITHMS. 1 1 80 5' 80 6' 8© V 8P 8' 80 9' 30 W SO U' 3° 13' SO 13' SO 14' to W it 1584 1549 1515 1481 1447 1413 1880 1347 1814 1383 1*49 1 S3 48 14 80 46 13 3 46 14 81 49 1 s fc 48 14 79 46 IS rf 46 13 81 48 3 3 88 47 13 79 45 18 78 45 13 80 48 3 4 81 47 18 78 45 11 78 45 IS 80 47 4 5 81 46 5 6 80 46 11 77 43 10 77 44 11 78 46 6 7 80 45 11 77 43 09 76 43 10 78 46 7 8 79 44 10 76 48 09 78 43 10 77 45 6 78 44 10 76 48 68 75 48 09 77 45 • 10 78 43 09 75 41 08 74 48 09 76 44 13 11 77 43 08 74 41 07 74 41 08 76 43 11 18 77 48 08 74 40 07 73 40 08 75 43 IS 13 76 48 07 73 40 06 73 40 07 75 43 13 14 76 41 07 73 39 06 78 39 07 74 43 14 15 75 40 06 78 38 05 78 39 06 74 41 15 16 74 40 06 73 38 04 71 38 06 73 41 16 17 74 30 05 71 37 04 71 38 05 73 40 17 18 73 39 04 70 37 03 70 37 04 73 40 18 19 73 38 04 70 36 03 70 37 04 71 39 19 90 78 38 03 69 36 OS 69 36 03 71 39 80 SI 71 37 03 69 35 03 68 35 03 70 38 81 S3 71 36 08 68 35 01 68 35 08 70 38 S3 83 70 36 08 68 34 01 67 34 08 60 37 83 84 70 35 01 67 33 00 67 34 01 69 37 84 85 69 35 00 67 33 1899 66 33 01 68 36 35 86 69 34 00 66 33 99 66 33 00 68 35 80 87 68 34 1499 65 33 98 65 38 00 67 35 87 88 67 33 99 65 31 88 65 33 1*90 67 34 38 80 67 33 98 64 31 97 64 31 98 66 34 39 30 68 38 98 64 30 97 63 31 98 66 33 30 31 66 31 97 63 89 96 63 30 97 65 33 31 38 65 31 98 63 39 96 68 39 97 64 33 33 33 65 30 90 68 88 95 68 89 96 64 33 33 34 64 30 95 61 88 94 61 88 06 63 31 34 35 63 89 95 61 87 94 61 SB 95 . 63 31 35 36 63 88 94 60 87 93 00 87 05 63 30 36 37 68 88 94 60 86 93 60 87 94 63 30 37 38 68 87 93 59 86 98 59 86 94 61 30 SB 30 61 87 03 59 85 93 59 36 93 61 39 39 40 61 88 99 58 84 91 58 85 93 60 38 40 41 60 88 91 58 84 91 57 85 93 60 37 41 48 59 85 91 57 83 90 57 84 91 50 37 49 43 59 84 90 56 83 80 56 33 91 SO 36 43 44 58 84 00 56 88 80 56 83 90 58 36 44 45 58 83 89 55 88 88 55 88 90 57 35 45 46 57 83 89 55 31 88 55 88 89 57 35 48 47 56 88 88 54 81 87 54 81 89 56 84 47 48 56 88 87 54 80 87 54 81 88 56 84 48 49 55 81 87 53 19 86 53 80 88 55 83 43 50 55 80 86 59 19 86 58 80 87 55 83 50 51 54 80 86 58 18 85 53 10 87 54 89 51 53 54 10 85 51 18 84 51 19 86 54 89 50 53 53 10 85 51 17 84 51 18 85 53 91 53 54 58 18 84 50 17 83 50 17 85 53 31 54 55 53 18 83 50 16 83 50 17 84 53 90 55 56 51 17 83 49 16 83 40 16 84 53 19 56 57 51 16 88 49 15 88 49 16 83 51 19 57 58 50 16 88 48 14 81 48 15 89 50 18 58 59 50 15 81 47 14 81 48 15 83 50 18 50 10 » 3P5' SO 6' 8P 7' 80 8' *>V 80 IP 30 11' 30 IS' 30 IS* SO 14' 80 15* • Digitized by VjOOQIC TABLE III.— PROPORTIONAL LOOARTTHMf . 91 n 90 16' 90 17* 90 18' SO 18' r>w 90 91' 90 89' SO^ SO 84' 90 85 30 90' • 11 1917 118d 1154 1183 lOi 1001 1©.» 00*9 00(19 OOJtf OO0J 1 17 85 53 88 91 60 9J 99 60 3J 0J 1 8 16 84 53 88 90 60 8J 98 68 38 08 8 3 16 84 58 81 90 5tf 88 98 68 3d OS 3 4 15 83 59 90 89 58 98 97 67 37 07 4 5 15 83 51 90 5 6 14 88 51 19 88 57 97 96 66 36 06 6 7 14 88 50 19 88 57 96 96 66 36 06 7 8 13 81 50 18 87 56 96 95 65 35 05 8 13 81 40 18 87 56 85 95 65 35 05 9 10 19 80 40 17 86 55 85 94 64 34 04 10 11 11 80 48 17 86 55 84 94 64 34 04 11 18 11 79 48 16 85 54 84 93 63 33 03 19 13 10 79 47 16 85 54 83 93 63 33 03 13 14 10 78 47 15 84 53 93 99 69 38 08 14 15 09 78 46 15 84 53 99 99 69 38 08 15 16 00 77 46 14 83 59 93 91 61 31 01 16 17 08 77 45 14 83 59 91 91 61 31 01 17 18 08 76 45 13 89 51 91 90 60 30 00 18 19 07 75 44 13 88 51 90 90 60 30 00 19 90 07 75 43 19 81 50 90 80 50 83 0899 90 81 08 74 43 18 81 50 19 89 59 89 09 31 99 00 74 49 11 80 40 19 88 58 88 98 99 93 05 73 49 11 80 49 18 88 58 3d 98 83 94 65 73 41 10 79 48 ■ 18 87 57 87 97 34 95 04 79 41 10 79 48 17 87 57 87 97 95 96 04 79 40 09 78 47 17 86 56 86 96 86 97 03 71 40 09 78 47 16 86 56 86 96 87 98 09 71 39 06 77 46 16 85 55 95 95 98 99 09 70 30 08 78 46 15 85 55 85 95 99 30 01 70 38 07 76 45 .15 84 54 84 94 39 31 01 60 38 06 75 45 14 84 54 84 94 31 39 00 60 37 06 75 44 14 83 53 83 93 39 33 00 68 37 05 74 44 13 83 53 83 03 33 34 1100 68 36 05 74 43 13 88 53 88 99 34 35 00 67 36 04 73 43 18 88 58 99 99 35 36 08 67 35 04 73 49 13 81 51 31 91 36 37 08 66 35 03 79 49 11 81 51 31 9] 37 38 07 65 34 03 79 41 11 80 50 90 90 38 30 07 65 34 08 71 41 10 80 50 30 90 39 4ft 06 64 33 03 71 40 09 70 40 19 89 40 41 06 64 38 01 70 40 00 70 49 19 80 41 49 05 63 38 01 70 39 08 78 48 18 88 49 43 05 63 31 00 60 39 08 78 48 18 88 43 44 94 09 31 00 60 38 07 77 47 17 87 44 45 93 69 30 1099 68 37 07 77 47 17 87 45 46 03 61 30 99 68 87 08 76 46 16 86 46 47 09 61 99 98 67 36 06 76 46 16 86 47 48 09 60 99 98 67 36 05 '75 45 15 85 48 49 01 60 98 97 66 35 05 75 45 15 85 49 50 91 50 98 97 66 35 04 74 44 14 84 50 51 00 59 87 96 65 34 04 74 44 14 84 51 59 00 58 97 96 65 34 03 73 43 13 83 58 53 80 58 86 95 64 33 03 73 43 13 83 51 54 80 57 96 95 64 33 09 78 43 19 83 54 55 88 57 95 94 63 39 08 78 49 19 88 55 56 88 56 95 94 63 39 01 71 41 11 88 54 57 87 56 94 93 69 31 01 71 41 11 81 57 58 87 55 94 99 68 31 00 70 40 10 81 58 50 86 54 93 99 61 30 00 70 40 10 80 5.) it 90 16'! *> 17' r>i8' 1° IV 10 80' P91' *>99M P93' P»84'* PSS'S K>Su' it • Digitized by VjOOQIC 02 TABLE III.— PROPORTIONAL LOOARITHXS. • It 90 97' 90 98' 90 99' 90 30' 90 31' 20 39' 20 33' 90 34/ 20 35' So 36' 90 37' ■ it 08tHJ O850 0891 oros 0763 0734 0706 0678 0649 0691 0594 . 1 79 50 90 91 62 34 05 77 49 91 93 1 9 79 49 90 91 69 33 05 77 48 91 93 9 3 78 49 19 90 69 33 04 76 48 90 99 3 4 78 48 19 90 61 32 04 76 48 90 99 4 5 77 48 18 5 77 47 18 89 60 31 03 75 47 19 91 6 7 76 47 17 88 60 31 03 74 46 18 91 7 8 76 46 17 88 59 30 02 74 46 38 90 8 9 75 46 16 87 59 30 02 73 45 17 90 9 10 75 45 16 87 58 30 01 73 45 17 89 10 11 74 45 16 87 58 29 01 79 44 16 89 11 IS 74 44 15 86 57 99 00 72 44 16 88 19 13 73 44 15 86 57 98 00 71 43 15 88 13 14 73 43 14 85 56 98 0699 71 43 15 87 14 15 79 43 14 85 56 27 99 70 42 15 87 15 16 79 49 13 84 55 97 98 70 42 14 86 16 17 71 42 13 84 55 26 98 70 41 14 86 17 18 71 41 12 83 54 26 97 69 41 13 85 18 19 70 41 IS 83 54 85 97 69 41 13 85 19 90 70 40 11 89 53 25 96 68 40 19 85 90 91 69 40 11 89 53 24 96 68 40 19 84 91 93 69 39 10 81 52 24 95 67 39 11 84 99 S3 68 30 10 81 52 23 95 67 39 11 83 93 94 68 38 09 80 51 23 94 66 38 10 83 94 95 67 38 09 80 51 22 94 66 38 10 89 95 98 67 37 08 79 51 29 94 65 37 09 89 98 97 66 37 08 79 50 91 93 65 37 09 81 97 98 66 36 07 78 50 91 93 64 36 09 81 98 99 65 36 07 78 49 91 92 64 36 08 80 99 30 65 35 06 77 49 90 99 63 35 08 80 30 31 64 35 06 77 48 20 91 63 35 07 79 31 39 64 34 05 78 48 19 91 63 34 07 79 39 33 63 34 05 76 47 10 00 62 34 06 79 33 34 63 34 04 75 47 18 90 62 34 06 78 34 35 69 33 04 75 46 18 89 61 33 05 78 35 30 69 33 03 74 46 17 89 61 33 05 77 36 37 61 33 03 74 45 17 88 60 32 04 77 37 38 61 39 09 74 45 16 88 60 39 04 76 38 39 60 31 09 73 44 16 87 59 31 03 76 39 40 60 31 01 73 44 15 87 59 31 03 75 40 41 59 30 01 79 43 15 86 58 30 09 75 41 49 59 30 01 72 43 14 86 58 30 09 74 49 43 58 99 00 71 49 14 86 57 99 09 74 43 44 58 99 00 71 49 13 85 57 99 01. 73 44 45 57 98 0799 70 41 13 85 56 28 - 01 73 45 46 57 98 99 70 41 13 84 56 98 00 73 46 47 56 97 98 69 40 19 84 55 98 00 79 47 48 56 97 98 69 40 11 83 55 97 0399 79 48 49 55 i96 97 68 40 11 83 55 97 99 71 49 50 55 96 97 68 39 11 89 54 96 98 71 50 51 55 95 96 67 39 10 82 54 96 98 70 51 59 54 95 96 67 38 10 81 53 95 97 70 59 53 54 94 95 66 38 09 81 53 95 97 60 53 54 53 94 95 66 37 09 80 59 24 96 69 54 55 53 93 94 65 37 08 80 59 94 96 68 55 56 59 93 94 65 36 08 79 51 93 98 68 58 57 59 99 93 64 36 07 79 51 93 95 68 57 58 51 99 93 64 35 07 78 50 92 95 67 58 59 51 91 99 63 35 08 78 50 99 94 67 59 • 96 97' 90 98' 90 99' 9O30* 90 31' 90 39' 90 33' 90 34' 90 35' 9P 38' 90 37' 11 • Digitized by VjOOQIC TABLft III.— MtOFORTIONAL LOOARITHM8. • 93 It 3© 38' SO 39' SO 40' 30 41' 30 41' SO 43' 30 44' SO 45' 0378 30 46' SO 47' SO 48' • 11 0500 0539 0513 0494 0458 0431 0404 0353 0336 0200 1 06 38 11 84 57 30 04 77 51 35 99 1 3 65 3d Jl 84 57 30 03 77 51 35 99 s 3 65 37 10 83 56 30 03 77 50 34 98 3 4 64 37 10 83 56 39 03 76 50 34 98 4 5 64 36 09 5 6 63 38 09 83 55 88 03 75 49 33 97 6 7 63 36 08 81 54 88 01 75 49 33 97 7 e 63 35 08 81 54 87 01 74 48 S3 96 8 9 63 35 07 80 54 87 00 74 48 33 96 9 10 63 34 07 80 53 86 00 74 47 31 95 10 11 61 34 07 80 53 36 0399 73 47 31 95 11 13 61 33 08 79 53 30 99 73 HI 80 94 13 13 60 33 06 79 53 35 99 78 80 94 13 14 60 33 05 78 51 35 98 73 46 19 94 14 15 59 33 05 78 51 34 98 71 45 19 93 !5 16 59 31 04 77 50 34 97 71 45 19 93 16 17 58 31 04 77 50 33 97 70 44 18 93 17 18 58 31 03 76 50 33 96 70 44 18 93 18 19 57 30 03 76 49 83 96 70 43 17 91 19 SO 57 30 03 75 49 S3 95 69 43 17 91 SO 31 57 89 02 75 48 82 95 69 43 16 91 31 S3 56 39 03 75 48 31 95 68 43 16 90 83 S3 56 38 01 74 47 31 94 68 43 16 90 83 34 55 38 01 74 47 80 94 67 41 15 89 84 85 55 37 00 73 46 30 93 67 41 15 89 85 96 54 87 00 73 46 19 93 66 40 14 88 36 S7 54 86 0499 73 46 19 93 66 40 14 88 87 SB 53 86 99 73 45 18 93 66 39 13 88 88 39 53 86 98 71 45 18 93 65 39 13 87 89 39 53 85 98 71 44 18 91 65 39 13 87 30 31 53 85 08 71 44 17 91 64 38 18 86 31 33 53 84 97 70 43 17 90 64 38 13 86 33 33 51 84 97 70 43 16 90 63 37 11 85 33 34 51 83 90 69 43 16 89 63 37 11 85 34 35 50 83 96 69 43 15 89 63 36 10 85 35 3$ 50 83 95 68 43 15 88 63 39 10 84 36 37 49 83 95 68 41 14 88 63 36 10 84 37 38 49 81 94 67 41 14 88 61 35 09 83 38 39 48 81 94 67 40 14 87 61 35 09 83 39 40 48 81 93 67 40 13 87 60 34 08 83 40 41 47 SO 93 66 39 13 86 60 34 08 83 41 < 43 47 SO 93 66 39 13 86 59 33 07 83 43 43 46 19 93 65 38 13 85 59 33 07 81 43 44 46 19 93 65 38 11 85 59 33 07 81 44 45 46 18 91 64 38 11 84 58 33 06 80 45 40 45 18 91 64 37 10 84 58 33 06 80 46 47 45 17 90 63 37 10 84 57 31 05 79 47 48 44 17 90 63 36 10 83 57 31 05 79 48 49 44 17 89 63 36 09 83 56 30 04 79 49 50 43 16 89 63 35 09 83 56 30 04 78 50 51 43 16 89 63 35 08 83 56 89 04 78 51 53 43 15 88 61 34 08 81 55 89 03 77 58 53 43 15 88 61 34 07 81 55 89 03 77 53 54 41 14 87 60 34 07 81 54 88 OS 76 54 55 41 14 87 60 33 06 80 54 88 03 76 55 50 41 13 86 59 33 06 80 53 87 01 78 56 57 40 13 86 59 33 06 79 53 87 01 75 57 58 40 IS 85 58 33 05 79 53 88 09 75 58 59 39 IS 85 56 31 05 78 58 86 60 74 59 » SO 38' SO 39' SO 40* SO 41' 30 43' SO 43' SO 44' 30 45' 80 46' SO 47' SO 48' 11 ' • Digitized by VjOOQIC TABLE HI.— PROPORTIONAL LOGARITHMS. • II So 49' SO 50' 80 51' sqss' 80 5? 80 54' 80 55' 80 56' 80 57' 80 58* SO 59* • it 0*74 0948 0S3S3 0197 0178 0147 0188 0098 0073 0049 0084 1 73 48 88 97 78 47 88 97 73 48 84 1 2 73 47 89 97 71 46 « 97 78 48 83 s 3 73 47 81 96 71 46 81 96 72 * 47 83 3 4 78 47 81 96 71 46 81 96 71 47 83 4 5 78 46 81 95 70 45 80 96 71 46 88 5 6 71 46 80 95 70 45 80 95 71 46 88 6 7 71 45 80 94 69 44 19 95 70 46 81 7 8 70 45 19 94 69 44 19 94 70 45 81 8 70 44 19 94 69 43 19 94 69 45 81 9 10 70 44 19 93 68 43 18 93 69 44 80 10 11 69 44 18 93 68 43 18 93 68 44 80 11 18 69 43 18 93 67 48 17 93 68 44 19 19 13 68 43 17 98 67 48 17 98 68 43 19 13 14 68 48 17 98 66 41 17 98 67 43 19 14 15 67 48 16 91 66 41 16 91 67 48 18 :s 16 67 41 16 91 66 41 16 91 66 48 18 16 17 £ 41 16 90 65 40 15 91 66 48 J7 17 18 41 15 90 65 40 15 90 66 41 17 18 19 66 40 15 89 64 39 14 90 65 41 17 19 SO 65 40 14 89 64 39 14 89 65 40 16 89 SI 65 39 14 89 63 39 14 89 64 40 16 81 22 64 39 13 88 63 38 13 89 64 40 15 88 83 64 38 13 88 63 38 13 88 64 39 15 83 84 64 38 13 87 68 37 19 88 63 39 15 84 85 63 38 19 87 68 37 18 87 63 38 14 85 86 63 37 18 87 61 36 18 87 68 38 14 86 87 68 37 11 86 61 36 11 87 08 38 13 87 88 68 36 11 86 61 36 11 86 68 37 13 88 88 61 36 11 65 60 35 10 86 61 37 18 89 30 61 35 10 65 60 35 10 85 61 36 18 39 31 61 35 10 84 59 34 10 85 60 36 18 31 38 60 35 09 84 59 34 09 84 60 36 11 39 33 60 34 09 84 58 34 09 84 60 35 11 33 34 56 34 68 83 58 33 08 84 59 35 10 34 35 59 33 08 83 58 33 08 83 59 34 10 16 36 58 33 08 88 57 38 67 63 58 34 10 36 37 58 33 07 88 57 39 07 89 58 34 69 37 38 58 38 07 81 56 31 67 88 57 33 69 39 30 57 39 08 81 56 31 66 88 57 33 68 39 40 57 31 66 81 56 31 06 81 57 38 68 40 41 56 31 OS 80 55 30 OS 81 56 39 68 41 48 56 30 05 89 55 30 05 80 56 31 67 48 43 55 30 05 79 54 99 05 80 55 31 07 43 44 55 30 04 79 54 99 04 80 55 31 66 44 45 55 89 04 79 53 89 04 79 55 30 66 45 46 54 89 03 78 53 88 03 79 54 30 66 46 47 54 88 03 78 53 88 03 78 54 89 65 47 48 53 88 09 77 58 87 03 78 53 89 65 46 49 53 87 OS 77 58 87 68 77 53 89 64 40 50 58 87 68 76 51 86 68 77 53 98 64 59 51 58 97 01 76 51 86 01 77 59 88 04 51 58 58 86 01 76 61 86 01 76 58 87 03 59 53 51 86 00 75 50 85 00 76 61 87 03 53 54 51 85 60 75 50 85 60 75 51 87 69 54 55 56 85 60 74 49 84 00 75 61 96 69 55 56 50 84 0199 74 49 84 0099 75 50 86 09 59 57 50 84 99 74 48 84 99 74 59 85 •1 57 58 49 84 98 73 48 83 98 74 49 85 01 59 59 49 83 98 73 48 83 98 73 49 86 69 59 it $ P49' *> sty 10 51' 10 58' ¥>& 10 54' 10 55' ¥>W *>57M ro5B' 10 59* it • Digitized by VjOOQIC TABLE IV. COURSES, DISTANCE, DEPARTURE, AND DIFFERENCE OF LATITUDE. Digitized by VjOOQIC 96 Distance 1 to 50 miles. TABLE IT. § C. i Pt. c * PL C. f Pt. C. 1 Pt. cupt ai v Pt. CUR. C9Pta. Jj t £ a 1 • ■ s T ■* *•* T ££ » Z £ fc* it £ *' SB ad ri % fc ori oo* SB SB 00 80 SB SB 00 oo sb SB 00 n as K a* a SB SB ad B SB, SB 00 CZ; d-lat. dep. d. lat. dep. d. lat. dep. d.lat. dep. d-lat. dep. LUt dep. Hat. dep. tin. *»j 1 1 L .1 L 0.1 1. 0.3 L 0.3 L as a9 13 19 ft 4 s 3 0.1 3. 0.3 3. 0.3 8. 0.4 1.9 0.5 L9 0.6 1.9 0.7. L6 ft- 3 3 0.1 3. 0.3 3. 0.4 8.9 0.6 3.9 0.7 3.9 0.9 3.8 L | 9.8 1 i 4 4 0.8 4. 0.4 4. 0.6 3.9 0.8 3.9 1. 3.8 L3 3.8 13, 17 li 5 5 0.3 5. 0.5 4.9 0.7 4.9 L 4.9 L2 4.8 1.5 4.7 1.7 4.6 1> 6 6 0.3 6. 0.6 5.9 0.9 5.9 1.2 5.8 1.5 5.7 1.7 5.6 9. 5.5 13 7 7 0.3 7. 0.7 6.9 L 6.9 1.4 6.8 1.7 6.7 9. 6.6 9.4 65 I" 8 6 0.4 a 0.8 7.9 1.3 7.8 1.6 7.8 1.9 7.7 9.3 7.5 9.7 74 3; 9 9 0.4 9. 0.9 8.9 1.3 8.8 1.8 8.7 8.3 8.6 9.6 15 1 8.3 li 10 10 0.5 10. 1. 9.9 1.5 9.8 8. 9.7 3.4 9.6 9.9 9.4 3.4 9.3 1? 11 11 0.5 10.9 1.1 10.0 1.6 10.8 8.1 10.7 8-7 10.5 3.3 10.4 3.7 H3 4 5 13 13 0.6 11.9 1.3 11.9 1.8 11.8 8.3 11.6 8.9 11.5 3.5 11.3 4. 1L1 4 4 13 13 0.6 13.9 1.3 13.9 1.9 13.8 3.5 13.6 3.3 18.4 as IS. 9 4.4 IS. i 14 14 0.7 13.9 1.4 13.8 8.1 13.7 8.7 13.6 3.4 13.4 4.1 13.9 4.7 119 it 15 15 0.7 14.9 1.5 14.8 8.3 14.7 9.9 14.6 3.6 14.4 4.4 14.1 5.1 13.9 17 18 18 0.8 15.9 1.6 15.8 8.3 15.7 3.1 15.5 3.9 15.3 4.6 15.1 & 4] 14.8 41 17 17 0.8 16.9 1.7 16.8 8.5 16.7 3.3 16.5 4.1 16.3 4.9 16. IT 117 45 18 18 0.9 17.9 1.8 17.8 3.6 17.7 3.5 17.5 4.4 17.8 5.3 16.9 6-1 16.6 4* 19 19 0.9 18.9 1.9 18.8 8.8 18.6 17 18.4 4.6 1&3 5.5 17.9 6-4 H.6 T 2 . 90 30 L 19.9 3. 19.8 8.9 19.6 3.9 19.4 4.9 19.1 5.8 18.8 6.7 U5 :: 31 81 1. 30.9 8.1 30-8 3.1 30.6 4.1 30.4 5.1 30.1 6.1 19.8 7.1 19.4 & | 33 33 1.1 31.9 3.3 31.8 3.3 31.6 4.3 31.3 5.3 31.1 6.4 80.7 7.4 96.3 84> 83 C 1.1 38.9 3.3 83.8 14 33.6 4.5 38.3 5.6 88. 6.7 91.7 7.7 tL« #* 34 1.3 33.9 3.4 33.7 3.5 83.5 4.7 83.3 5.8 33. 7. 83.6 8.1 99.9 tX 35 35 1.3 34.9 8.5 84.7 3.7 84.5 4.9 84.3 6.1 83.9 7.3 83.5 14 93.1 %* 36 36 1.3 85.9 3.6 35.7 3.8 35.5 5.1 35.3 6.3 84.9 7.5 84.5 as 94. % * 37 37 1.3 38.9 8.6 86.7 4. 36.5 5.3 86.3 6.6 35.8 7.8 85.4 9.1 94.9 111 88 38 1.4 37.9 3.7 37.7 4.1 87.5 5.5 87.8 6.8 86.8 8.1 86.4 9.4 919 wr 39 39 1.4 38.9 3.8 38.7 4.3 88.4 5.7 38.1 7. 37.8 8.4 97.3 9.8 96.6 H t 30 30 1.5 89.9 8.9 39-7 4.4 89.4 5.9 89.1 7.3 38.7 8.7 98.9 10.1 97.7 US 31 31 1.5 30.8 3. 30.7 4,5 30.4 6. 30.1 7.5 89.7 9. 99.3 16.4 98.6 It* 33 33 1.6 31.8 3.1 31.7 4.7 31.4 6.9 31. 7.8 30.6 9.3 30.1 10.6 99,6 lit 33 33 1.6 33.8 3.3 33.6 4.8 33.4 6.4 33. & 31.6 9.6 31.1 11.1 30.5 114 34 34 1.7 33.8 3.3 33.6 5. 33.3 8.6 33. 8.3 33.5 9.9 39. 11.5 3L4 a 35 35 1.7 34.8 3.4 34.6 5.1 34.3 6.8 34. 8.5 33.5 10.3 33. 11.6 IS Ut 36 36 1.8 35.8 3.5 35.6 5.3 35.3 7. 34.9 8.7 34.4 10.5 33.9 19.1 33.3 a* 37 37 1.8 36.8 3.6 36.6 5.4 36.3 7.8 35.9 9. 35.4 10.7 34.8 18.5 34 9 141 38 38 1.9 37.8 3.7 37.6 5.6 37.3 7.4 36.9 9.3 36.4 11. 35.8 18.8 311 Hi 39 39 1.9 38.8 3.8 38.6 5.7 38.3 7.6 37.8 9.5 37.3 11.3 36.7 13.1 31 14 » 40 40 3. 39.8 3.9 39.6 5.9 39.3 7.8 38.8 9.7 3a 3 11.6 37.7 13.5 37. UJ 41 41 8. 40.8 4. 40.8 6. 40.3 8. 39.8 10. 39.3 11.9 38.6 13.8 37. » UT 43 41.9 8.1 41.8 4.1 41.5 6.3 41.3 8.3 40.7 10.3 40.3 13.3 39.5 14.1 38.6 j41 43 48.9 3.1 43.8 4.9 43.5 6.3 43.3 8.4 41.7 10.4 41.1 18.5 40.5 14.5 39-7 H> 44 43.9 3.3 43.8 4.3 43.5 6.5 43.8 8.6 43.7 10.7 48.1 13.8 41.4 14.8 417 M- 45 44.9 3.8 44.8 4.4 44.5 6.6 44.1 18 43.7 10.9 43.1 13.1 49.4 15.9 4L6 17* 46 45.9 3.3 45.8 4.5 45.5 8.7 45.1 9. 44.8 11.3 44. 13.4 43.3 15.3 49.4 17* 47 46.9 3.3 46.8 4.6 46.5 6.9 46.1 9.3 45.6 11.4 45. 13.6 44.3 15.9 414 If* 48 47.9 8.4 47.8 4.7 47.5 7. 47.1 9.4 46.6 11.7 45.9 13.9 45.9 16.8 44.3 1*4 49 48.9 8.4 48.8 4.8 48.5 7.8 48.1 9.6 47.5 11.9 46.9 14.9 46.1 16.5 413 I*» 50 49.9 8.5 49.8 4.9 49.5 7.3 49. 9.8 48.5 13.1 47.8 14.5 47.1 16.8 418 91 g dep. d.Ut dep. d.lat dep. Hat. dep. d-lat. dep. d.lat. dep. d.lat. dep. d.lat. dep. d.Ut 3 3j P P M P w M W H 33 W W 3 3 P» P s* P> P 33 pa N 351 ?•« as S» j» as *- *• Z p as p w as cd as as » as 5° m a* S3 P> as as ? a* P » as ip -a. 3? ?8{e * C. 7| PU. C.71Fte. C.7}Pt*. C. 7Pti. C.6IPU. C.HTU- C.6*Pta. C.6Pta , Digitized by VjOOQIC Distance 1 to 50 miles. TABLS IV. 97 1 1 C.SlPt*. C.9|PU. 0.9}Pte. C. SPta. C.3}Pta. C.3|Pta. C.3JPti. C.4PU. c * ri ** *p4 fc* . ■* ** £* * ad 25 rf -s « OB •4m •* * ad •44 T* 2 * ad m as * m a* 2s * * ad 2: W H fc* * H & »t » w **. c4 rf ** »H ** .2 ft to ad 85 85 00 00 25 =5 09 m SB 25 nd OQ 25 25 CD ad 25 25 ad OQ 25 25 ad m 25 250d 00*25* 1 d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d.lat. dep d . lat. dep. 25 » » 58 *, » » 5K as dd 00 »2 as m oo a* as pa oo as as* a 2 ? k * * * S 3 * * S* P 9 in *.< w w "s? P W 55 P ft ** P w '$$ ^P I k* ** 5* * » 55 9 **"* MM •*• ** C. 5| Pta. G 5* Pta. can*. C.5PU. C. 44PU. C.4JPt». C.4*Pte. 0.4PU. Digitized by VjOOQIC 98 Distance 51 to 100 miles. TABLK1V. i C. *Pt. C t Pt. C. t Pt. C. lPt. o.urt a it Pt. | a if pt. carta. p4« •4* •+• * « E£ 1 i ■^2 •4m -* tt as to DO * fc flD flD 85 as od z s as « od as as od «: as as «d a; as a: m ob » i ai at m as d.lat. dep. d.lat. dep. d. lat. dep. d. lat. dep. d-lat. dep. d. lat. dep. d.Ut. dep. d. lat. dep. % 50.0 8.5 50.8 5. 50.4 75 50. 0.0 40.5 13.4 48.8 14.8 4a 178 47.1 19.5 51.0 8.6 51.7 5.1 51.4 7.6 51. 10.1 50.4 13.6 408 151 40. 175 40. I9L9 53 52.0 8.6 58.7 5.8 58.4 7.8 58. 10.3 51.4 13.0 50.7 154 49.0 17.9 49. 90.3 54 53.0 8.6 53.7 5.3 53.4 7.0 53. 105 53.4 13.1 51.7 15.7 50.8 18.9 49.9 90.7 55 54.0 8.7 54.7 5.4 54.4 8.1 53.0 10.7 53.4 13.4 59,6 16. 51.8 18.5 5tv8 SI. 56 55.0 8.7 55.7 5.5 55.4 8.3 54.0 10.0 54.3 13.6 53.6 16.3 59,7 18.9 51.7 9X4 57 56.0 8.8 56.7 5.6 56.4 8.4 55.0 11. 1 55.3 13.8 54.5 16.5 53.7 19.9 59X7 91.8 53 57.0 8.8 57. 7 5.7 57.4 85 56.0 11.3 56.3 14.1 55.5 16.8 54.6 10.5 5X8 99,3 59 58.9 8.0 58.7 5.8 58.4 8.7 57.0 11.5 57.3 14.3 58.5 17.1 55.6 19.9 54.5 99,6 60 50.0 8.0 50.7 5.0 50.4 8.8 588 11.7 58.3 14.8 57.4 17.4 56.5 90,8 55,4 S3. 61 60.0 3. 60.7 6. 60.3 0. 50.8 11.0 50.8 14.8 58,4 17.7 57.4 90.8 89,4 93.3 68 61.9 3. 61.7 6.1 61.3 0.1 60.8 13.1 60.1 15.1 50.3 1& 58.4 90.9 57.3 93.7 63 68.0 3.1 68.7 6.8 68.3 0.8 81.8 19,3 61.1 15.3 60.3 18.3 59,3 91.9 5&8 94.1 64 63.0 3.1 68.7 6.3 63.3 0.4 63.8 13.5 68.1 15.6 61.8 18.6 60.3 31.6 58.1 94.5 65 64.0 3.8 64.7 6.4 64.3 8.5 63.8 13.7 63.1 15.8 69,3 18.0 6L8 31.9 •9,1 94.0 , 66 65.0 3.8 65.7 6.5 65.3 0.7 64.7 18.0 64. 16. 63.3 19.3 69,1 98.3 6L 95.3 67 66.0 V* 66.7 6.6 66.3 0.8 65.7 13.1 65. 16.3 64.1 10.4 63.1 39,6 61.0 95.6 68 67.0 67.7 6.7 67.3 10. 66.7 13.3 66. 16.5 65.1 10.7 64. 98.9 69,8 96. 60 68.0 3.4 68.7 6.8 68.3 10.1 67.7 13.5 66,0 16.8 66. 30. 65. 93.9 63.7 96.4 70 60.0 3.5 60.7 6.0 60.3 ia3 68.7 13.7 67.0 17. 67. 30.3 65,9 93.6 64.7 9BL8 71 70.0 3.5 70.7 7. 70.2 ia4 60.6 13.9 68.0 17.3 67.0 98.6 86.8 93.9 65.6 97.3 73 71.0 3.6 71.7 7.1 71.8 10.6 70.6 14. 60.8 17.5 68.0 90.9 67.6 34.3 89>5 97.6 73 72.0 3.6 78.6 7.8 73.3 10.7 71.6 14.3 70.8 17.7 60.0 81.3 68,7 34.6 67.4 97.0 ' 74 73.0 3.7 73.6 7.3 73.3 iao 73.6 14.4 71.8 18. 70.8 31.5 69.7 94.9 89,4 9H3 75 74.0 3.7 74.6 7.4 74.8 11. 73.6 14.6 73.8 iao 71.8 31.8 70.6 85.3 60.3 98.7 j 76 75.0 3.8 75.6 7.4 75.3 11.3 74.5 14.8 73.7 1&5 73.7 89,1 71.6 85.6 70,8 99.1 ' 77 76.0 3.8 76.6 7.5 76.3 11.3 75.5 15. 74.7 18.7 73.7 89,4 79,5 85.9 71.1 99.5 ' 73 77.0 3.0 77.6 7.8 77.8 11.4 76.5 15.3 75.7 10 74.6 89,6 73.4 96.3 79,1 99,8 ' 70 78.0 3.0 78.6 7.7 78.1 11.6 77.5 15.4 76.6 10.8 75.6 89,9 74.4 96.6 73. 30.3 ' 80 70.0 4. 78.6 7.8 70.1 U.7 78.5 15.6 77.6 10.4 76.6 83,3 75.3 97. 73.9 39,6 j 81 80.0 4. 80.6 7.0 80.1 U.0 70.4 15.8 78.6 10.7 77.5 83.5 76.3 37.3 74.8 SL 1 83 81.0 4.1 81.6 8. 81.1 13. 80.4 16. 79.5 10.0 78.5 33.8 77.3 87.6 75,8 31.4 83 88.0 4.1 88.6 8.1 88.1 13.8 81.4 16.3 80.5 80 3 79.4 841 78.1 98 76,7 31.8 i 84 83.0 4.8 83.6 8.3 83.1 13.3 88.4 16.4 81.5 304 80.4 94.4 70.1 98.3 77.6 39,1 85 84.0 4.8 84.6 8.3 84.1 13.5 83.4 16.6 89,5 80.7 8L3 84.7 80. 98.6 78.5 39,5, 88 65.0 4.3 85.6 8.4 85.1 13.6 84.3 16,8 83.4 80.0 89,3 35. 81. 90. 79.5 39.9! 87 88.0 4.3 86.6 &5 86.1 18.8 85.3 17. 84.4 31.1 83.3 35.3 81.0 30.3 80.4 3X3. 86 87.0 4.4 87.6 &6 87. 13.0 88.3 17.3 85.4 81.4 84.3 85.5 89,9 39.6 81.3 33.7 80 88.0 4.4 88.6 8.7 88. 13.1 87.3 17.4 86.3 81.6 85.3 35.8 83.8 30, 68.9 34.1 00 80.0 4.5 80.6 &8 80. 13.3 88.3 17.6 87.3 81.0 86.1 86.1 84.7 30.3 83.1 34.4 01 00.0 4.5 00.6 8.9 00. 13.4 80.3 17.8 88.3 83.1 87.1 96,4 85.7 30.7 84.1 34.8 OS 01.0 4.6 01.6 0. 01. 13.5 00.3 17.8 80.3 83.4 88. 36.7 86.6 31. 85, 35.9 03 08.0 4.6 08.6 0.1 03. 13.6 01.3 18.1 00.8 89,6 89. 97. 87.6 31.3 85,9 35.6 04 03.0 4.7 03.5 0.3 03. 13.8 08.8 183 01.3 89,8 00. 87.3 885 31.7 88,8 36. 05 04.0 4.7 04.5 0.3 04. 13.0 03.3 18.5 08.8 33.1 00.0 87.6 89.4 39, 87.8 36,4 06 05.0 4.8 05.5 0.4 05. 14.1 04.3 18.7 03.1 83.3 01.0 37.0 90.4 39,3 88.7 36.7 07 06.0 4.8 06.5 0.5 06. 14.8 05.1 18.0 04.1 33.6 08.8 88.3 01.3 39,7 89.6 37.1 08 07.0 4.0 07.5 0.6 06.0 14.4 06.1 10.1 03.1 83.8 03.8 88.4 09,3 33L 00.5 37.5 go 08.0 4.0 08.5 0.7 07.0 14.5 07.1 10.3 06. 84.1 04.7 88.7 03.3 33.4 01.5 37.9 100 00.0 4.0 00.5 0.8 08.0 14.7 08.1 10.5 07. 34.3 05.7 89. 94.3 33.7 09,4 39.3 5 dap d. lat. dep. d. lat. dep. 1. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. M P P •s-s p p •8? p p 33 P P 3* p p S 3 P P 33 P P 33 P* s * p p p P 91 P P * P P as P P XX p as xx as P P * XX p ? P as xx ** p£ *S as P p P P as p p 3< ** C 7| Pta. C71PU. C.7iPta. C. 7Pte. C.6JPta. 0. 6iPU- C.6}Pta. C6Pta. Digitized by VjOOQIC Distance 51 to 100 miles. TABLE IT. C.SiPM. CSft Pta. C. 8| Ptt. C. 3PU. C.3JPta. C.3JPU. C.3|Fti. C.4FU. it «2 25 QQ . 2* is aS as oq 2 CD m at * B m fe U ftj M » z fc* ta pa ** ri ri ** •«!4 £* i B 2 «G OD 2 * m m 2 as * QD 2 2 OD as 2 2 W m 2 as a to 2 as m 00 2 2od oq2 m * s d-tat. dep d.lat. dep. d.lat. dep. d. lat. dep. d.lat. dep. d.lat. dep. d. lat. dep. d.lat dep. 46-1 31.8 45. 34. 43.7 86.3 43.4 38.3 41.1 30.4 39.4 33.4 37.8 34.3 36.1 51 47. 83.3 45.9 34.5 44.6 36.7 43.3 38.9 41.8 31. 40.8 33. 38.5 34.9 36.8 53 47.9 33.7 46.7 35 45.5 37.8 .44.1 89.4 43.6 31.6 41. 33.6 39.3 35.6 37.5 53 48.8 33.1 47.6 35.5 46.3 87.8 44.9 30. 43.4 38.3 41.7 34.3 40. 36.3 3as 54 49.7 83.5 48.5 25.9 47.3 88.3 45.7 306 44.3 39.8 48.5 34.9 40.8 36.9 38.9 55 50.6 33.9 49.4 86.4 48. 89.8 46.6 31.1 45. 33.4 43.3 35.6 41.5 37.6 39.6 56 51.5 34.4 50.3 36.9 48.9 89.3 47.4 31.7 45.8 34. 44.1 36.3 48.8 38.3 40.8 57 53.4 34.8 51.8 37.3 49.7 89.8 48.8 38,8 46.6 34.6 44.8 36.8 43. 39. 41. 58 53.3 35.3 53. 87.8 59.6 30.3 49.1 38.6 47 4 35.1 45.6 37.4 43.7 39.6 41.7 59 54.2 35.7 53.9 88.3 51.5 30.8 49.9 33.3 48.3 35.7 46.4 38.1 44.5 40.3 43.4 60 55.1 96.1 53.8 98.8 53.3 31.4 59.7 33.9 49. 36.3 47.3 38.7 45.3 41. 43.1 61 56. 96.5 54.7 89.9 53.3 31.9 51.6 34.4 49.8 36.9 47.9 39.3 45.9 41.6 43.8 69 57. 36.9 55.6 89.7 54. 39.4 53,4 35. 50.6 37.5 4&7 40. 46.7 48.3 44.5 63 57.9 87.4 50.4 39.3 54.9 39,9 53.3 35.6 51.4 38.1 49.5 40.6 47.4 43. 45.3 64 5&8 87.8 57.3 30.6 55.8 33.4 54. 36.1 53,3 38.7 50.3 41.3 48.3 43.7 46. 65 59.7 88.8 59.8 31.1 56.6 33.9 54.9 36.7 53. 39.3 51. 41.9 48.9 443 46.7 66 60.6 38.6 59.1 81.6 57.5 34.4 55.7 37.3 53.8 39.9 51.8 48.5 49.6 45. 47.4 67 61.5 39.1 60. 33.1 58.3 35. 56.5 37.8 54.6 40.5 53.6 43.1 50.4 45.7 48.1 68 63.4 89.5 60.9 33.5 59.9 35.5 57.4 38.3 55.4 41.1 53.3 43.8 51.1 46.3 48.8 £9 J 63.3 89.9 61.7 33. 60. 36. 5a 2 38.9 56.8 41.7 54 1 44.4 5L9 47. 49.5 70 64.3 30.4 63.6 33.5 60.9 36.5 59. 39.4 57. 43.3 54.9 45. 53.6 47.7 50.9 7" 65.1 30.8 63.5 33.9 61.8 37. 59.9 40. 57.8 48.9 55.7 45.7 53.3 48.4 50.9 79 C6. 31.8 64.4 34.4 63.6 37.5 69.7 40.6 58.6 435 56.4 46.3 54.1 49. » 51.6 73 66.9 31.6 65.3 34.9 63.5 38. 61.5 41.1 59.4 44.1 57.3 46.9 54.8 49.7 588 74 67.8 33.1 66.1 35.4 64.3 88.6 68.4 41.7 60.3 44.7 58. 47.6 55.6 50.4 53. 75 SS-I 33,5 67. 35.8 65.8 39.1 63.3 43:8 61. 45.3 5R7 4a 2 56.3 51. 53.7 76 • 69.6 38.9 67.9 36.3 66. 39.6 64. 48.8 61.8 45.9 59.5 4a 8 57.1 51.7 54.4 77 70.5 33.3 68.8 36.8 66.9 40.1 64.9 43L3 69.7 46.5 60.3 49.5 57.8 58.4 55.3 78 71.4 33.8 69.7 37.9 67.8 40.6 65.7 43.9 63.5 47.1 61.1 50.1 58.6 53.1 55.9 79 73.3 34.3 70.6 37.7 68.6 41.1 66.5 444 64.3 47.7 61.8 50.8 59.3 53.7 56.6 80 73.fi 346 71.4 »a 2 69.5 41.6 67.8 45. 65.1 48.3 63.6 61.4 60. 54.4 57.3 81 74.1 35.1 73.3 38.7 70.3 48.8 68.8 45.6 65.9 48.8 63.4 58. 60.8 55.1 58. 89 75. 35.5 73.3 39.1 71.8 48.7 69. 46.1 66.7 49.4 64.8 58.7 61.5 55.7 58.7 83 75.9 35.9 74.1 39.6 73. 43.3 69.8 46.7 67.5 50. 64.9 53.3 69.8 56.4 59.4 84 76.8 36.3 75. 40.1 73.9 43.7 70.7 47.9 68.3 so. 6 65.7 54.9 63. 57.1 60.1 85 77.7 36.8 75.8 40.5 73.6 44.8 71.5 47.8 69.1 51.8 66.5 54.6 63.7 57.8 60.8 86 78.6 37.9 76.7 41. 74.6 44.7 73.3 48.3 69.9 61.8 67.3 55.9 64.5 58.4 61.5 87 79.6 37.6 77.6 41.5 75.5 45.8 73.8 48.9 70.7 53.4 68. 55.8 65.8 59.1 68.8 86 80.5 38.1 78.5 43. 76.3 45.8 74. 49.4 71.5 53. 6a 8 56.5 65.9 59.8 63.9 89 81.4 385 79.4 48.4 77.8 46.3 74.8 50. 78.3 53.6 69.6 57.1 66.7 60.4 63.6 99 83.3 38.9 80.3 43.9 78. 46.8 75.7 50.6 73.1 54.3 ras 57.7 67.4 61.1 64.3 91 83.3 39.3 81.1 43.4 78.9 47.3 76.5 Sll 739 54-8 71.1 58.4 68.9 6k 8 65.1 98 84.1 30.8 83. 43.6 79.8 47.8 77.3 61.7 74.7 554 71.9 59. 68.9 68.5 65.8 93 85. 40.3 83.9 44.3 80.6 4a3 78.8 58.3 75.9 56, 73.7 59.6 69.6 63.1 66.5 94 85.9 40.6 83.8 44.8 81.5 48.8 79. 53,6 76.3 56.6 73.4 60.3 70.4 63.8 67.3 95 86.8 41. 84.7 85.5 45.3 88.3 49.4 79.8 53.3 77.1 57.8 74.3 60.9 71.1 64.5 67.9 96 87.7 41.5 45.7 83.8 s: 80.7 53.9 77.9 57.8 75. 61.5 71.9 65.1 68.6 97 88.6 41.9 86.4 46.8 84.1 81.5 54.4 78.7 58.4 75.8 68.3 73.6 65 8 69.3 98 89.5 48.3 87.3 46.7 84.9 50.9 83.3 55. 79.5 59. 76.6 08.6 73.4 66.5 70. 99 90.4 43.8 88.9 47.1 65.8 61.4 63.1 55.6 80.8 59.6 77.3 63.4 74.1 67.8 70.7 100 dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. f * .* C6 2 2 J» cc 2 2 OD po > ■z » <» 2 2 OD QD 2 * P OD 2 2 S» P 2 2p» a 2 * * p r ** P p ** gr k* P p *H *'* M P p ft P p j$? ^P P B 4*. «*• 3$ P* Si I 9 S* ** p fco *• ** ** f"r 5* P P P P L.- P P ■»• *• P p ** •S* *« 1 C. 5i Pt». C.JJPu. C.5*PU. C.5TU. C. 4|Pti. C.4|Fta. C.4*PU. C.4PU. Digitized by VjOOQIC distance 101 to 150 miles. TABLE IV. !.**. C. *Pt. C. f Pt. C. lPt. CliPt C. it Pt. CHPt. C.SPta. Si p4 ri tt w ri ** ** ** 03 flD S5 as n rf fc fc m 2 £ X CO m B fc n m 86 as a* at fc fc ei ad acjac m m X lat. dep. d. lat. dep. d. let. dep. d. let. dep. d.let. dep. d. lat. dep. d.lat. dep. 4. lat. dep- ).9 5. 100.5 9.9 99.9 14.8 99.1 19.7 98. 84.5 96.7 89.3 95.1 84. 93.3 3B.7 1.9 5. 101.5 10. 100.9 15. 100. 19.9 98.9 84.8 97.6 89.6 96. 34.4 94.9 39, 1.9 5.1 103.5 10.1 101.9 151 101. 30.1 99.9 85. 98.6 89.9 97. 34.7 95.9 39.4 1. 9 5. 1 103.5 10.9 108.9 15.3 108. 80.3 100.9 85.3 99.5 30.9 97.9 35. 96.1 39.8 1.9 5.8 104.5 10.3 103.9 15.4 103. 90.5 101.9 85.5 100.5 30.5 98.9 35.4 97. 40.3 J.9 5.3 105.5 10.4 104.9 15.6 104. 80.7 108.8 85.8 101.4 39.8 99.8 35.7 97.9 40. C 1.9 5.3 108.5 10.5 105.8 15 7 104.9 80.9 103.8 88. 108.4 31.1 100.7 38. 98.9 40. t r.9 5.3 107.5 10.6 108.8 15.8 105.9 91.1 104.8 86.3 103.3 31.4 101.7 36.4 99.8 4X3 J.9 5.3 106.5 10.7 107.8 18. 108.9 31.3 105.7 36.5 104.3 31.6 108.6 36.7 109.7 41.7 >.9 5.4 (09.5 10.8 108.8 16.1 107.9 31.5 108.7 86.7 105.3 31.9 103.6 37.1 10L6 49.1 1.9 5.4 110.5 10.9 109.8 16.3 106.9 81.7 107.7 97. 106.3 38.9 104.5 87.4 KB. 6 49,5 1.9 5.5 111.5 11. 110.8 16.4 109.8 31.9 108.8 97.9 107.8 38.5 105.5 37.7 103.5 49.9 1.9 5.5 113.5 U.1 111.8 18.6 110.8 83. 109 6 97.5 108.1 38.8 108.4 38.1 104.4 419 1.9 5.6 113.5 11. 3 118.8 16.7 1U.8 33.3 110.6 97.7 109.1 33.1 107.3 38.4 105.3 416 1.9 5.8 114.4 11.3 113.8 16.9 118.8 88.4 111.6 87.9 110. 38.4 108.8 38.7 106.9 44. i.9 5.7 115.4 11.4 114.7 17. 113.8 83.6 118.5 98.9 111. 33.7 109.3 39.1 107.8 44.4 1.9 5.7 116.4 11.5 115.7 17.9 114.8 88.8 113.5 88.4 118. 34. 110.9 39.4 108.1 44.0 r.9 5.8 117.4 11.6 li6.7 17.3 115.7 83. 114.5 38.7 113.9 34.3 111.1 39.8 109. 45.9 J. 9 5.8 118.4 11.7 117.7 17.5 118.7 83.8 115.4 88.9 113.9 34.5 118. 40.1 109.9 45.5 >.9 5.9 119.4 1L.8 118.7 17.6 117.7 83.4 116.4 99.9 114.8 34.8 113. 40.4 110.9 45.9 1.9 5.9 190.4 11.9 119.7 17.8 118.7 33.6 117.4 89.4 115.8 35.1 113.9 40.8 111.8 40.3 1.9 6. 191.4 13. 190.7 17.9 119.7 83.8 lift 3 89.6 116.7 35.4 114.9 41.1 118. 7 46.7 5.9 6. 133.4 13.1 181.7 18. 180.6 84 119.3 89.9 117.7 35.7 115.8 41.4 1116 47.1 L9 61 133.4 18.3 188.7 18.9 181.6 84.3 180.3 aai 118.7 36. 116.8 4i.8 114.6 47.5 1.8 6.1 134.4 18.3 183.6 18.3 188.6 84.4 131.3 80.4 119.6 36.3 117.7 48.1 115.5 47.8 18 6.9 135.4 18.4 184.6 18.5 183.6 84.6 133.3 30.6 180.6 36.6 118.6 48.4 116.4 48.9 L8 6.3 138.4 18.4 135.6 1&6 184.6 94.8 133.8 30.9 131.5 36.9 119.6 48.8 117.3 40.6 r.8 6.3 137.4 18.5 136.6 18.8 185.5 85. 134.8 31.1 188.5 37.9 190.5 48.1 118.3 49. 18 6.3 138.4 18.6 187.6 18.9 188.5 85.3 185.1 31.3 183.4 37.4 181.5 415 119.9 49.4 1.8 6.4 139.4 18.7 188.6 19.1 187.5 95.4 188.1 31.6 184.4 37.7 188.4 418 189,1 49-7 >.8 6.4 130.4 13.8 189.6 19.9 138.5 85.6 187.1 31.8 185.4 SB. 183.3 44.1 181. 5Sil 1.8 6.5 131.4 13.9 130.6 19.4 189.5 85.8 198. 39.1 186.3 3B.3 184.3 44.5 188. 50.5 (.8 6.5 133.4 13. 131.6 19.5 130.4 85.9 189. 33.3 187.3 S&6 185.8 44.8 188.9 50.9 18 6.6 133.4 13.1 138.5 19.7 131.4 88.1 130. 38.6 isaa 38.9 186.3 45.1 183.8 5L3 1.8 6.8 134.8 13.2 133.5 19.8 133.4 86.3 131. 38.8 189.9 89.8 187.1 45.5 184.7 31.7 i.8 6.7 135.3 13.3 134.5 90. 133.4 96.5 131.9 33. 130.1 30.5 198. 45.8 185. 6 59. L8 6.7 136.3 13.4 135.5 90.1 134.4 86.7 138.9 33.3 131.1 89.8 189. 46.3 190.6 59.4 r. 8 6. 8 137.3 13.5 136.5 80.3 135.3 88.9 133.9 33.5 138.1 40.1 189.9 46.5 187.5 39,8 L8 6.8 138.3 13.6 137.5 80.4 138.3 87.1 134.8 33.8 133. 40.3 130.9 46.8 188.4 53.9 L8 6.9 139.3 13.7 138.5 80.5 137.8 87.3 135.6 34. 134. 40.6 131.8 47.3 189.8 53.6 1.8 6.9 140.3 13.8 139.5 80.7 13& 3 87.5 136.8 34.3 134.9 46.9 138.8 47.5 139.8 54- 1.8 7. 141.3 13.9 140.5 80.8 139.3 87.7 137.7 34.5 135.9 419 133.7 47.8 131.9 54.3 18 7. 143.3 14. 141.6 81. 140.3 97.9 138.7 34.7 136.8 41.5 134.6 48.8 138.1 54.7 18 7.1 143.3 14.1 148.4 91.1 141.3 98.1 139.7 35. 137.8 41.8 135.6 48.5 183. 55.1 1.8 7.1 144.3 14.9 143.4 91.3 148.8 98.3 140.7 35.3 13R 8 43.1 136.5 48.8 134. 35.5 i.8 7.9 145.3 14.3 144.4 81.4 143.3 98.5 141.6 85.5 139.7 48.4 137. S 49.9 134.9 55.9 .8 7.3 146.3 14.4 145.4 91.6 144.9 98.7 143.6 85.7 140.7 48.7 138.4 49.5 135.8 59.3 .8 7.3 147.3 14.5 148.4 81.7 145.8 98.9 143.6 86. 141.6 43. 139.3 49.9 186.7 56.6 .8 7.3 148 3 14.6 147.4 31.9 146.1 99.1 144.5 86.8 148.6 48.3 140.3 50.9 137.7 57. .8 7.4 149.3 14.7 148.4 98. 147.1 99.3 145.5 36.4 1415 43.5 141.9 59.5 13B.6 37.4 ►. d. let dep. d. let. dep. d. tat. dep. d.let. dep. d.let. dep. d.let. dep. diet. dep. cut 3 n p •s* ►* P M pi M p] W 33 P P 3* V» »B ** P *■ •5? P " XX XX as » XX » * a as * as XX as « as ■ XX a a; as • * ? P p 7|Pte. C.7|PUk C.7*Pta. • 7Pt«. C.6|PU. CC|PU- COtPta. CSPta. LjO( 8 Distance 101 to 150 miles. TABLE IT. C.SiFU. 0.3* Pta. C.9|PU, C.3Pta. C.SJPte. C. 3| Pta. C.3}Pta. C.dPte. g4 u 35 * CD *• ii •4m ** 35 CD "*• -4* 35 4 CO 35 * « cd z < m GO* 35 ^ « ** ** M W H i» fid rf Be* <*<* ** 55 OB oi as % OQ co 35 35 *5 QD 35 25 cd 00 35 25 CO OB 35 35 CO CO 35 35 CO CO 35 35 a5 OB35 (Mat dep. d.lat. dep. d.lat. dep d. lat. dep. d. lat. dep. d . lat. dep. d.lat. dep. d. lat. dep. 91.3 43.9 89.1 47.6 86.6 51.9 84. 56.1 81.1 60.3 78.1 64.1 74.8 67.8 71.4 OS. 9 43.6 90. 48.1 87.5 53,4 84.8 56.7 81.9 60.8 78.8 64.7 75.6 68.5 73.1 93.1 44. 90.8 48.6 88.3 53. 85.6 57.9 83.7 61.4 79.6 65.3 76.3 69.3 73.8 94. 44.5 91.7 49. 89.3 53.5 86.5 57.8 83.5 63. 80.4 68. 77.1 69.8 73.5 94.9 44.9 93.6 49.5 90.1 54. 87.3 58.3 84.3 08.5 81.9 66.6 77.8 70.5 74.3 95.8 45.3 93.5 50. 00.9 54.5 88.1 589 85.1 63.1 81.9 67.3 78.5 71.8 75. 96.7 45.7 94.4 50.4 91.8 55. 80. 59.4 85.9 63.7 83.7 67.9 70.3 71.9 75.7 97.6 46.9 95.9 50.9 93.6 55.5 89.8 60. 88.7 64.3 83.5 68.5 80. 73.5 76.4 98.5 46.6 96.1 51.4 93.5 56. 90.6 60.6 87.5 64.9 84.3 69.1 80.8 73,3 77.1 99.4 47. 97. 51.9 94.4 56.6 91.5 61.1 88.4 65.5 85. 69.7 81.5 73.9 77.8 100.3 47.5 97.9 59.3 95.8 57.1 93.3 61.7 80.9 66.1 85.8 70.4 83.3 74.5 78.5 101 9 47.9 98.8 53.8 96.1 57.6 93.1 63.8 90. 68.7 86.6 71.1 83. 75.8 79.8 103.9 48.3 99.7 53.3 96.9 5ai 94. 63.8 90.8 67.3 87.4 71.7 83.8 75.9 79.9 103.1 48.7 100.5 53.7 97.8 «a 6 94.8 63.3 01.6 67.9 88.1 73.3 84.5 76.6 80.6 104. 49.3 101.4 54.9 98.6 59.1 95.6 63.9 92.4 68.3 88.9 73. 85.3 77.8 81.3 104.9 49.6 103.3 54.7 99.5 59.6 96.5 64.4 93.9 69.1 89.7 73.6 86, 77.9 88. 105.8 50. 103.3 55.3 100.4 60.3 97.3 65. 94. 69.7 90.4 74.8 86.7 78.6 83.7 106.7 50.5 104.1 55.6 101.8 60.7 98.1 65.5 94.8 70.3 91.3 74.9 67.4 79.8 83.4 107.6 50.9 104.9 56.1 103.1 61.3 98.9 68.1 95.6 70 9 98. 75.5 88.3 79.9 84.1 108.5 51.3 105.8 56.6 103.9 61.7 99.8 66.7 96.4 71.5 93.8 76.1 88.9 80.6 84.9 100.4 51.7 106.7 57. 103.8 03.3 100.6 67.3 97.9 73.1 93.5 76.8 89.7 81.3 85.6 110.3 53.9 107.6 57.5 104.6 63.7 101.4 67.8 98. 78.7 94.3 77.4 90.4 81.9 86.3 111.9 53.6 108.5 58. 105.5 63.3 103.3 68.3 98.8 73.3 95.1 78. 91.1 88.6 87. 113 1 53. 109.4 58.5 106.4 63.7 103.1 68.9 99.6 73.9 95.9 7a7 91.9 83.3 87.7 113. 53.4 119.3 58.9 107.9 64.3 103.9 69.4 100.4 74.5 96.6 79.3 93.6 83.9 88.4 113.9 53.9 111.1 59.4 ioai 64.8 104.8 70. 101.3 75.1 97.4 70.9 93.4 84.6 89.1 114.8 54.3 113. 59.9 108.9 65 3 105.6 70.5 108. 75.7 98.3 80.6 94.1 85.3 89.8 115.7 54.7 113.9 60.3 109.8 65.8 108.4 71.1 103.8 76.3 98.9 81.9 94.8 86. 90.5 116.6 55.9 113.8 60.8 110.6 66.3 107.3 71.7 103.6 76.9 99.7 81.8 95.6 86.6 91.3 117.5 55.6 114.6 61.3 111.5 66.6 108.1 73.3 104.4 77.4 100.5 83.5 96.3 87.3 91.9 na4 56. 115.5 61.8 113.4 67.3 108.9 73.8 105.8 78. 101.3 83.1 97.1 88. 93.6 119.3 56.4 116.4 63.8 113.3 67.9 109.8 73.3 106. 78.6 109. 83.7 97.8 88.6 93.3 190.9 56.9 117.3 63.7 114.1 68.4 110.6 73.9 106.8 79.3 103.8 84.4 98.5 89.3 94. 191.1 57.3 118.9 63.8 114.9 68.9 111.4 74.4 1076 79.8 103.6 85. 99.3 90. 94.8 183. 57.7 119.1 93.6 115.8 69.4 118.3 75. 108.4 80.4 104.4 85.6 100. 90.7 95.5 193. 9 58.1 119.9 64.1 116.7 69.9 113.1 75.5 109.3 81. 105.1 86.3 100.8 91.3 96.3 193.8 58.6 130.8 64.6 117.5 70.4 113.9 76.1 110. 81.6 105.9 86.9 101.5 93. 96.6 1348 59. 131.7 65.1 118.4 71. 114.7 76.7 110.8 83.3 106.7 87.5 103.3 93.7 97.6 135.7 59.4 133.6 65.5 119.9 71.5 115.6 77.9 111.6 88.8 107.4 88.9 103. 93.3 98.3 136.6 59.9 183.5 66. 180.1 78. 116.4 77.8 113.4 83.4 106.9 88.8 103.7 94, 99. 137.5 60.3 134.4 66.5 190.9 73.5 117.8 m3 113.3 84. 109. 89.4 104.5 94.7 90.7 138.4 60.7 135.8 68.9 131.8 73. 118.1 7a9 H4.I 84.6 109.8 90.1 105.8 95.4 100.4 199.3 61.1 199.1 67.4 133.7 73.5 118.9 79.4 114.9 85.8 110.5 90.7 106. * 96. 101.1 130.8 61.6 137 67.9 133.5 74. 119.7 80. 115.7 85.8 111.3 91.4 108.7 96.7 101.8 131.1 63. 187.9 68.4 184.4 74.5 130.6 80.5 116.5 86.4 118.1 93.1 107.4 97.4 103.5 133. 63.4 138.8 68.8 135.3 75.1 131.4 81.1 117.3 87. 118.0 93.6 108.3 98. 103.3 133.9 63.9 139.6 69.3 196.1 75.6 138.8 81.7 I1R1 87.6 113.6 93.3 108.0 98.7 103.9 133.8 63.3 130.5 60.8 136.9 76.1 183.1 83.3 na9 88.9 114.4 93.9 109.7 99.4 104.7 134.7 63.7 131.4 70.9 137.8 76.6 133.9 83.8 119.7 88.8 115.3 94.5 110.4 100.1 105.4 135.6 64.1 133.3 70.7 138.7 77.1 184.7 83.3 180.5 89.4 116. 95.3 111.1 100.7 106.1 dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d.lat. dep. 4. lat. dep. d. lat. 28 OB 3D 55 5S J» QD 2 34 P» OB 2 * .» » 5K 55 B» a as as * QD * 58 » CD 2f zoo msg] ** W B '** w w S* W p 3* w B n* W B M W pS M W p9 '*$ P'P ** ** B B 55 ** ** zk W B n* *v B w B B *m» *m n b *• ■*• w w ♦+- »+• « B M I* .* .** c.nttM. | c.s|Pu. C.5*Pta. C.5PU. C. 4| Pta. C.4iPtt. C.t}fU. 1 C.4Pt». Digitized by VjOOQIC 10S Distance 151 to 200 miles. table nr. s C. iPt. C. ft PL C. f Pt C. lPt. aupt CUPt ClfPt. atPle. $£ s< i£ « *J tt «P4 a 1 •** i* rip* it rf ri ** ** z* 2 £ *« ** as as as ad 2 fc as erf aS SB S5 B5 trf £ S5 cd n as as ai to as S5 crf ao as as ei ei as as m m as iUt. dep. d.lat. dep. d.let. dep. d.lat. dep. d.lel dep. d.let. dep. d.let. dep. d-leu Sepj 151 150.8 7.4 150.3 14.8 149.4 83.3 148.1 99.5 146.5 36.7 144.5 43.8 14*3 59.9 13*5 S7.* 1 152 151.8 7.5 151.3 14.9 159.4 83.3 149.1 89.7 147.4 36.9 145.5 44.1 14* 1 51 9 14*4 5S.8 153 153.8 7.5 153.3 15. 151.3 88.4 159.1 89.8 148.4 378 14a 4 44.4 144.1 51.5 141.4 5*6 154 153.8 7.6 153.3 15.1 158.3 83.6 151. 30. 149.4 37.4 147.4 44.7 14* 51.9 14*3 **-» 155 154.8 7.6 154.3 15.3 153.3 88.7 158. 30.8 159.4 37.7 148.3 4a 14*9 5*9 14*9 50.3 156 155.8 7.7 155.9 15.3 154.3 89.9 153. 30.4 151.3 37. 9 149.3 413 14*9 5*6 144.1 50.7 157 150.8 7.7 156.9 15.4 155.3 83. 154. 30.6 159.3 sai 150.9 45.6 147.8 5*9 14* 4*1 15P 157.8 7.8 157.9 15.5 150.3 83.8 155. 39.8 153.3 sa4 151.3 45.9 14*6 5*9 14* 6*5 159 158. 8 7.8 158.9 15.0 157.3 83.3 155.9 31. 154.9 38.6 158.8 46.8 140.7 5*6 14*0 6*e . 100 159.8 7.9 159.3 15.7 158.3 83.5 156.9 31.3 155.3 sa9 15a 1 4*4 150.0 sas 147.8 6X8 101 100.6 7.9 100.3 15.8 159.3 83.6 157.9 31.4 156.8 39.1 154.1 4a7 151.6 54.9 14*7 SX6 162 161.8 7.9 161.3 15.9 160.8 83.8 15a 9 81.6 157.1 39.4 isa 47. 15*5 54.6 140.7 6* 163 109.8 8. 168.9 10. 161.8 83.9 159.9 31.8 158.1 39.6 isa 47.3 15*5 54.9 15*6 0*4 164 163.8 & 163.9 iai 168.3 84.1 WO. 8 38. 159.1 39.S isa 9 47.6 154.4 5*9 15L5 6*8 165 164.8 ai 164.9 16.3 103.3 84.3 ML 8 38.8 169.1 40.1 157. 9 47.9 15*4 5*6 15*4 8*1, s 100 165.8 ai 165.3 16.3 164.8 84.4 168.8 38.4 161. 40.3 uas «as 15*3 8*0 15*4 sas 1 107 106.8 8.3 106.3 16.4 165.3 84.5 163.8 3&6 169. 4a« 159.8 4*5 197.9 5*3 154.3 8*0 168 167.8 8.3 167.3 16.5 MO. 8 84.7 164.8 39.8 16a 40.8 MO. 8 4a 8 15*9 5*6 15*9 64-3 169 168.8 6.3 168.9 16.6 167.8 84.8 165.8 33. i6a 9 41.1 Ml. 7 49.1 159.1 5*9 15*1 64.7 170 109.8 a3 169.9 16.7 163.9 84.9 166. 7 33.3 164.9 41.3 Ma7 49.3 MSI 67.3 157.1 6*1 171 170.8 a4 170 3 16.8 169.1 85.1 167.7 33.4 Mas 41.5 Mas 4S.6 MI. S7.6 IS* 6*4 178 171.8 8.4 171.8 16.9 176.1 85.8 iea7 33.6 Mas 41.8 M4.S 49.9 161.9 ST. 9 isao 6*8 J73 173.8 as 173.3 17. 171.1 85.4 169.7 sas 167.8 43. Mas sas 16*9 5*3 150.6 6*9 174 173.8 8.5 173.3 17.1 178.1 85.5 170.7 33.9 Mas 43.3 isas sas M*8 5*6 Mas 6*6 175 174.8 a« 174.3 17.3 173.1 85.7 1716 34.1 109.8 49.5 M7.5 50.8 164.8 5* ML7 87. 176 175.8 ao 175.9 17.3 174.1 85.8 179.6 34.3 170.7 49.8 Ma4 6X1 1S*7 50.3 16*6 89. 4 177 176.8 a7 176.1 17.3 175.1 86. 1716 34.5 171.7 43. M9.4 SI.4 MS7 50.6 16*5 87.7 178 177.8 8.7 177.1 17.4 176.1 96.1 174.6 34.7 178.7 43.3 190.3 51.7 167.6 6* 164.5 8*1 179 178.8 as 17a 1 17.5 177.1 96.3 175.6 34.9 17a 6 4&5 171.3 58. Mas 6*3 M*4 8*5 180 179.8 as 179.1 17.6 17a 1 96.4 176.5 35.1 174.6 43.7 178.9 59,3 16*5 sas M*S 8*9 161 180.8 ao 189.1 17.7 179. 96.6 177.5 35.3 175.6 44. 17*9 sas 19*4 SI. 167. 9> 8*9 183 181.8 a9 181.1 17.8 180. 86.7 17a 5 35.5 m.5 44.3 174.3 58.8 171 4 6L3 10*1 8*6 183 183.8 9. 183.1 17.9 181. 96.9 179.5 35.7 177.5 44.5 17& 1 sai 17*3 61.7 16*1 3* 184 183.8 9. 183.1 18. 189, 87. 180.5 35.9 17a 5 44.7 1M.1 5a 4 17*9 6* 17* 7*4 185 184.8 9.1 184.1 iai 183. 87.1 181.4 36.1 179.5 45. 177. 6*7 17*8 6*3 17*0 7*6 186 185.8 9.1 185.1 18.9 164. 87.3 188.4 36.3 18a 4 45.9 ITS. 54. 17*1 0*7 17X8 7X1 187 180.8 9.S 180.1 18.3 185. 87.4 183.4 36.5 181.4 45.4 17a s 64.3 17*1 6* 17*8 71.5 188 187.8 9.3 187.1 18.4 186. 87.6 184.4 3&7 189.4 45.7 179.9 64 6 177. 6*3 17*7 71. t 189 188.8 9.3 18a 1 18.5 187. 87.7 185.4 36.9 183.3 45.9 189.9 54.9 17* 6*7 174. « 7*S 190 189.8 9.3 189.1 M.6 187.9 87.9 169.3 37.1 184.3 46.8 ML 8 sas 17*9 64. 17* S 7*7 191 190.8 9.4 190.1 ia7 18a 9 88. 187.3 37.3 185.3 46.4 18a 8 sa4 170.8 64.3 11* S 7*1 193 191.8 9.4 191.1 18.8* 189.9 88.3 186 3 37.5 186.9 46.7 isa7 5*7 18*8 64.7 177.4 7*4 193 193.8 9.5 199.1 ia9 190.9 88.3 189.3 37.7 167.3 4a 9 184.7 sa 181.7 6* 17*3 7*6 194 193.8 9.5 193.1 19. 191.9 *as 199.3 37.8 isa3 47.1 185.6 56.3 18*7 6*4 17*9 74.9 195 194.8 9.6 194.1 19.1 19a 9 sae 191.3 3a 169.9 47.4 isa 6 sa 6 16*0 6*7 16*8 74.6 196 195.8 9.6 195.1 19.8 193.9 88.8 198.9 sas 190.1 47.6 187.6 5*9 184.5 6* 181.1 l* ! 197 196.8 9.7 io*i 19.3 1949 88.9 193.9 sa4 191.1 47.9 189.5 57. 8 18*5 0*4 16* 7*4 19H 197.8 9.7 197. 19.4 195.9 89.1 194.9 sao wa 1 4ai 189.5 57.5 18*4 66.7 16* S 7*8 i m 19R 8 9.8 19a 19.5 190.8 89.3 195.9 38.8 is* 4a4 190.4 S7.8 187.4 67. 18*0 7*3 flOO 199.8 9.8 199. 19.6 197.8 89.3 19a 9 39. 194. 4ao 191.4 sai 18S 3 67.4 d. let. 184.8 7*5 1 dep. 4. Ut. dep. d. let. dep. d.lat. «•* d.Iat. dep. a leu dep. d. let. dep. Sep. *let. * * p p M p p 3 <* P p *< w *■ ** p p *S p p M w * 3* w P • * P m as Z p 3 p 00 Z> ** * ?» S4T m ae as P p « S* P p * P * as P * P p ai P « as P ■ as a 7|pu. C.7«Pte. C.7*Pte. C. 7Pte. astPte. astPu- CStPta. CSPte. Digitized by VjOOQIC Distance 151 to 200 miles. tabu iv. 103 CStPti. C.2iPU. CSfPto. O. 3 Pte. C.3>Pte. CSIPta. C.3|Pta. C. 4 PU. ^ tf to z * ad od as as „• OB fc * ad 2f3 . as 00 *• is si as cd Piaj £* a: » « as < aJ en as as od m as as od od 85 as od m fc a: od m as as ad od as asod cdas s s d. lat. dep. d.lat. dep. d.lat. dep. d. lat- dep. 8.7 13.3 867.7 36.4 366.1 39.5 363.8 58.5 860.9 65.4 857.4 78.1 353.3 90.6 348.5 M8.9 870 419.7 13.3 368.7 86.5 367.1 39.6 364.8 58.7 361.9 65.6 358.4 78.4 354.3 01. 849.4 MAI 871 870.7 13.3 369.7 36.6 868.1 39.8 365.8 58.9 368.6 65.8 359.3 78.7 855.3 01.3 858,4 193.7 878 871 7 13.3 970.7 36.7 369.1 39.0 306.8 53.1 363.8 66.1 360.3 79. 850.1 01.6 851.3 104.1 873 878.7 13.4 971.7 86.8 370. 40.1 867.8 53.3 364.8 66.3 361.3 79.3 357. 99. 359.8 1013 874 /73.7 13.4 378.7 38.9 371. 40.3 368.7 53.5 365.8 66.6 363.3 79.5 358. 09.3 353.1 104.9 875 874.7 13.5 873.7 87. 378. 40.4 369.7 53.6 366.7 66.8 863.8 79.6 358.9 98t6 354.1 Mtt.9 878 375.7 13.5 374.7 87.1 873. 40.5 870.7 53.8 867.7 67.1 964.1 60.1 350.9 93. 955. 105.1 877 876.7 13.6 375.7 87.3 874. 40.6 871.7 54. 868.7 67.3 865.1 60.4 360.6 03.3 855,9 M6, 878 877.7 13.6 876.7 87.8 875. 40.8 378.7 54.3 369.6 67.5 866. 80.7 361.7 08.7 836,8 106.4 879 878.7 13.7 877.7 87.3 876. 40.9 873.6 54.4 370.6 67.8 867. 81. 368.7 04. 957.8 106.0 880 879.7 13.7 878.7 87.4 877. 41.1 374.6 54.6 371.6 68. 867.9 81.3 863.6 04.3 958.7 107. S 891 880.7 13 8 379.6 87.5 878. 41.8 875.6 54.8 373.5 68.3 368.9 81.0 364.6 04.7 950.0 187. 5 998 881.7 13.8 380.6 87.6 878.0 41.4 376.6 55. 373.5 68.5 360.0 81.9 365.5 05. 3C0.5 M7.9 883 888.7 13.9 381.6 87.7 879.9 41.5 877.6 55.3 874.5 68.8 870.6 88.3 366.5 85.3 961.5 108.3 884 883.7 13.9 288.6 87.8 880.9 41.7 878.5 55.4 375.5 60.1 871.8 88.4 367.4 05.7 969.4 M8.7 885 884.7 14. 383.6 87.9 881.9 41.8 870.5 55.6 870.4 69.3 878.7 88.7 368.3 96. 963.3 109.1 896 885.7 14. 384.6 88. 888.9 43. 380.5 55.8 377.4 69.5 873.7 83. 369.3 96.4 364.3 190.4 887 886.7 14.1 985.6 88.1 883.9 48.1 881.5 56. 878.4 09.7 874.0 83.3 370.3 06.7 865.9 189.1 888 887.7 14.1 386.6 38.3 384.9 43.3 3835 56. 3 379.3 70. 875.6 83.6 871.3 97. 966.1 118. 1 889 8887 14.3 387.6 38.3 885.9 48.4 8*3.4 56.4 380.3 70.3 876.6 83.9 373.1 07. 4*97. 110.4 890 889.7 14.3 888.6 38.4 386.9 48.6 884.4 56.6 881.3 70.5 877.5 84.9 373. 07.7 |867.9 11 h 891 890.6 14.3 389.6 88.5 887.0 48.7 885.4 56.8 888.8 70.7 878.5 84.5 374. 98. 368.8 UL4 898 891.6 14.3 390.6 38.6 388.8 48.8 886.4 57. 883.8 71. 370.4 84.8 374.0 98.4 860.8 111. 7 893 398.6 14.4 891.6 88.7 380.8 43. 387.4 57.8 384.8 71.8 360.4 85.1 375.9 08.7 970.7 119.1 894 893.6 14.4 893.6 88.8 390.8 43.1 888. 4 57.4 885.3 71.4 381.3 85.3 876.8 00. 971.0 119.5 895 J04.6 14.5 893.8 88.9 891.8 43.3 380.3 57.6 886.1 71.7 388.3 85.6 877.8 90.4 979.5 119.9 896 895.6 14.5 894.6 39. 7)3.8 43.4 890.3 57.7 887.1 71.0 383.3 85.0 3787 90.7 373.3 HX3 897 898.6 14.6 895.6 89.1 393.8 43.6 391.3 57.9 886.1 78.9 384.9 66.9 379.0 100.1874.4 113.7 9«8 •197.6 14.6 896.6 89.9 894.8 43.7 393.3 58.1 889.1 78.4 385.3 66.5 380.8 .100.4375.3 114. 8W 39*. 6 14.7 817.8 39.3 ,895.8 43.0 893.3 58.3 890. 78.7 366.1 86.8 381.5 100.7876.9 114.4 300 899.6 14.7 398.6 39.4 896.8 44. 894.3 58.5 891. 78.0 387.1 67.1 369.5 101.1 877.8 1148 • 5 dep. d.lat. dep. d. lat. dep. Hat. dep. d. lat. dep. d. lat. dep. d. lat. dep. d. laL dep. d.laL 3* W W ^^H 33 w p 3 3 W (Q 33 w w 33 ffl p <* P» P 33 n GB 5? pa as » a? as j» m a* as P" 33 * 9" S3 4M 4te as a 33 P a Pp as » » a: aj* »5 ;5 P% C. 71 Pta. C7IJU. C.7*Pte, C. 7 Pta. CO* Pta. C6tPt«- C.6±Ptt. COPU. Digitized by VjOOQIC Distance 251 to 300 miles. table nr. 107 c.atFu. H M d-lat. ad as H % Of .9 397.8 17 .6 15 931.4 L3 233.9 334.1 L9 L8 837.7 1.7 839. « 949.9 841.4 348.3 343.9 344.1 0.8* Fta. ad 2 » as 107.3 991.4 1193 815.3 199. 107.7 108.9 108. 11.4 1.9 LI 119.: 119. 994.9 190.! r.9|Pti. Mi ** ad m as d. lat. dep. d. lat. dep. d. lat. dep. 908.7 118.81916.1 199.6 909.5 3 917. 7 917. 8819 100.5 985.8 169.9395.7 119.3 997.5 110.7 llt.9999.3 199.6993. 133.7916.9 144.4 908.8 111 119. 119. 930.9 931.1 4 831.9 194. 183.5 994. 134.9 134.7 993.9 1.7 995.6 135.9|918.7 1I33|3397 m9|«7i3 118.9 999.8 194.4 998. 119.7 114, 114. 115. 115. 934.6 195. 3 835.5 __. 0930.4 195. 937.9 _I 4838.1 197. 1949.5 lift 859.4 1I&4 851.3 118.9 858.9 119.3 853.1 119.7 854. 854.9 855.8 856.7 857.6 5 4 3 861.3 J 363. 2 mi ■864. 1864.9 1965.8 '969.7 967.6 5 4 870.3 871.8 199.1 190. 191. 191.4 1319 331 189.3 198.7 183.1 183.6 194. 898.4 190. 191.1 181. 199.1 7|819.6 4 3 9 6 991.3 4 898.9 195.9 999. 196.3989. 196.8 830. 9 1.7 3|831.6 839.4. 845. 115.9)839. 197.7 __ .. 345.9 116.3 939.9 198.9 833.3 846.8 116.79498 1897 847.7 117.3 941.6 189. 849.11 117.6 949.5 199.61835. 4 130. 944.3 130. 945.3 131. 946.1 131.5 946.9 138. 3 941. 4948.7 138.9 941. 4949. 9943. 3944.5 947.8 139.: 7 949.6 133.' 5 133.1 3 134.: 3946.9 135.8 947. 136.9 947. 130.1 130.6 13L1 131.6 139.1 139.6 1338 C.3FU. *«d 35 ad d. lat. 310.4 911.9 818. 8199 813 7 314.5 815.4 139.4 140. 301.6 4 US. 7 136.8 136.8 137.3 137.8 138.3 138.8 139. 139.8 834.3 140.4 140.9 9 141.4 3835.3 150.5 917.7 161.4 8 151.1918.5 168. 837. 151.7 219.3 169.6 897.8 158.9390.1 163.9 1936. 6 837. 7 141. 6 148.4 4 143.9 3 143.4 9 940.9 143.9333.8 144.5 9 145. 7 145.5 6 146. 146.5 8945. 3 147. 147.5 148.1 148.6 859.3 134. 1 135. 854. 854.9 855.8 136.71348.7 I49.I941.1 161. 1 917. 917.8 919.5 3 891.3 147.6 983.7 894.5 150. C. 3| Fta. •it Ob fc dep. d . lat. dep. d. lat dep. 140.5 903.9 141. 1 904. 141.7 904.8 143.3905.6 149.8 906.4 143.3 307.8 143.9 906. 145. 145.51910.4 146.1911.8 146.7 919 147.3 3198 149.5 150.1 159 7 151.3 151.9 158.5 153.1 153.7 154.3 154.9 155.5 156.1 156.7 157.3 157.9 913.7 148.3 314.5 148.9 915.3 149.4 316.1 156.5 159. 159. 160. 916.9 160. 8 908. C.3|Pte. as ad ad as 194. 194.8 195.6 196.3 197.1 159.3 159.9 160.5 161.1 161.8 197.9 169.4 198.7 168. 199.4 163.7 900.2 164.3 901. 164.9 801.8 .5 .3 304.1 304.8 165.6 166.3 166.8 167.5 166.1 305.6 1697 4 169.4 8 170. 9 170.7 7 171. 1906. 6 907. 9907. 9 339.5 153. 839.3 153. 331.1 154. 338. 155. 155. 3 331. 9989.2 4 983.3 .7 164. 5 165. 3 165.6 834.1 166.3 9 166.8 5394.9 833.6 156. 834.5 156. 333.3 157.8 336.1 157. 837. 158. 1895.7 7339* 7 167. 5 168. 837.3 168.6 1 169. 31998.9 169. 194.4 956.6 U7.9 194.8 357.5 137.6 185.3358.4 138. 185.7 959.3 180.1360.8 139. 196.6 361. 187. 197.4 197. 861.9 140. 8 7 953.9 954.7 1597 1593 346. 399.8 140.5 355.6 153.3 347. 1 164.4837.7 179,3 946.9 165. 838.6 179.9 .8 198.8 .1 199.5 .8 1993^364.6 1414)957.3 154.3940.4 166.7941 178.7831.9 198.3)89913 9015 6363.7 140.9356.5 153.7948. ' 3 " 1351. 138.6 353.3 1853. 349.6 149.6 .5 150.1 3 150. 151.1 151 349 3498 6 343.6 344.5 163,3 345.3 163.9 837.8 158. 338.6 159.4 339.5 160. 340.3 1695 r.8 165.5939.4 L6 166.1940.3 5 1719 900.8 18 9193 1796101.5 18_ . 311 173.31093 183.3 C.SfFte. as «d 00 OB 2 186.7 187.5 188.8 188.9 169.7 190.4 1919 1919 1996 193.4 194.1 194.9 195.6 196.4 197.1 197.8 198.6 199.3 1 3 100. 1696 169.9 169.9 170.6 171.9 171.9 173.6 173,3 173.9 174.6 175.3 175.9 176.6 177.3 179 1796 179.3 189 1896 181.3 C.4FH. fcod odas d.lat dep. 311.8 1798 393. 184. 338.7 15981880.9 163.88196 174.5983.8 184.7 4 3194 175.1 814.1 175. 314.9 179 815.7 177. 3194 177. 4 817.1 3 178.3 319 179 3198 179. 3319.5 180.9(910. 3 5 909. 8 330.3 1898 311. 1617 8397 1793 179 9 174.5 996.1 175.1 3399 175.7 1693834.5 1698835.3 177.5 1791 904.5 185.4 7905.9 186. 4909 906.7 6 307.5 9399.7 170.48311 18148119 1991 830.5 171 891.9 18919197 1997 831.3 171.68998 1897813.4 1994 1 173.9933.4 1893 314.1 194.1 3399 1798394.3 184. 314.9 194.8 334.9 184.6^15. 835.7 5 837.3 186. 899 187. 185.83194 185.9 917. 5 917. 1319 8 819.1 7 187.4 189 9099 1897 9 189.4 7 190.1 4 190.7 9 1914 9398 187.1 1894 831.1 189.7)891. 6 1994 1991 1 1996 .8 197.4 6 1991 177.5 1799 1799 179.6 1898 181 181.7 1894 1891 1898 184.6 185.3 189 1897 187.4 1891 1898 189.5 1999 1999 1916 1993 193. 1997 194.5 195.3 195.9 1)9 6 197.3 109 198.7 199.4 800.1 800.8 901.5 9093 3099 3096 904.4 905.1 905.8 966.5 807.9 807.9 9996 809.3 810. 910.7 8114 8191 |951 853 853 854 855 357 870 971 873 973 374 375 376 877 878 984 967 968 dep. d.laL d.lat. dep. d. lat. dep. d. lat. dep. d lat. dep. d. lat. dep. d. lat. dep. d. lat. ae • « as 3* n as « » ae *** + 3* * *• *" P* fed •*" as 9» » ae 55 M at 9i si as ^ as p a ae 1* J* as • o> as as « m as H «P ** * P C.5|rte. C5«Pta. C.5*Fta. C.5Pte. C. 4|Pto. C.4iPta. C.4*Pti. C.4FU. Digitized by VjOOQIC Digitized by VjOOQIC TABLE V. DISTANCE, DIFFERENCE OF LATITUDE, AND DEPARTURE. Digitized by VjOOQIC Digitized by VjOOQIC TABLK V. Otwit 1°. i, DUE Latitude and Departure. Ill dirt. d.lal dep. dirt. d.lal dtp dirt. d.lal dep. dirt. d.lal dep, dirt. d.lai dep. 1 1. 0. 61 01. 1.1 19)1 191. 9.1 181 181. 34 841 941. 44 9 9. 0. 09 09. 1.1 9 199. 9.1 3 189. 34 9 8«*. 44 3 3. 0.1 03 03. 1.1 3 193. 9.1 3 isa 34 3 243. 44 4 4. 0.1 04 04. 1.1 4 194. 94 4 184. as 4 814. 44 5 5. 0.1 05 05. 1.1 5 195. 9.9 5 Ma as 5 94a 44 0* 0.1 08 08. 14 198. 94 1*8. 34 940. 4-3 7 7. 0.1 87 07. 14 7 197. 94 7 187. 3.3 7 947. 4.3 8 8 0.1 08 08. 14 8 198. 94 8 188. 34 8 948. 44 • 9. 04 09 09. 14 9 199. 94 9 189. 34 9 949. 44 10 10. 04 TO 70. 14 180 139. 94 100 130. 34 850 950. 4.4 11 11. 04 71 71. 14 1 131. 94 1 191. 34 1 951. 44 19 19. 04 73 79. 14 9 139. 94 9 199. a4 9 859. 44 13 13. 04 73 73. 1.3 3 133. 94 3 19a 34 3 95a 4.4 14 14. 04 74 74. 14 4 134. 94 4 194. a4 \ 4 954. 4.4 15 15. 04 75 75. 14 5 135. 9.4 5 195. ad 5 SSa 44 10 10. 0.3 70 70. 14 138. 9.4 198. a4 958. 44 17 17. 0.3 77 77. 14 7 137. 9.4 7 197. 3.4 7 957. ,4.5 18 18. 0.3 78 78. 1.4 8 138. 9.4 8 198. 34 8 958. 44 19 19. 03 79 79. 1.4 9 139. 9.4 9 199. 34 9 959. 4.5 90 90. 04 80 80. 1.4 140 140. 9.4 aoo 900. 34 860 980. 44 91 %L 0.4 81 81. 1.4 1 141. 94 1 901. 34 1 901. 44 99 99. 0.4 89 89. 1.4 9 149. 94 3 909. 34 9 909. 44 93 93. 0.4 83 83. 1.4 3 143. 94 3 9oa as 3 98a 4.0 94 94. 0.4 84 84. 14 4 144. 94 4 804. ao 4 984. 44 95 95. 0.4 85 85. 14 5 145. 94 5 90S. ao 5 98a 4.6 99 98. 04 88 86. 14 140. 94 908. ao 90a 4.0 97 97. 04 87 87. 1.5 7 147. 94 7 907. ao 7 907. 4.7 98 98. 04 88 88. 14 8 148. 94 8 908. ao 8 988. 4.7 90 99. 04 89 89. 1.0 9 149. 94 9 909. ao 9 909. 4.7 80 30. 04 00 90. 14 150 150. 94 910 910. 2.7 870 970. 4.7 31 3L 04 91 91. 1.0 1 15L 94 1 911. a7 1 971. 4.7 39 39. 0.0 99 99. 1.0 9 159. 9.7 9 919. a7 9 979 4.7 33 33. 0.0 93 93. 1.0 3 153. 9.7 3 9ia a7 3 97a 44 34 34. 0.0 94 94. 14 4 154. 9.7 4 914. a7 4 974. 44 35 35. 04 95 95. 1.7 5 155. 9.7 5 915. 34 5 975. 44 38 38. 0.0 08 98. 1.7 158. 9.7 916. 34 8 970. 44 37 37. 0.0 97 97. 1.7 7 157. 9.7 7 817. as 7 977. 4.8 SB 38. 0.7 98 98. 1.7 8 158. 9.8 8 918. 34 8 978. 44 30 39. 0.7 99 99. 1.7 9 159. 94 9 919. as 9 979. 4.9 40 40. 0.7 100 100. 1.7 160 100. 94 980 990. 34 880 980. 4.0 41 41. 0.7 1 101. 14 1 101. 94 1 991. ao 1 981. 4.9 49 49. 0.7 9 109. 14 9 109. 94 9 939. ao 9 989. 44 43 43. 04 3 103. 14 3 103. 94 3 99a ao 3 98a 4.9 44 44. 04 4 104. 14 4 104. 9.9 4 994. ao 4 984. a 45 45. 0.8 5 105. 14 5 105. 9.9 5 99a 34 5 98a a 40 40. 0.8 108. 14 100. 9.9 936. a» 98a a 47 47. 0.8 7 107. 14 7 107. 9.9 7 997. 4. 7 987. a 48 48. 04 8 108. 14 8 108. 9.9 8 998. 4. 8 98a a 49 49. 04 9 109. 14 9 109. 94 9 999. 4. 9 >989. a 990. ai 50 50. 04 110 110. 1.9 190 170. 3. 830 930. 4. 800 51 51. 09 1 111. 1.9 1 171. 3. 1 931. 4. 1 891. 5.1 59 59. 04 9 119. 9. 9 179. 3. 9 939. 4. 9 99a 5.1 53 53. 04 3 113. 9. 3 173. 3. 3 93a 4.1 3 99a 5.1 54 54. 04 4 114. 9. 4 174. 3. 4 934. 4.1 4 904. 5.1 55 55. 1. 5 115. 9. 5 175. ai 5 93a 4.1 5 99a 5.1 58 50. 1. 118. 9. 178. 3.1 93a 4.1 998. 54 57 57. 1. 7 117. 9. 7 177. ai 7 937. 4.1 7 997. 54 58 58. 1. 8 na 9.1 8 178. at 8 938. 44 8 986. 54 59 59. L 9 119. 9.1 9 179. ai 9 939. 44 9 999. 54 " 00. 1. 190 190. 9.1 180 180. 3.1 940 940. 44 300 300. 54 dJrt.1 dep. d. lat. dirt.| dep. d. lat dirt. dep. d. lat. dirt. dep. d.lat. dirt. dep. d.lat Distance, Departure aad DUE Latitude. C«VN 80O. Digitized by VjOOQIC 112 TABLK V. Dirtaaee, DUE Latitude and Departure. dirt. d. 1st. dep. dirt. d. lat. dap. dirt. d.lat. dep. dirt. d. lat dep. dirt. d. lat dap. 1 1. 0. 61 61. 3.1 iai 120.9 4.2 181 180.9 6.3 941 910.9 a4 S 9. 0.1 69 69. 9.9 9 191.9 4.3 9 181.9 6.4 9 941.9 &4 a 3. 0.1 63 63. 241 3 193.9 4.3 3 182.9 6.4 3 9424) &5 4 4. 0.1 64 64. 9.9 4 193.9 4.3 4 183.9 6.4 4 243.9 &5 5 5. 0.2 65 65. 9.3 5 194.9 4.4 6 184.9 6.5 5 9444) &6 6 8. 041 66 66. 9.3 6 125.9 4.4 6 1859 645 6 245.9 8L6 7 7. 0.3 67 67. 23 7 126.9 4.4 7 188.9 6.5 7 9464) a6 8 8. 0.3 68 68. 9.4 8 127.9 4.5 8 187.9 6.6 8 9474) &7 9 9. 0.3 69 69. 9.4 9 198.9 4.5 9 1884) 641 9 94&8 a7 10 10. 0.3 70 70. 9.4 180 199.9 15 100 18941 6.6 930 94943 a7 11 11. 0.4 71 71. 25 1 130.9 4.6 1 190.9 0.7 1 9508 as 19 19. 0.4 79 79. 9.5 9 131.9 4.6 9 191.9 07 9 9514) as 13 13. 0.5 73 73. 24J 3 132.9 4.6 3 1929 6.7 3 95243 a8 14 14. 0.5 74 74. 26 4 133.9 4.7 4 193.9 6.8 4 25343 84) 15 15. 0.5 75 75. 9.6 6 134.9 4.7 6 194.9 643 5 25443 6L9 ie 10. 0.8 76 78. 2.7 6 135.9 4.7 195.9 68 95543 841 17 2 0.6 77 77. 2.7 7 138.9 4.8 7 198.9 6.9 7 25843 a 18 0.6 78 78. 2.7 8 137.9 4.8 8 197.9 6.9 8 25743 9. 19 19. 0.7 79 79. 2.8 9 138.9 4.9 9 198.9 6.9 9 25843 9. 510 90. 0.7 80 80. 2.6 140 139.9 4J> 3300 199.9 7. 960 259.8 9.1 91 91. 0.7 81 81. 243 1 140.9 4.9 1 900.9 7. 1 28043 9.1 93 99. 0.8 89 89. 2.9 9 141.9 5. 2 901.9 7. 9 981.8 9.1 93 93. 0.8 83 89.9 2.9 3 149.9 5. 3 9029 7.1 3 9898 941 94 94. 043 84 83.9 2.9 4 143.9 5. 4 903.9 7.1 4 38343 941 95 95. 0.9 85 84.9 3. 5 144.9 5.1 5 904.9 7J 5 98443 941 98 98. 0.9 86 85.9 3. 6 145.9 5.1 6 905.9 741 6 98543 941 97 97. 0.9 87 86.9 3. 7 140.9 5.1 7 900.9 741 7 28843 941 98 98. 1. 88 87.9 3.1 8 147.9 5.3 8 907.9 741 8 28743 9.4 99 99. L 89 88.9 3.1 9 148.9 5.9 9 908.9 741 9 98843 9.4 30 30. 1. 00 89.9 3.1 150 149.9 5.9 910 909.9 7.3 9310 98943 9.4 31 31. 1.1 91 90.9 3.3 1 150.9 5.3 1 910.9 7.4 1 87043 941 39 39. 1.1 93 91.9 3.3 9 151.9 5.3 9 911.9 7.4 9 37143 9.5 33 33. 1.9 93 93.9 3.3 3 159.9 5.3 3 212.9 7.4 3 279.8 941 34 34. 1.2 94 93.9 3.3 4 153.9 5.4 4 213.9 7.5 4 273.8 941 35 35. 1.9 95 94.9 3.3 5 154.9 5.4 5 214.9 7.5 5 27443 941 38 38. 1.3 96 95.9 3.4 6 155.9 5.4 6 315.9 75 275.8 941 37 37. 14) 97 98.9 3.4 7 158.9 5.5 7 310.9 7.6 7 27643 9.7 38 38. 1.3 98 97.9 3.4 8 157.9 5.5 8 317.9 7.6 6 27743 9.7 39 39. 1.4 99 964) &5 9 158.9 5.5 9 918.9 7.6 9 97843 9.7 40 40. 1.4 too 99.9 35 160 159.9 5.0 990 819.9 7.7 9380 97943 94) 41 41. 1.4 1 100.9 3.5 1 160.9 5.6 1 990.9 7.7 1 98943 94) 49 49. 1.5 9 101.9 3.6 9 161.9 5.7 9 23141 7.7 9 28143 94) 43 43. 1.5 3 109.9 3.6 3 169.9 5.7 3 922.9 7.8 3 38243 94) 44 44. 1.5 4 103.9 3.6 4 163.9 5.7 4 223.9 74) 4 28343 941 45 45. 1.8 5 1049 3.7 5 164.9 5.8 5 994.9 7.9 5 28443 941 40 48. 1.6 105.9 3.7 6 165.9 5.8 8 225.9 7.9 285.810. 47 47. 1.6 7 108.9 3.7 7 168.9 5.8- 7 238.9 7.9 7 28843 10. 48 48. 1.7 8 107.9 3.8 8 167.9 5 9 8 227.9 8. 8 257.8 10.1 49 49. 1.7 1084) 3.8 9 168.9 5.9 9 228.9 8. 9 238.8 J0.1 50 50. 1.7 110 109.9 3.8 110 169.9 5.9 330 229.9 a 900 23943101 51 51. 1.8 1 110.9 3.9 1 170.9 6. 1 230.9 8.1 1 230.8 1041 59 52. 1.8 9 1» 1.9 3.9 9 171.9 6. 9 331.9 8.1 9 39143 1041 53 53. 18 3 119.9 3.9 3 173.9 6. 3 332.9 8.1 3 392.8 10.9 54 54. 1.9 4 11X9 4. 4 173.9 6.1 4 233.9 8.2 4 29343 1041 55 55. 1.9 5 114.9 4. 5 174.9 6.1 5 234.9 641 5 29443 10 J 58 58. 2. 6 115.9 4- 6 175.9 6.1 6 235.9 8.3 6 205.8 10 J 57 57. 9. 7 116.9 4.1 7 176.9 6.2 7 338.9 8.3 7 21643 10.4 58 53. 9. 8 117.9 41 8 177.9 6.9 8 337.9 a3 8 29743 1M 59 59. 9.1 9 118.9 4.9 9 17R9 6.9 9 338.9 8.3 9 29a8 10.4 69 60. 2.1 190 119.9 4.9 189 179.9 6.3 940 339.9 8.4 300 23943 1041 dirt. dep. d. lat dirt. dtp. d. lat. dirt. 1 dep. d. lat. dirt. dep. d.lat. dirt. dep. d.lat Dirtaaee, Departure and DUE Latitude. OerareaSSo Digitized by VjOOQIC . TABLE V. Course 3*. Distance, DifE Latitude and Departure 113 dist. d. lat dep. diet. d lat. dep. dial d. lat. dep. dist d. lat. dep. df*t. d. lat. dep. 1 1. O.l 01 60.9 33 lftt 130.8 6.3 181 180.8 9.5 441 840 7 18.6 3 3. 0.1 12 61.9 3.3 o 131.8 6.4 9 181.8 9.5 2 241. 7 12.7 3 3. OS 63 62.9 3.3 3 182.8 6.4 3 183 7 9.6 3 242.7 12 7 4 4. 0.3 64 63 9 3.3 4 133.8 6.5 4 1K3 7 9.6 4 2437 12.8 5 5. 0.3 65 64.9 3.4 5 124.8 6 5 5 184.7 9.7 5 244.7 12.8 6 6. 0.3 66 65.9 3.5 6 135.8 6.6 6 185.7 9 7 6 245.7 12.9 7 7. 0.4 67 66.9 3.5 7 126.8 6.6 7 186.7 9.8 7 246.7 12.9 8 8. 0.4 68 67.9 3.6 8 127.8 6 7 8 187 7 98 8 247.7 13. 9. 0.5 09 68.9 3.8 9 128 8 6.8 9 188.7 9.9 9 248.7 13. 10 10. 0.5 70 69.9 37 130 129.8 6.8 190 189.7 9.9 960 249.7 13 1 11 11. 0.6 71 70.9 3 7 1 130.8 6.9 1 190.7 10 1 250.7 13.1 IS 12. 06 73 71.9 3.8 3 131.8 6.9 3 191.7 10. 8 251.7 132 13 13. 0.7 73 78.9 3.8 3 133.8 7. 3 Ib2.7 10.1 193 7 10.3 3 3587 13.8 14 14. 0.7 74 73.9 3.9 4 133.8 7. 4 4 253 7 13.3 15 15. 08 75 74.9. 3.9 5 134.8 7.1 5 104.7 10 3 5 254.7 13 3 16 16. Oil 76 759 4. « 135.8 7.1 6 1^5.7 10 3 6 255.6 13.4 17 17. 0.9 77 76.9 4. 7 136.8 7.3 7 1967 10.3 7 256.6 13 5 18 18. 0.9 78 77.9 4.1 8 137.8 7.8 8 1977 10.4 8 257.6 13.5 19 19. 1. 79 78.9 41 9 138.8 7.3 9 1U8.7 10.4 9 258 613.6 90 30. 1. 80 79.9 42 140 139.8 7.3 900 199.7 10.5 960 859.6 13.6 31 81. 1.1 81 80.9 4.3 1 140.8 7.4 1 300.7 10.5 1 31.0.6 13 7 33 33. 13 83 8L9 4 3 8 141.8 7.4 3 801 7 10.6 3 861.6 13.7 33 33. 1.3 83 83.9 4.3 3 143 8 7.5 3 303.7 10.6 3 S(JS.6 13.8 34 34. 1.3 84 83.9 4.4 4 143.8 7.5 4 803.7 10.7 4 3«3.6 13.8 35 35. 1.3 85 84.9 4 4 5 144 8 7.6 5 204.7 107 5 364.6 13.9 3d 36. 1.4 86 85 9 4.5 6 1458 7.6 6 205.7 10.8 6 365.6 13.9 87 37. 1.4 87 86.9 4.6 7 146.8 7.7 7 306.7 10.8 7 866 614. 38 38. 1.5 88 87.9 4.6 8 147 8 7.7 8 807.7 10.9 8 267.6 14. 39 39. 1.5 89 88.9 4.7 9 148.8 7.8 9 208.7 10.9 9 » 868.6 141 30 30. 16 00 89,9 4.7 150 149.8 7.9 910 309.7 11. 970 869.6 14 1 31 31. 1.6 91 90.9 4.8 1 1508 7.9 1 310.7 11. 1 870.6 14 8 33 33. 1.7 93 91.9 4.8 3 151.8 8. 8 3117 11 1 8 371.6 14.2 33 33. 17 93 93.9 4.9 3 152.8 8. 3 3127 11,1 3 272 14.3 34 34. 1.8 94 939 4.9 4 153.8 8.1 4 813 7 113 4 273 6 14.3 35 35. 1.8 95 94.9 5. 5 154.8 8.1 5 314.7 11 3 5 274.6 14.4 38 36. 19 96 95.9 5 6 155.8 8 2 6 315.7 11 3 6 275.6 14.4 37 36.9 1.9 97 96 9 5.1 7 156.8 83 7 8167 '14 7 276.6 14.5 38 379 8. 98 97.9 5.1 8 157.8 8.3 8 317.7 1M 8 277.6 14.5 39, 38.9 3. 99 98.9 5.3 9 158.8 8.3 9 818.7 11.5 9 278.0 14.6 40 39.9 8.1 100 99 9 5.3 160 159.8 8.4 990 319.7 115 980 279.6 14.7 41 409 3.1 1 100.9 5.3 1 160,8 a4 1 830.7 1L6 1 2H> 6 147 43 41.9 3.3 3 101.9 53 3 161.8 8.5 8 321.7 11.6 3 281 6 14.8 43 43.9 2-3 3 1089 5 4 3 162.8 8.5 3 828 7 11.7 3 282 6 14.8 44 439 8.3 4 103.9 5.4 4 163 8 8.0 4 823.7 11.7 4 283.6 14.9 45 44.9 8.4 5 1049 5 5 5 164,8 86 5 324 7 11.8 5 284 14.9 46 459 8.4 6 105 9 5 5 6 165.8 8.7 6 225? 118 6 285.6 15. 47 46.9 8.5 7 1069 5.6 7 166.8 8.7 7 3267 11.9 7 286.6 15. 48 47.9 8.5 8 107.9 5.7 8 167.8 8 8 8 337.7 11.9 8 267.6 15.1 49 48.9 8.8 9 1089 5.7 9 168.8 8.8 9 838.7 13. 9 888.6 15.1 00 49.9 8.6 »» 109.8 5.8 170 169.8 8,9 930 229.7 12. 900 889.6 15.3 51 509 87 110.8 5.8 1 170.8 8.9 1 230.7 13 1 1 310.6 15.3 53 519 S-T 8 Jll.8 5.9 3 171.8 9. 3 331.7 13 1 2 8P1.6 15.3 53 52.9 8.8 3 113 8 5.9 3 173.8 9.1 3 232.7 18 3 3 » 8.6 15.3 54 53.9 8.8 4 113.8 6. 4 173.8 9.1 4 333.7 12 3 4 393.6 15.4 55 549 3.9 5 114.8 6. 5 174,8 9.3 5 334 7 18.3 5 894.6 15.4 56 55.9 3.9 6 115.8 6.1 6 175.8 9.8 6 3357 13.4 6 395-0 15,5 57 569 3. 7 J 16 8 6.1 7 176.8 9.3 7 836.7 13 4 7 396.6 15v5 58 579 3. 8 117.8 6.3 8 177 8 9.3 8 337.718 5 8 397.6 15.6 59 589 3.1 118 8 6.3 9 178 8 9.4 9 838 7 13.5 9 898.6 15 6 60 59.9 3.1 130 119.8 6.3 180 179.8 9.4 840 339.7 136 300 399.6 15.7 dist. dep. d.lat ditt. dep. d. lat. ditt. dep. d. lat dint. dep. d. lat. dist. dep. d. lat. Distance, Departure and Dial Latitude. Co wee 3 TO 9 Digitized by VjOOQIC 114 TABLE V. Coarse 40. Dirtauce, DtC Latitude and Departure. diat. d. lat. dep. dirt. d. lat. dep. dirt. d. lat. dep. dirt. d. lat. dep. dirt. d. lat. dap. l 1. 0.1 61 604 44 191 190.7 a4 181 180.6 12.6 341 940.4 164 s 3. 0.1 63 61.8 44 3 191.7 84 3 181.6 12.7 3 241.4 164 3 3. 0.8 63 624 4.4 3 133.7 ae 3 183.8 12.8 3 342.4 17. 4 4. 0.3 64 634 44 4 133.7 a6 4 183.6 12.8 4 2434 17. 5 5. 0.3 65 644 4.5 5 184.7 a7 5 184.5 12.9 5 244.4 17.1 6 6. 04 66 65.8 4.6 6 135.7 84 6 185.5 13. 6 245.4 174 7 7. 0.5 67 66.8 4.7 7 136.7 ao 7 1864 13. 7 2464 174 8 8. 0.6 68 67.8 4.7 8 127.7 a9 8 187.5 13.1 8 247.4 174 9 9. 0.6 69 68.8 4.8 9 I3a7 9. 9 1884 134 9 2484 17.4 10 10. 0.7 70 694 44 130 189.7 9.1 100 1894 134 360 8494 174 11 11. 04 71 704 5. 1 130.7 9.1 1 190.5 134 1 8504 174 18 19. 04 73 71.8 5. 9 181.7 94 9 191.5 13.4 8 8514 174 13 13. 0.9 73 734 5.1 3 138.7 9.3 3 1924 134 3 3524 174 14 14. 1. 74 73.8 54 4 133.7 94 4 193.5 134 4 8534 17,7 IS 15. 1. 75 744 5.3 5 134.7 94 5 1944 13.6 5 8544 174 16 16. 1.1 76 75.8 5.3 6 135.7 9.5 6 1954 13.7 6 8554 174 17 17. J. 9 77 764 5.4 7 136.7 9.6 7 196.5 13.7 7 8564 174 18 ia 14 78 774 5.4 8 137.7 9.6 I 1974 134 8 8574 ia 19 19. 14 79 784 5.5 9 isa7 9.7 1984 134 9 2584 iai 90 90. 14 80 794 54 140 139.7 94 aoo 1994 14. 060 8594 l&l 91 30.9 1.5 81 804 5.7 1 140.7 9.8 l 2004 14. 1 860.4 184 S3 31.9 14 83 814 5.7 8 141.7 9.9 9 8014 14.1 3 8614 lt>3 93 33.9 16 83 834 5.8 3 143.7 10. 3 8034 144 3 362.4 lt>3 94 33.9 1.7 84 834 5.9 4 143.6 10. 4 8034 14.9 4 963.4 1H.4 95 84.9 1.7 85 84.8 59 5 144.6 10.1 5 8044 144 5 8644 1«4 98 35.9 14 86 85.8 6. 6 145.6 10.8 6 3054 14.4 6 805.4 i84 97 96.9 1.9 87 868 6.1 7 146.6 10.3 7 3064 14.4 7 866.3 ia7 S 37.9 3. 88 874 6.1 8 147.6 10.3 8 8074 144 8 3674 ia7 384 8. 89 884 64 9 14a6 10.4 9 8084 144 9 8684 184 30 394 8.1 00 898 64 160 149.6 104 8310 3095 144 370 8694 184 91 30.9 8.3 91 904 64 1 150.6 104 1 3104 14.7 1 8704 184 93 31.9 84 93 914 6.4 3 151.6 10.6 3 81L5 144 3 8714 19. 93 33.9 8.3 93 93.6 6.5 3 1524 10.7 3 3134 14.9 3 8784 19. 94 33J9 8.4 94 93.8 6.6 4 153.6 10.7 4 3134 14.9 4 8734 19.1 95 344 8.4 95 944 6.6 5 154.6 104 5 3144 15. 5 3743 194 98 35.9 84 96 95.8 6.7 6 155.6 10.9 6 8154 15.1 6 3754 194 97 36.9 8.6 97 964 64 7 1564 11. 7 3164 15.1 7 8764 194 S 37.9 8.7 98 974 64 8 157.8 11. 8 3174 154 8 8774 194 38.9 8.7 99 984 64 9 i5ao 11.1 9 3184 154 9 8784 194 40 99.9 84 100 994 7. 160 1594 114 MO 3194 154 389 8794 194 41 40.9 3.9 1 1004 7. 1 169.6 114 1 3804 15.4 1 3SD4 194 43 41.9 8.9 8 1018 7.1 9 161.6 11.3 9 391.5 154 9 8914 19.7 43 49,9 3. 3 108.7 74 3 163.6 11.4 3 3934 154 3 8884 19.7 44 43.9 3.1 4 103.7 7.3 4 163.6 11.4 4 9834 15.6 4 9434 194 45 44.9 3.1 5 104.7 74 5 164.6 1J4 5 8344 15.7 5 8844 194 48 434 34 6 105.7 7.4 6 165.6 116 6 835.4 154 6 8854 9a 47 4*4 34 7 106.7 74 7 166.6 11.6 7 836.4 154 7 8894 80. 48 47.9 34 8 107.7 74 8 167.6 11.7 8 287.4 154 8 3873 80.1 49 484 . &* 9 108.7 74 9 16a6 114 9 S8&4 16. 9 8884 804 60 494 34 110 109.7 7.7 170 1994 11.9 330 889.4 16. 300 8894 804 51 50.9 34 1 110.7 7.7 1 170.6 114 1 830.4 16.1 1 8994 804 IB 51.9 34 9 111.7 74 9 1714 13. 9 831.4 164 9 891.3 804 53 53.9 3.7 3 113.7 74 3 179.6 12.1 3 839.4 164 3 8984 804 54 53.9 38 4 113.7 8. 4 173.6 12.1 4 833.4 164 4 8934 804 55 54.9 34 5 114.7 8. 5 1744 12.2 5 834.4 16 4 5 8944 804 56 55.9 3.9 6 115.7 8.1 6 1754 124 6 835.4 16.5 6 8354 894 57 56.9 4. 7 116.7 as 7 176.6 12.3 7 836.4 16.5 7 8964 80.7 58 57.9 4. 8 117.7 84 8 177.6 12.4 8 337.4 164 8 3974 804 59 58.9 4.1 9 118.7 8.3 9 17a6 124 9 238.4 16.7 9 3984 804 60 59.9 44 180 119.7 a4 180 179.6 13.6 840 3394 16.7 300 | 8994 904 dirt. dep. d. lat dUt. dep. d. lat. dirt. dep. i. lat. dirt. dep. d. lat. dirt. 'dep. d. lat. Dirtance, Departure and Diff. Latitude Camrce 860. Digitized by VjOOQIC TABLK V. Course SO, Dirtanee, DUE Latitude and Departure. 115 dirt. d.lat dep. dirt. d. ut. dep. dirt. d. lat. dep. dirt. d. lat dep. dist. d. lat. dep. 1 1. 0.1 61 60.8 5.3 1191 120.5 10.5 181 180.3 15.8 *4l 2401 31. S 9. 0.2 62 61.8 5.4 2 121.5 10.6 2 181.3 15.9 3 241.1 31.1 3 3. 0.3 63 62.8 5.5 3 122.5 10.7 3 182.3 15.9 3 242.1 314 4 4. 0.3 04 634 5.6 4 123.5 10.8 4 183.3 16. 4 243.1 31.3 5 5. 0.4 65 64.8 5.7 5 1245 10.9 5 184.3 16.1 5 244.1 21.4 e 6. 0.5 66 65.7 5.8 6 125.5 11. 6 185.3 16.2 6 245.1 21.4 7 7. 0.6 67 66.7 5.8 7 126.5 Ill 7 1864 16.3 7 246.1 21.5 8 a ' 0.7 68 67.7 5.9 8 127.5 11.2 8 187.3 16.4 8 2471 21.6 9 9. 0.8 69 68.7 6. 188.5 118 9 18&3 104 9 243.1 21.7 10 10. 04 TO 69.7 6.1 130 199.5 11.3 190 1804 16.6 950 849. 91.8 11 11. 1. 71 70.7 64 1 130.5 11.4 1 190.3 16.6 1 250. 31.9 IS 19. 1. 72 71.7 6.3 9 131.5 11.5 3 191.3 16.7 9 251. 88. 13 13. 1.1 73 72.7 6.4 3 1324 11.6 3 192.3 16.8 3 253. 22.1 14 13.9 19 74 73.7 6.4 4 133.5 11.7 4 193.3 16.9 4 253. 22.1 15 14.9 1.3 75 74.7 6.5 5 134.5 11.8 5 194.3 17 5 254. 22.2 16 15.9 1.4 76 757 6.6 6 135.5 11.9 6 1054 17.1 6 255. 22.3 17 16.9 1.5 77 76.7 6.7 7 136.5 11.9 7 196.3 17.2 7 256. 88.4 18 17.9 1.6 78 77.7 68 8 137.5 12. 8 197.8 17.3 8 257. 82.5 19 184 1.7 79 78.7 6.9 9 1384 12.1 9 1984 17.3 9 258. 88.6 *0 19.9 17 80 79.7 7. 140 139.5 124 8JO0 199.3 17.4 360 859. £ 91 90.9 14 81 80.7 7.1 1 140.5 12.3 1 200.2 175 1 360. 9* 91.9 1.9 88 81.7 7.1 2 141.5 12.4 2 201.2 17.6 9 361. 824 93 99.9 9. 83 83.7 7.2 3 142.5 12.5 3 202.2 17.7 3 868. 884 94 834 2.1 84 83.7 7.3 4 1435 12.6 4 203.2 17.8 4 363. 83. 95 94.9 2.3 85 84.7 7.4 5 144.4 12.6 5 204.2 17.9 5 364. 83.1 96 35.9 3.3 86 85.7 7.5 6 145.4 12.7 6 205.2 18. 6 365. 334 97 96.9 3.4 87 86.7 7.6 7 146.4 12.8 7 206.2 18, 7 366. 83.3 98 97.9 8.4 88 87.7 7.7 8 147.4 12.9 8 2072 181 8 867. 23.4 99 98.9 9.5 89 88.7 7.8 9 148.4 13. 9 8084 M.2 9 868. 83.4 80 99.9 9.6 60 89.7 7.8 150 149.4 13,1 8310 209.3 18.3 970 369. 834 31 30.9 9.7 91 90.7 7.9 1 150.4 13.2 1 210.2 18.4 1 870. 83.6 39 31.9 24 99 91.6 8. S 151.4 13.2 2 211.2 18.5 3 871. 83.7 33 39.9 9.9 93 92.6 8.1 3 152.4 13.3 3 212.2 18.6 3 873. 834 34 33.9 3. 94 93.6 a2 4 153.4 13.4 4 213.2 18.7 4 873. 83.9 35 34.9 3.1 95 94.6 8.3 5 154.4 13.5 5 214.2 1&7 5 274. 84. 36 35.9 31 96 95.6 8.4 6 155.4 13.6 6 2155 18.8 6 2744 34.1 37 36.9 3.2 97 96.6 8.5 7 156.4 13.7 7 216.2 18.9 7 3754 84.1 38 37.9 3.3 98 97.6 8.5 8 157.4 13.8 8 217.2 19. 8 876.9 344 39 38.0 3.4 90 98.6 8.6 9 15&4 13.9 9 3184 19.1 9 877.9 844 40 394 3.6 100 99.6 8.7 160 159.4 13.9 9830 319.3 19.2 MO 378.9 34.4 41 40.8 3.6 1 100.6 8.8 1 160.4 14. 1 220.2 19.3 1 379.9 244 49 418 3.7 8 101.6 8.9 3 161.4 14.1 2 221.2 19.3 8 8804 24.6 43 49.8 3.7 3 109.6 9. 3 168.4 14.2 3 2224 19.4 3 881.9 24.7 44 43.8 34 4 103.6 9.1 4 163.4 14.3 4 223.1 19.5 4 383.9 24.8 45 44.8 3.9 5 104.6 9.2 5 1644 14.4 5 224.1 19.6 5 383.9 24.9 46 45.8 4. 6 105.6 9.2 6 165.4 14.5 6 225.1 19.7 6 8844 24.9 47 46.8 4.1 7 106.6 9.3 7 166.4 146 7 226.1 194 7 3354 25. 48 474 4.2 8 J07.6 9.4 6 167.4 14.6 8 827.1 19.9 8 386.9 25.1 49 484 4.3 9 108.6 9.5 9 16a4 14.7 9 328.1 80. 9 887.9 854 60 49.8 4.4 110 109.6 9.6 170 169.4 14.8 930 889.1 8a 990 88a9 854 51 504 44 1 110.6 9.7 1 170.3 14.9 1 830.1 80.1 1 389.9 85.4 59 514 4.5 9 111.6 9.8 3 171.3 15. 3 831.1 30.8 3 390.9 85.4 53 594 46 3 112.6 94 3 172.3 15.1 3 332:1 80.3 3 811.9 854 54 534 4.7 4 113.6 9.9 4 173.3 15.2 4 233.1 80.4 4 898.9 35.6 55 544 44 5 1-4.6 10. 5 174.3 15.3 5 234.1 80.5 5 393.9 85.7 56 554 4.9 6 115,6 10.1 6 175.3 15.3 6 835.1 80.6 6 3144 854 57 564 5. 7 116.6 10.2 7 176.3 15.4 7 236.1 30.7 7 395.9 35.9 58 574 5.1 8 117.6 10.3 8 177.3 15.5 8 237.1 80.7 8 316.9 36. 59 584 6.1 9 118 .5 10.4 9 178.3 15.6 9 338.1 804 9 817.9 36.1 60 594 5.9 199 119.5 10.5 180 179.3 15.7 840 839.1 30.9 300 896.9 36.1 di«t *»!► d.lat dtrt.| dep. d lat. dirt. dep. d .lat diet. dap. d. lat dirt. dep. 4. lat. Dtrtaace, Departure and DUE Latituoe. C*ur*e85°. Digitized by VjOOQIC 116 TABLET. Dietanee, Diff Latitude and Departure. diet. d,lat. dep. diit. d. let. dep. diet. d. lat dep. dirt. (LlaL ** diet. d.lat dep. 1 1. 0.1 61 60.7 6.4 i»i 1303 18.6 181 180. 183 941 839.7 853 s 9. 0.8 68 61.7 63 3 121.3 18.8 3 181. 19. 8 840.7 953 3 3. 0.3 63 69.7 86 3 128.b 13.9 3 188. 19.1 3 841.7 85.4 4 4. 0.4 64 63.6 6.7 4 123.3 13. 4 183. 193 4 848.7 853 5 5. 0.5 65 64.6 6.8 5 124.3 13.1 5 184. 19.3 5 843.7 85.6 6 6. 0.6 66 65.6 6.9 6 125.3 13.8 6 185. 19.4 6 844.7 85.7 7 7. 0.7 67 66.6 7. 7 126.3 13.3 7 186. 19.5 7 845.6 3543 8 8. 0.8 68 67.6 7.1 8 127.3 13.4 8 187. 19.7 8 8463 85.9 9 9. 0.9 69 68.6 7.3 9 1283 1&5 9 188. 193 9 8473 86. 10 9.9 1. 70 69.6 73 180 1893 13.6 190 189. 19.9 950 3483 36.1 11 10.9 1.1 71 70.6 7.4 1 130.3 13.7 1 190. 80. ] 8493 863) IS 11.9 1.3 78 71.6 73 3 131.3 133 9 190.9 80.1 3 850.6 863 13 19.9 1.4 73 78.6 7.6 3 132.3 13.9 3 1913 80.8 3 8513 96.4 14 13.9 1.5 74 73.6 7.7 4 133.3 14. 4 198.9 803 4 858.6 863 15 14.0 J. 6 75 74.6 7.8 5 1343 14.1 5 193.9 80.4 5 853.6 86.7 16 15.9 1.7 76 75.6 7.9 6 1353 14.8 6 194.9 803 6 854.6 963 17 16.9 1.8 77 76.6 8. 7 136.2 14.3 7 195.9 80.6 7 8553 863 18 17.9 1.9 78 77.6 8.8 8 137.2 14.4 8 196.9 80.7 8 850.6 97. 19 18.9 9. 79 78.6 8.3 9 138J2 143 9 197.9 803 9 8573 87.1 90 19.9 8.1 80 79.6 8.4 140 139.3 14.6 900 196.9 90.9 960 958.6 973! 91 90.9 9.3 81 80.6 83 1 140.8 14.7 1 199.9 31. 1 8593 873 99 81.9 8.3 88 816 8.6 3 141.3 14.8 3 800.9 81.1 3 8603 873 83 93.9 8.4 83 &■* 8.7 3 142.3 149 3 801.9 313 3 861.6 973 94 93* 8.5 84 83.5 8.8 4 143.2 15.1 4 803,9 81.3 4 868.6 873 25 949 3.6 85 84.5 8.9 5 144.2 15.2 5 303.9 81.4 5 8633 87.7 96 95.9 8.7 86 85.5 9. 6 145.2 153 6 804.9 313 6 8643 873 97 363 8.8 87 86.5 9.1 7 146.2 15.4 7 805.9 31.6 7 865.5 873 99 87.9 8.9 88 87.5 93 8 1473 15.5 8 806.9 31.7 8 9863 88. 99 888 a 89 86.5 93 9 148.3 15.6 9 807.9 813 9 8873 8B.1 30 903 3.1 00 893 9.4 150 149.3 15.7 910 8083 83. 970 9683 893 31 30.8 3.9 91 905 93 1 150.3 15.8 1 809.8 82.1 8693 883 39 31.8 3.3 98 91.5 9.6 8 151.2 15.9 3 310.8 83.2 9 8703 98.4 33 39.8 3.4 93 985 9.7 3 152.2 16. 3 311.8 88.3 3 8713 883 34 33.8 3.6 94 93.5 9.8 4 153.2 16.1 4 8183 93.4 4 9783 883 35 343 3.7 95 945 9.9 5 154.2 162 5 313.8 32.5 5 8733 88.7 30 35.8 3.8 96 95.5 10. 6 155.1 16.3 6 9143 93.6 6 8743 883 37 36.8 3.9 97 96.5 10.1 7 156.1 16.4 7 315.8 83.7 7 8753 89. 38 37.8 4. 98 97.5 10.2 8 157.1 16.5 8 816.8 88.8 8 8763 89.1 39 383 4.1 99 983 10.3 9 158.1 16.6 9 917.8 83.9 9 8773 893 40 393 43 too 993 103 160 159.1 16.7 990 318.8 83. 980 8783 893 41 403 4.3 1 1004 10.6 1 160.1 16.8 1 819.6 83.1 1 8793 89.4 49 41.8 4.4 9 101.4 10.7 3 161.1 16.9 3 8803 83.2 9 8803 893 43 £S 4.5 3 102.4 103 3 168.1 17. 3 931.8 83.3 3 881.4 803 44 4.6 4 103.4 10.9 4 163.1 17.1 4 833.8 83.4 4 888.4 89.7 45 44.8 4.7 5 104.4 11. 5 164.1 17.2 5 833.8 833 5 883.4 893 46 45.7 4.8 6 105.4 11.1 6 165.1 174 6 984.8 83.6 6 884.4 893 47 46.7 4.9 7 105.4 11.2 7 166.1 173 7 8853 83.7 7 885.4 30. 48 47.7 5. 8 107.4 11.3 8 167.1 17.6 8 886.8 833 8 886.4 30.1 49 48.7 5.1 9 108.4 11.4 9 168.1 17.7 9 887.7 83.9 9 887.4 393 50 49.7 5.9 110 109,4 113 170 169.1 173 930 888.7 84. 900 888.4 393 51 50.7 5.3 1 J10.4 11.0 1 170.1 17.9 1 889.7 84.1 8894 39.4 59 51.7 5.4 8 111.4 11.7 9 1711 ia 3 830.7 84.3 8 899.4 303 53 53.7 5.5 3 119.4 11.8 3 178.1 18.1 3 831.7 84.4 3 801.4 30.6 54 53.7 5.0 4 113.4 11.0 4 173. 18.2 4 833.7 845 4 893.4 30.7 55 54.7 5.7 5 114.4 18. 5 174. 18.3 5 833.7 84.6 5 893.4 303 58 55.7 5.9 6 1154 191 6 175. 18.4 834.7 84.7 6 804.4 303 57 56.7 0. 7 1164 13.8 7 176. 183 7 835.7 843 7 395.4 3L 58 57.7 6.1 8 U7.4 12.3 8 177. 18.6 8 836.7 843 8 896.4 3L1 59 58.7 8.9 9 118.3 18.4 9 178. 18.7 9 837.7 85. 9 897.4 313 60 53.7 83 190 1193 183 180 179. 183 840 838.7 85.1 300 898.4 313 dep. d. lat. dirt. dep. d lot dirt. dep. d. lat. dirt. dep. d.let. dirt. dep. d. let. Pittance, Departure and Difi Latitude. 0#uurt*8*o, Digitized by VjOOQIC TABLS Y. Cmuree 7°. DUU Latitude and Departure. 117 dirt. d.lat. dep. dirt. d. let. dep. dirt. d. lat. dep. dirt. d. lat. dep, dirt. d. lat. dep. 1 1. 0.1 61 60.5 7.4 iai 120.1 14.7 181 179.7 22.1 341 2393 29.4 S 9. 0.2 62 615 7.6 2 121.1 14.9 2 1803 22.2 2 240.2 293 3 3. 04 63 623 7.7 3 122.1 15. 3 181.6 22.3 3 241.2 29.6 4 4. 0.5 64 63.5 7.8 4 123.1 15.1 4 182.6 98.4 4 242.2 29.7 5 5. 0.6 65 64.5 7.9 5 124.1 153 5 183.6 295 5 243.2 293 6 6. 0.7 66 653 8. 6 125.1 15.4 6 184.6 22.7 6 244.2 30. 7 6.9 9.9 67 663 83 7 126.1 15.5 7 1856 22.8 7 2453 30.1 8 7.9 1. 68 673 8.3 8 127. 15.6 8 186.6 22.9 8 846.2 303 9 8.9 1.1 69 68.5 8.4 9 128. 15.7 9 1873 93. 9 247.1 30.3 10 9.9 1.2 70 693 83 130 199. 15.8 100 188.6 23.8 350 248.1 303 11 10.9 1.3 71 703 8.7 1 130. 16. 1 189.6 23.3 1 249.1 30.6' 19 11.9 1.5 72 713 63 9 131. 16.1 9 190.6 23.4 2 2501 30.7 13 12.9 1.6 73 72.5 8.9 3 132. 16.2 3 191.6 933 3 251.1 303 14 13.9 1.7 74 73.4 9. 4 133. 16.3 4 192.6 233 4 952.1 31. 15 14.9 1.8 75 74.4 9.1 5 134, 16.5 5 193.5 233 5 253.1 31.1 16 15.9 1.9 76 75.4 93 6 135. 16.6 6 1943 23.9 6 254.1 313 17 16.9 2.1 77 76.4 9.4 7 136. 16.7 7 195.5 '.4. 7 255.1 313 18 17.9 2.2 78 77.4 9.5 8 137. 16.8 8 1963 24.1 8 258.1 31.4 19 18.9 9.3 79 78.4 93 9 138. 16.9 9 1973 243 9 257.1 313 30 19.9 2.4 80 79.4 9.7 140 139. 17.1 300 1983 24.4 360 258.1 31.7 91 90.9 9.6 81 80.4 9.9 1 139.9 17.2 1 1993 94.5 1 259.1 313 98 91.8 9.7 82 81.4 10. 9 140.9 173 9 200.5 243 9 960. 31.9 93 92.8 9.8 83 89.4 10.1 3 141.9 17.4 3 201.5 24.7 3 261. 32.1 94 93.8 9.9 84 83.4 10.2 4 142.9 173 4 202.5 24.9 4 269. 323 99 24.8 a 85 84.4 10.4 5 143.9 17.7 5 203.5 25. 5 263. 323 96 25.8 3.2 86 85.4 105 6 144.9 17.8 6 204.5 25.1 6 264. 32.4 97 96.8 3.3 87 86.4 10.6 7 145.9 17.9 7 205.5 25.2 7 265. 323 98 978 3.4 88 87.3 10.7 8 146.9 ^47.9 18. 8 208.4 253 8 266. 32,7 99 98.8 3.5 89 883 10.8 9 183 9 207.4 253 9 267. 323 30 993 3.7 •0 89.3 11. 160 H8.9 18.3 910 208.4 25.6 370 268. 38.9 31 30.8 3.8 91 90.3 11.1 1 149.9 18.4 1 209.4 95.7 1 269. 33. 39 31.8 3,9 92 91.3 J 1.2 2 150.9 183 9 210.4 253 9 27a 33.1 33 32.8 4. 93 92.3 11.3 3 151.9 18.6 3 211.4 26. 3 271. 33.3 34 33.8 4.1 94 93.3 11.5 4 152.9 18.8 4 212.4 96.1 4 272, 33.4 35 34.7 4.3 95 94.3 11.6 5 153.8 18.9 5 213.4 963 5 273. 335 36 35.7 4.4 96 953 11.7 6 1543 19. 6 214.4 96.3 6 273.9 33.6 37 36.7 4.5 97 96.3 113 7 155.8 19.1 7 215.4 96.4 7 274.9 33.8 38 37.7 4.6 98 97.3 11.9 8 156.8 19.3 8 216.4 96.6 8 275.9 33.9 39 38.7 43 99 983 12.1 9 157.8 19.4 9 217.4 26.7 9 2763 34. 40 39.7 4.9 100 993 124 160 1583 193 330 2184 963 880 277.9 34.1 41 40.7 5. 1 100.2 12.3 I 159.8 19.6 1 219.4 26.9 I 278.9 34.9 49 41.7 5.1 2 101.2 12.4 2 160.8 19.7 9 220.3 27.1 2 879.9 34.3 43 42.7 5.2 3 102.2 12.6 3 161.8 19.9 3 2213 97.8 3 8803 34.5 44 43.7 5.4 4 103.2 12.7 4 162.8 90. 4 2223 273 4 281.9 34.6 45 44.7 53 5 1049 12.8 5 163.8 90.1 5 2233 97.4 5 282.9 34.7 46 45.7 5.6 6 1059 12.9 6 1643 903 6 2243 27.5 6 283.9 34.9 47 46.7 5.7 7 108.8 13. 7 1653 90.4 7. 225.3 97.7 7 284.9 35. 48 47.6 5.8 8 107.9 13.2 8 166.7 903 8 2963 87.8 8 385.9 35.1 49 48.6 6. 1083 133 9 167.7 20.6 9 9973 27.9 9 2863 353 50 49.6 6.1 116 1095 13.4 1T0 168.7 90.7 330 2283 28. 300 2873 35.3 51 50.6 6.9 1 110.9 133 1 169.7 90.8 1 2993 28.9 1 298.8 35.5 59 51.6 63 2 111.2 133 2 170.7 21. 2 9303 28.3 9 289.8 35.6 53 52.6 6.5 3 112.2 133 3 171.7 91.1 3 2313 28.4 3 290.8 35.7 54 53.6 6.6 4 113.2 13.9 4 172.7 913 4 2323 285 4 291.8 353 55 54.6 6.7 5 114.1 14. 5 173-7 91.3 5 233.2 28.6 5 2923 36. 56 55.6 6.8 6 115.1 14.1 6 174.7 91.4 6 234.2 28.8 6 293.8 36.1 57 56.6 0.9 7 116.1 14.3 7 175.7 21.6 7 235.2 28.9 7 294.8 363 59 57.6. 7.1 8 117.1 14.4 8 176.7 21.7 8 2363 29. 8 295.8 36.3 59 58.6 7.9 9 118.1 143 9 177.7 21.8 9 237.2 29.1 9 2983 36.4 60 59.6 73 190 119.1 143 180 178.7 21.9 240 2383 293 300 8973 36.6 dirt. dep. d. let. dirt. dep. d. lat. dirt. dep. d. lat. dirt. | dep. d. lat. dirt. dep. d. lat. Distance, Departure and DUE Latitude. Course 83°. Digitized by VjOOQIC 118 TA1L1V. Coufffte 80. Dietaflee, DUE Latitude and Departure. dlit. d.lat. de|>. dirt. d. lat. dep. dirt. d. lat. dep, dirt- d. lat. dep, dirt. d.lat. dep. 1 1. 0.1 61 60.4 85 181 1194 164 181 179.9 254 841 238.7 334 2 2. 0.3 62 61.4 86 2 120.8 17. 9 1804 254 3 239.6 33.7 3 a 0.4 63 62.4 8.8 3 1214 17.1 8 181.2 25.5 3 9406 334 4 4. 0.6 64 63.4 89 4 1228 17.3 4 1824 25.6 4 241.6 34. 5 5. 0.7 65 64.4 9. 5 123.8 17.4 5 183.2 257 5 243.6 34.1 6 5.9 04 66 65.4 92 6 124.8 174 6 184.2 259 6 943-6 344 7 6.9 1, 67 66.3 9.3 7 1254 17.7 7 185.2 26. 7 944.6 34.4 8 7.9 1.1 68 67.3 9.5 8 1268 17.8 8 186.2 364 8 9454 344 9 a9 1.3 69 68.3 9.6 9 127.7 18. 9 1872 364 9 946.6 34.7 10 9.9 1.4 70 69.3 9.7 130 1287 18.1 100 188.2 99.4 9)50 9474 344 11 10.9 1.5 71 70.3 99 1 129.7 18.2 1 189.1 96.6 1 848.6 348 12 11.9 1.7 72 71.3 10. 9 130.7 18.4 9 190.1 98.7 9 3494 33J 13 12.9 1.8 73 723 10.2 3 131.7 184 3 191.1 96.9 3 9504 35.9 14 13.9 19 74 73.3 10.3 4 132.7 18.6 4 193.1 27. 4 9514 35 3 15 14.9 9.1 75 74.3 10.4 5 133.7 188 5 193.1 37.1 5 252.5 3S4 Id 15.8 9.2 76 763 10.6 6 134.7 18.9 6 1941 37.3 6 253.5 358 17 164 2.4 77 763 10.7 7 135.7 19.1 7 195.1 974 7 2544 3S4 18 17.8 9.5 78 77.2 10.9 8 136.7 19.9 8 196.1 876 8 3554 354 19 184 2.6 79 784 11. 9 137.7 194 9 197.1 27.7 9 3564 36. 30 19.8 2.8 80 79.9 11.1 140 139.6 195 aoo 198.1 974 800 3574 364 31 90.8 2.9 81 802 11.3 1 139.6 19.6 i 199. 28. 1 358.5 384 22 21.8 3.1 82 81.2 11.4 2 140.6 19.8 9 300. 281 8 2594 364 23 224 3.2 63 82.2 11.6 3 14H6 19.9 3 301. 284 3 280.4 36,6 24 23.8 3.3 84 839 117 4 142.6 90. 4 309. 88.4 4 261.4 367 25 24.7 3.5 85 844 114 5 1496 90.2 5 903. 28.5 5 962.4 364 20 25.7 3.6 86 854 li. 6 144.6 20.3 6 304. 88.7 6 963.4 37. 27 26.7 3.8 87 864 121 7 145.6 20.5 7 305. 284 7 9644 374 28 27.7 &9 88 87.1 184 8 146.6 20.6 8 son. 284 8 965.4 374 29 28,7 4. 89 88.1 12.4 9 1475 90.7 9 307. 29.1 9 9664 374 30 29.7 4.9 00 891 12.5 150 148.5 20.9 810 908. 994 870 967.4 374 31 30.7 4.3 91 90.1 12.7 1 149.5 21. 1 308.9 99.4 1 968.4 37.7 32 31.7 44 92 911 124 2 150.5 21.9 2 209.9 994 9 369.4 374 33 32.7 4.6 93 99.1 12.9 3 151.5 213 3 910.9 99.6 3 9704 38. 34 33.7 4.7 94 931 13.1 4 152.5 214 4 911.9 298 4 9714 38.1 35 34.6 49 95 94.1 134 5 153.5 21.6 5 912.9 894 5 273.3 384 36 356 5. 98 95.1 13.4 6 154.5 21.7 6 913.9 30.1 6 973.3 38.4 37 366 5.1 97 06.1 13.5 7 155.5 21.9 7 914.9 304 7 9744 384 38 37.6 5.3 98 97. 13.6 8 156.5 22. 8 9159 304 8 9754 38.7 39 386 5.4 99 98. 13.8 9 157.5 23.1 9 916.8 304 9 9764 384 40 39.6 5.6 100 99. 13.9 160 158.4 29.3 880 9179 304 880 3774 39. 41 406 5.7 1 100. 14.1 1 159.4 99.4 1 9184 304 1 278.3 39.1 49 416 5.8 2 101. 144 2 160.4 224 9 3198 30.9 3 9794 394 43 496 6. 3 103. 14.3 3 161.4 22.7 3 3304 31. 3 9809 39.4 44 43.6 6.1 4 103. 14.5 4 162.4 218 4 3914 31.9 4 981.9 394 45 44.6 6.3 5 104. 14.6 5 163.4 23. 5 393.8 31.3 5 9822 394 46 455 6.4 6 105 144 6 164.4 23.1 6 9934 314 6 9834 394 47 404 6.5 7 106. 14.9 7 165.4 234 7 994.8 31.6 7 3848 394 48 475 6.7 8 1069 15. 8 166.4 23.4 8 995.8 317 8 3858 40.1 49 485 6.8 9 107.9 154 9 167.4 234 9 9964 314 9 3864 404 50 49.5 7. 110 1089 15.3 170 168.3 23.7 880 9974 32 800 9874 40.4 51 50.5 7.1 1 109.9 15.4 1 1694 938 1 3988 32.1 1 9883 404 52 515 7.2 2 110.9 156 9 170.3 23.9 3 399.7 39.3 9 389.9 40.6 53 52.5 7.4 3 J 11.9 15.7 3 17J4 94.1 3 9397 39.4 3 990.1 404 54 53.5 7.5 4 1139 15.9 4 172.3 24.2 4 331.7 33.6 4 891.1 404 55 545 7.7 5 1139 16. 5 173.3 94.4 6 339.7 387 5 999.1 41.1 58 55.5 7.8 6 114.9 16.1 6 174.3 245 6 9337 324 6 993.1 414 57 544 7.9 7 115.9 16.3 7 175 3 24.6 7 334.7 33. 7 994.1 414 58 574 ai 8 1169 164 8 176.3 94.8 8 9357 331 8 9951 418 59 584 8.2 9 117.8 16.6 9 177 3 94.9 9 936.7 334 9 9961 41.0 60 59.4 84 190 1184 16.7 180 1789 95.1 940 937.7 334 300 897.1 414 dirt. dep. d. lat. dirt. dep. d. lat . dirt. dep. d. let dirt. dep. d. lat. dirt. dep. d. let. Dietaaee, Departan and Diff Latitude. Ce*a**e 88*. Digitized by VjOOQIC TABUS T. Cemrea 90. Dietaace, Diff Latitude mad Departure. 119 diet. 1 " d. lat. dep. dirt. d.lat. dep. dirt. d. lat. dep. dirt. d. lat. dep. dirt. d. lat. dep. 1. 0.2 61 00.9 94 191 1194 18.9 181 178.8 28.3 941 238. 37.7 9 9. 0.3 69 61.9 9.7 9 1204 19.1 9 179.8 284 3 239. 37.9 3 3. 0.5 63 69.9 9.9 3 1214 19.2 3 180.7 28.6 3 240. 38. 4 4. 0.6 64 63Ji 10. 4 1225 19.4 4 181.7 284 4 241. 38.2 5 4.9 0.8 65 64.2 10.3 5 1334 19.6 5 182.7 38.9 5 242. 3S4 6 5.9 0.9 66 65.9 104 6 134.4 19.7 6 183.7 39.1 6 243. 38.5 7 6.9 1.1 67 66.9 104 7 125.4 19.9 7 184.7 29.3 7 344. 38.6 8 7.9 14 68 67.3 10.6 8 126.4 30. 8 185.7 29.4 8 244.9 38.8 8.9 1.4 69 684 10.8 9 127.4 20.2 9 186.7 29.6 9 245.9 39. 10 9.9 1.6 70 69.1 11. 130 138.4 20.3 190 187.7 99.7 950 246.9 39.1 11 10.9 1.7 71 70.1 11.1 1 129.4 204 1 188.8 294 1 247.9 39.3 12 11.9 19 72 71.1 11.3 9 130.4 20.6 9 189.6 30. 3 24.19 39.4 13 12.8 9. 73 72.1 11.4 3 131.4 20.8 3 100.6 304 3 249.9 39.6 14 i3.8 22 74 73.1 11.6 4 132.4 21. 4 191.6 304 4 350.9 39.7 15 14.8 9.3 75 74.1 11.7 5 1334 21.1 5 192.6 304 5 251.9 39.9 16 15.8 95 76 75.1 11.9 6 1344 213 6 193.6 30.7 6 252.8 40. 17 104 9.7 77 76.1 12. 7 1354 21.4 7 194.6 304 7 2534 40.3 19 178 9.8 78 77. 12.2 8 1364 21.6 8 105.6 31. 8 354.8 40.4 19 184 3. 79 '7a 12.4 9 1374 21.7 9 1964 31.1 9 355.8 40.5 SO 19.7 3.1 80 79. 194 140 1384 21.9 900 1974 314 960 3564 40.7 91 90.7 3.3 81 80. 19.7 1 139.3 92.1 1 1984 31.4 1 3574 40.8 S3 21.7 3.4 82 81. 12.8 9 140.3 92,2 2 199.5 31.0 2 358.8 41. S3 22.7 3.6 83 82. 13. 3 141.9 29.4 3 200.5 314 3 359.8 41.1 S4 23.7 3.8 84 83. 13.1 4 142.9 994 4 2014 31.9 4 360.7 41.3 35 24.7 3.9 85 84. 13.3 5 143.2 99.7 5 2024 32.1 5 961.7 414 96 25.7 4.1 86 84.9 134 6 144.2 93.8 6 2034 334 6 263.7 41.6 87 26.7 4.9 87 85.9 13.6 7 145.2 23. 7 2044 32.4 7 363.7 41.8 38 27.6 4.4 88 86.9 13.8 8 146.2 93.9 8 205.4 324 8 3647 41.9 98 28.6 44 89 87.9 13L9 9 147.2 934 9 206.4 32.7 9 365.7 43.1 30 99.6 4.7 00 88.9 14.1 150 148.9 934 910 907.4 39.9 970 966.7 494 31 39.6 4.8 91 80.9 14.2 1 149.1 23.6 ] 908.4 33. 1 367.7 43.4 38 31.6 5. 92 90.9 14.4 9 150.1 934 9 9094 334 3 36a7 43.6 33 39.6 5.2 93 91.9 144 3 151.1 93.9 a 910.4 334 3 369.6 43.7 34 33.6 5.3 94 92.8 147 4 152.1 94.1 4 211.4 334 4 2704 42.8 35 34.6 54 ft 93.8 14.9 5 153.1 94.2 5 212.4 33.6 5 271.6 43. 39 35.5 5.6 96 94.8 15. 6 154.1 94.4 6 213.3 33.8 6 272.6 434 37 364 5.8 97 95.8 15.2 7 155.1 94.6 7 214.3 33.9 7 273.6 43.3 38 374 5.9 98 98.8 15.3 8 156.1 94.7 8 215.3 34.1 8 2746 434 38 384 6.1 99 97.8 154 9 157. 94.9 9 2184 344 9 275.6 43.6 40 394 6.3 100 984 154 160 158. 35. . MO 217.3 344 980 276.6 434 41 404 6.4 1 99.8 15.8 I 159. 35^ 1 318.3 34.6 1 2774 44. 49 415 6.6 9 100.7 16. 9 160. 35.3 3 319.3 34.7 2 278.5 441 43 494 6.7 3 101.7 10.1 3 161. 954 3 390.3 34.9 3 279.5 444 44 43.5 6.9 4 102.7 16.3 4 169. 95.7 4 221.2 35. 4 2E0.5 44.4 45 44.4 7. 5 103.7 16.4 5 163. 95.8 5 832.2 35.2 5 281.5 44.6 46 45.4 7.9 6 104.7 16.6 6 164. 96. 6 223.2 35.4 6 382.5 44.7 47 46.4 7.4 7 105.7 16.7 7 164.9 96.1 7 924.2 35.5 7 283.5 44.9 48 47.4 74 8 106.7 16.9 8 165.9 96.3 8 9354 35.7 8 284.5 45.1 49 4a4 7.7 9 107.7 17.1 9 166.9 96.4 9 9964 35.8 9 285.4 454 50 49.4 7.8 110 108.6 17.9 170 1674 96.6 9330 9374 36. 900 986.4 45.4 51 50.4 8. 1 169.6 17.4 1 168.9 96.8 1 9384 36.1 1 287.4 454 59 51.4 ai 9 na6 174 9 169.9 96.9 9 939.1 363 9 268.4 45.7 53 52.3 84 3 111.6 17.7 3 170.9 97.1 3 930.1 36.4 3 389.4 454 54 53.3 8.4 4 112.6 17.8 4 171.9 27.2 4 931,1 36.6 4 200.4 46. 55 54.3 8.6 5 113.6 18. 5 172.8 97.4 5 933.1 36.8 5 391.4 46.1 56 55.3 8.8 6 1*4.6 18.1 6 1734 974 6 933.1 36.9 6 293.4 46.3 57 56.3 8.9 7 115.6 183 7 174.8 97.7 7 934.1 37.1 7 393.3 46.5 58 57.3 9.1 8 116.5 184 8 175.8 97.8 8 335.1 373 8 394.3 46.6 59 58.3 9.2 9 1174 18.6 9 176.8 98. 9 936.1 37.4 9 395.3 46.8 60 59 4 9.4 ISO 1184 18.8 180 177.8 38.9 940 937. 374 300 9964 464 *•: |dep. d.lat. dift dep. d. lat. dirt. dep. d .lat. dirt. dep. d. lat. dirt. |dep. d. let. Dartanee Departure end Diff Latitude. >0*o. Digitized by VjOOQIC 120 TABLE V. Cou*se 10°. Distance, Diff Latitude and Departure. dist. d. lat. dep. dist. d. lat. dep. dist. d. lat. dep. dist. d. lat. dep. dist. d. lat. depi 1 1. 02 61 60.1 10.6 191 119.2 21. 181 178.3 31.4 941 237.3 415 I 2 2. 0.3 62 61.1 10.8 2 120.1 21.2 2 1795 31.6 2 238.3 43. 3 3. 0.5 63 62. 10.9 3 121.1 214 3 180.9 31.8 3 239.3 425 4 3.9 0.7 64 63. 11.1 4 122.1 21.5 4 161.2 32. 4 2403 42.4 5 4.9 0.9 65 64. 11.3 5 123.1 21.7 5 1825 32.1 5 2415 425 6 5.9 1. 66 65. 11.5 6 124.1 21.9 6 163.2 32.3 6 2425 42.7 7 6.9 1.2 67 66. 11.6 7 1251 22.1 7 184.2 32.5 7 2435 42.9 8 7.9 14 06 67. 11.8 8 126.1 22.2 8 185.1 32.6 8 2445 431 9 8.9 1.6 69 68. 12. 9 127. 22.4 9 186.1 32.8 9 2455 435 10 9.8 1.7 70 68.9 12.2 130 128. 22.6 100 187.1 33. 950 2465 434 11 10.8 1.9 71 69.9 12.3 1 129. 22.7 1 188.1 33.2 1 2475 43.6 IS 11.8 2.1 72 70.9 12.5 2 130. 22.9 2 189.1 33.3 2 2485 435 13 12.8 2.3 73 71.9 12.7 3 131. 23.1 3 190.1 33.5 3 2495 43.9 14 13.8 2.4 74 72.9 12.8 4 132. 23.3 4 191.1 33.7 4 250.1 44.1 15 14.8 2.6 75 73.9 13. 5 132.9 23.4 5 192. 33.9 5 25L1 445 16 15.7 2.8 76 74.8 135 6 133.9 23.6 6 193. 34. 252.1 445 17 16.7 3. 77 75.8 13.4 7 134.9 23.8 7 194. 345 7 253.1 445 18 17.7 3.1 78 76.8 13.5 8 135.9 24. 8 195. 34.4 8 254.1 445 19 18.7 3.3 79 77.8 13.7 9 136.9 24.1 9 198. * 34.6 9 255.1 45. ao 19.7 3.5 80 78.8 13.9 140 137.9 24.3 900 197. 34.7 960 256.1 45.1 21 20.7 &6 81 79.8 14.1 1 136.9 24.5 i 1979 349 1 257. 455 22 21.7 3.8 83 80.8 14.2 2 130.8 24.7 2 198.9 35.1 2 258. 455 23 22.6 4. 83 81.7 14.4 3 140.8 24.8 3 199:9 35.3 3 259. 45.7 24 23.6 4.2 84 82.7 14.6 4 141.8 25. 4 200.9 35.4 4 260. 455 25 24.6 4.3 85 83.7 14.8 5 142.8 25.2 5 201.9 35.6 5 261. 46. 26 25.6 4.5 86 84.7 14.9 6 143.8 25.4 6 202.9 35.8 6 262. 465 27 26.6 4.7 87 85.7 15.1 7 144.8 25.5 7 2035 35.9 7 262.9 46.4 28 27.6 4.9 88 867 15.3 8 145.8 257 8 204.8 36.1 8 2635 465 29 28.5 5. 89 87.6 15.5 9 146.7 25.9 9 205.8 36.3 9 2645 46.7 30 29.5 5.2 00 88.6 15.6 150 147.7 26. 810 206.8 36.5 970 2655 465 31 30.5 5.4 91 89.6 15.8 1 148.7 262 1 207.8 36.6 1 266.9 47.1 32 31.5 5.6 92 90.6 16. 2 149.7 26.4 2 208.8 36.8 S 2675 475 33 32.5 5.7 93 91.6 16.1 3 150.7 26.6 3 209.8 37. 3 268.9 47.4 34 33.5 5.9 94 92.6 16.3 4 151.7 26.7 4 210.7 375 4 369.8 47.6 35 34.5 6.1 95 93.6 16.5 5 152.6 26.9 5 211.7 37.3 5 2705 475 36 35.4 63 96 94.5 16.7 6 153.6 27.1 6 212.7 37.5 6 271.8 475 37 36.4 6.4 97 95.5 16.8 7 154.6 273 7 213.7 37.7 7 272.8 48.1 38 37.4 6.6 98 96.5 17. 8 155.6 27.4 8 214.7 37.9 8 2735 48.3 39 38.4 6.8 99 97.5 17.2 9 156.6 27.6 9 215.7 38. 9 374.8 48.4 40 39.4 6.9 100 98.5 17.4 160 157.6 27.8 990 216.7 38.2 980 375.7 48.6 41 40.4 7.1 1 99.5 17.5 1 158.6 2a i 217.6 38.4 1 378.7 485 42 41.4 7.3 2 100.5 17.7 2 159.5 28.1 8 218.6 36.5 3 377.7 49. 43 42.3 7.5 3 1014 17.9 3 160.5 28.3 3 219.6 38.7 3 278.7 49.1 44 43.3 7.6 4 102.4 18.1 4 J61.5 28.5 4 220.6 38.9 4 379.7 495 45 44.3 7-8 5 103.4 18.2 5 162.5 28.7 5 221.6 39.1 5 380.7 495 46 45.3 8. 6 104.4 18.4 6 163.5 28.8 6 222.6 39.2 6 381.7 49.7 47 46.3 8.2 7 105.4 18.6 7 164.5 29. 7 223.6 39.4 7 382.6 495 48 47.3 8.3 8 106.4 18.8 8 165.4 29.2 8 224.5 39.6 8 983.6 50. 49 48.3 8.5 9 107.3 16.9 9 166.4 29.3 9 225.5 39.8 9 384.6 503 30 49.2 8.7 110 108.3 19.1 170 167.4 29.5 930 226.5 39.9 990 385.6 50.4 51 50.2 8.9 1 109.3 19.3 1 168.4 29.7 1 227.5 40.1 1 986.6 505 52 51.2 9. 2 110.3 19.4 2 169.4 29.9 2 228,5 40.3 2 387.6 50.7 53 52.2 9.2 3 111.3 19.6 3 170.4 30. 3 229.5 40.5 3 3885 50,9 54 53.2 9.4 4 112 3 19.8 4 171.4 30.2 4 230.4 40.6 4 889.5 51.1 55 54.2 9.6 5 113.3 20. 5 172.3 30.4 5 231.4 40.8 5 8905 515 56 55.1 9.7 6 114.2 20.1 6 173.3 30.6 232.4 41. 6 291.5 51.4 57 56.1 9.9 7 115.2 20.3 7 174.3 30.7 7 233.4 415 7 8925 51.6 58 57.1 10.1 8 1165 20.5 8 175.3 30.9 8 234.4 41.3 8 8935 51.7 59 58.1 10.2 9 117.2 20.7 9 176.3 31.1 9 235.4 41.5 9 894.5 51.9 60 59.1 10.4 120 118.2 20.6 180 177.3 31.3 240 236.4 41.7 300 395.4 52.1 dist. dep. d. lat dist. dep. 1. lat. dirt. dep. 1 lat. dist. dep. d. lat. dist i dep. d. tat. Distance, Departure and Diff Latitude. Cowrie 80°. Digitized by VjOOQIC 121 Dirtanca, IMC Latitude and Daaartoia. dirt. 743 7 9903 94.7 38 35.7 13. 98 93.1 333 8 1483 54. 8 at* 74.6 8 9613 95.1 39 363 13.3 99 93. 33.9 9 149.4 54.4 9 SB T43 9 9893 95.4 40 37.6 13.7 100 94. 343 160 150.4 54.7 990 906,7 753 960 983.1 953 41 383 14. 1 94.9 343 1 1513 55.1 i 907.7 75.6 1 364.1 96J 49 393 14.4 9 95.8 34.9 9 153.3 55.4 8 306.6 753 S 365. 96.4 43 40.4 14.7 3 903 35.3 3 1533 55.7 3 3093 763 3 9653 983 44 413 15. 4 97.7 35.6 4 154.1 58.1 4 310.5 76.6 4 9083 97.1 45 493 15.4 5 98.7 35.9 5 155. 56.4 5 311.4 77. 5 9873 973 46 43.9 15.7 6 993 363 156. 563 6 813.4 773 6 9683 973 47 443 10.1 7 1003 36.6 7 156.9 57.1 7 813.3 77.6 7 969.7 983 S 45.1 10.4 8 1013 363 8 157.9 573 8 3143 78. 8 8703 983 46. 16.8 9 103.4 37.3 9 1583 573 9 3153 783 9 8713 983 80 47. 17.1 110 103.4 37.6 170 159.7 58.1 930 316.1 78.7 900 3793 993 51 47.9 17.4 1 1043 38. 1 160.7 58.5 1 917.1 79. 1 9733 993 59 48.9 173 9 1053 38.3 9 1613 583 9 318. 79.3 9 374.4 993 53 49.8 l&l 3 1063 38.6 3 109.6 59.9 3 3183 79.7 3 9753 1093 54 50.7 183 4 197.1 39. 4 1633 593 4 9193 80. 4 976.3 1093 55 51.7 163 5 108.1 39.3 5 164.4 593 5 990.8 80.4 5 9773 1093 56 59.6 103 6 109. 39.7 6 1654 60.9 6 991.8 80.7 6 378.1 1013 57 53.6 193 7, 1093 40. 7 1063 60.5 7 993.7 81.1 7 9794 1013 58 543 198 8' 1103 40.4 8 1673 60.9 8 9333 81.4 8 980. 101.9 59 514 90.9 9 1113 40.7 9 1683 613 9 9343 81.7 9 981. 1033 00 diit. 56.4 903 190 119.8 41. 180 109.1 616 940 3353 89.1 300 9813 1093 dej». d. lat. diet. dep. d. lak diat. dep d .lat. diet. dep d.lal. diat. dep. diet. Pittance, Departure and Diff Latitude. Courae70°. Digitized by VjOOQIC TABLET. C a* u r — 01°. Diff Latitude and Departure. 131 dirt. d.tat. dep. dirt. d.tat. dep. dirt. 'd. tat. dep, dirt. d-let. dep, dirt. d.tat. dep,l 1 04 0.4 01 56.9 914 1*1 na 434 181 169. 644 041 995. 88.4 9 1.9 0.7 69 574 934 3 113.9 43.7 9 169.9 654 9 9954 86.7 3 94 1.1 63 584 934 3 114.8 44.1 3 1704 65.6 3 9984 87.1 4 3.7 1.4 64 59.7 99.9 4 115.8 444 4 171.8 65.9 4 997.8 87.4 5 4.7 1 14 65 60.7 934 5 116.7 444 5 179.7 66.3 5 998.7 874 6 5.6 94 66 61.6 93.7 6 1174 454 6 173.6 66.7 6 999.7 884 7 64 94 67 694 94. 7 1184 454 7 174.6 67. 7 9304 884 6 74 9.9 68 634 944 8 1194 454 8 1754 674 8 9314 884 9 84 34 69 64.4 94.7 9 1904 464 9 176.4 67.7 9 9334 894 10 9.3 3.6 TO 65.4 95.1 130 1914 46.6 100 1774 68.1 000 333.4 894 11 10.3 34 71 664 95.4 1 1994 46.9 1 1784 684 1 9344 90. 18 114 4.3 79 674 95.8 3 1934 474 9 1794 684 8 9354 904 13 19.1 4.7 73 684 964 3 1944 47.7 3 1804 094 3 9964 90.7 14 13.1 5. 74 69.1 98.5 4 195.1 48. 4 181.1 694 4 937.1 91. 15 14. 5.4 75 70. 96.9 5 198. 484 5 189. 09.9 5 238.1 914 16 144 5.7 76 71. 974 6 1*7. 48.7 6 183. 704 6 939. 91.7 17 159 6.1 77 71.9 974 7 197.9 49.1 7 183.9 704 7 9394 99.1 18 164 64 78 794 98. 8 198.8 494 8 1844 71. 8 940.9 994 19 17.7 64 79 734 984 9 1994 494 9 1854 714 9 9414 99.8 00 1&7 74 80 74.7 98.7 140 130.7 504 000 186.7 71.7 OOO 849.7 934 91 194 74 81 75.6 99. 1 131.6 504 1 187.6 79. 1 943.7 934 93 904 74 89 76.6 994 3 139.6 50.9 9 188.6 794 9 944.6 934 93 914 84 83 774 39.7 3 1334 514 3 189.5 79.7 3 3454 944 94 99.4 84 84 78.4 30.1 4 1344 514 4 1904 73.1 4 9464 944 95 934 9. 85 794 304 5 135.4 59. 5 1914 734 5 8474 95. 96 944 94 86 80.3 304 6 1364 59.3 6 1994 73.8 6 9484 954 97 954 9.7 87 814 314 7 1374 59.7 7 1934 744 7 9494 95.7 98 96.1 10. 88 894 314 8 1384 53. 8 1944 744 8 9509 96. 99 97a 10.4 89 83.1 314 9 139.1 534 9 195.1 744 9 951.1 964 SO 9* 104 00 84. 394 160 140. 534 010 196.1 75.3 090 958.1 964 31 98.9 11.1 91 85. 39.6 1 141. 54.1 1 197. 75.6 1 95a 97.1 39 994 114 93 85.9 33. 9 1414 544 9 197.9 76. 9 9534 974 33 304 114 93 86.8 33.3 3 1494 54.8 3 198.9 764 3 954.9 974 34 31.7 18.9 94 874 33.7 4 1434 554 4 1994 76.7 4 855.8 984 35 39.7 194 95 88.7 34. 5 144.7 554 5 900.7 77. 5 956.7 98.6 38 334 19.9 98 894 344 6 145.6 554 6 901.7 77.4 6 857.7 984 37 344 134 97 904 344 7 1464 564 7 903.6 774 7 9584 994 SB 354 136 96 & 35.1 8 1474 56.6 8 9034 £i 8 9594 994 39 364 14. 99 364 9 1484 57. 9 9044 9 9604 100. 40 374 144 100 93.4 354 100 149.4 574 OOO 9054 784 080 9614 1004 41 394 14.7 1 94.3 384 1 1504 57.7 1 9064 79.3 I 9694 100.7 49 394 15.1 9 954 36.6 9 1514 58.1 9 9074 79.6 9 963.3 101.1 43 40.1 154 3 964 384 3 1594 584 3 908.9 79.9 3 9644 101.4 44 41.1 154 4 97.1 374 4 153.1 58.8 4 909.1 80.3 4 965.1 1014 45 49. 16.1 5 Oft 374 5 154. 59.1 5 910.1 806 5 966.1 109.1 46 49.9 164 6 99. 38. 6 155. 59.5 6 911. 81. 6 987. 1094 47 434 16.8 7 99.9 384 7 1554 594 7 911.9 814 7 9074 1094 48 444 174 8 1004 38.7 8 156.8 604 8 9194 81.7 8 9684 1034 49 45.7 17.6 9 1014 39.1 9 1574 60.6 9 813.8 83.1 9 9094 103.6 50 46.7 17.9 110 109.7 394 170 158.7 694 000 314.7 834 000 970.7 1034 51 47.6 183 1 103.6 39.8 1 159.6 614 1 915.7 894 1 971.7 104.3 59 484 18.6 9 104.6 40.1 9 160.6 61.6 3 916.6 83.1 9 9794 1044 53 494 19. 3 1054 404 3 1614 69. 3 9174 834 3 9734 105. 54 50.4 19.4 4 106.4 40.9 4 169.4 694 4 9184 63.9 4 9744 1054 55 514 19.7 5 107.4 414 5 1634 69.7 5 9194 844 5 9754 105.7 56 594 90.1 6 1084 414 6 1644 63.1 6 9904 846 6 9764 106.1 57 534 904 7 1094 41.9 7 1654 634 7 991.3 844 7 9774 1064 58 54.1 904 8 1104 49.3 8 1664 634 8 9334 854 8 9784 1064 59 56.1 91.1 9 111.1 494 9 167.1 64.1 9 993.1 85.6 9 879.1 1074 69 56. 914 190 119. 43. 180 168. 644 940 994.1 86. 300 980.1 1074 JdUt. dep. d. kit. (dirt. Idep. d. tat. dirt. 1 dep. d.tat. dirt. dep, d-tat. dirt. dep. d. tat. Mrtaaoe, Departure end Dift Latitude. Digitized by VjOOQIC 132 TAB1E T. DMilM, DUE Latitat* and Departure. dirt. d. lat. dep. dirt. d. tat dep. dirt d.lat. dap. dirt. d. lat. dep. dirt. (Llat. de*. 1 0.9 04 61 56.6 889 15*1 1135 454 181 1675 675 941 9834 905 S 1.9 0.7 69 574 83.8 3 113.1 45.7 9 168.7 685 8 884.4 89.7 3 88 1.1 63 58.4 83.6 9 114. 46.1 3 169.7 686 3 3855 91. 4 3.7 1.5 64 59.3 84. 4 115. 465 4 1704 085 4 8895 915 5 4.6 1.9 65 00.3 845 5 115.9 48.8 5 1715 69.3 5 8875 914 6 5.6 8.3 69 61.3 84.7 6 1165 47.8 6 1794 69.7 6 398.1 985 7 6.5 86 67 681 85.1 7 1175 47.6 7 173,4 70.1 7 389. 885 8 7.4 3. 68 63. 854 8 118.7 47.9 8 174.3 70.4 6 8894 985 ft 85 3.4 69 04. 955 9 1194 48.3 9 175.8 105 9 3395 835 10 9.3 9.7 70 64.9 965 130 1305 48.7 190 1765 715 990 9915 9X7 11 195 4.1 71 65.8 86.6 1 1314 49.1 1 177.1 715 1 9987 94. IS 11.1 45 73 664 97. 3 1384 49.4 3 13fc 715 8 933.7 94,4 13 181 4.9 73 67.7 87.3 3 133.3 495 3 178.9 78.3 3 334.6 945 14 13. 5.3 74 68.6 87.7 4 134.8 50.8 4 1795 787 4 335.5 6S5 15 13.9 5.6 75 694 88.1 5 185.8 50.6 5 180.8 73. 5 8384 965 16 14.8 6. 76 704 38.5 6 185.1 50.9 6 181.7 73.4 937.4 96.9 17 15.8 6.4 77 71.4 38.3 7 137. 51.3 7 1887 735 7 3385 965 18 16.7 6.7 78 73.3 9J.3 8 138. 51.7 8 1834 74.3 8 3395 965 19 17.6 7.1 79 735 39.6 9 138.9 58.1 9 1844 74.5 9 340.1 97. 90 18.5 74 80 743 39. 140 1895 58.4 8)00 185.4 74.9 960 341.1 975 31 194 7.9 81 75.1 30.3 1 130.7 588 1 189.4 75.3 1 848 974 S3 90.4 8.3 83 76. 39.7 9 131.7 583 9 1873 75.7 9 8435 98.1 83 91.3 8.6 83 77. 311 3 139.6 53.6 9 1885 70. 3 8435 965 84 88.3 9. 84 77.9 314 4 1334 53.9 4 169.1 76.4 4 3445 965 85 835 9.4 85 78.8 31.8 5 134.4 54.3 5 190.1 765 5 345.7 965 86 84.1 9.7 86 79.7 39.3 135.4 54.7 6 191. 775 346.6 995 87 85. 101 87 80.7 386 7 1365 55.1 7 191.9 775 7 347.6 109, 83 86. 104 88 81.6 33. 8 137.3 55.4 8 1989 77.9 8 3485 109.4 89 88.9 10.9 89 885 33.3 9 1385 555 9 193.8 783 9 349.4 106.8 30 97.8 11.3 00 89.4 33.7 ISO 139.1 565 910 194.7 787 970 8595 101.1 31 38.7 11.6 91 84.4 34.1 1 140. 56.6 1 195.6 79. 1 3515 1015 33 89.7 18. 93 85.3 345 3 140.9 56.9 3 196.6 79.4 9 8535 101.9 33 30.6 184 93 86.9 345 3 141.9 573 3 197.5 795 3 353.1 1083 34 31.5 187 94 875 355 4 1485 57.7 4 198.4 895 4 854. 1086 35 33.5 13.1 95 88.1 35.6 5 143.7 58.1 5 199.3 694 5 355. 108 36 33.4 185 96 89. 36. 6 144.6 58.4 6 3094 889 6 355.9 1084 37 343 19.9 97 89.9 36.3 7 1455 588 7 8015 815 7 3594 1088 38 35.3 14.3 98 90.9 36.7 8 1465 59.3 6 9081 81.7 8 8574 104.1 39 364 14.6 99 91.8 37.1 9 147.4 59.6 9 35*1 88 9 8587 1045 40 97.1 15. 1O0 987 374 169 1485 59.9 990 994. 89.4 960 8994 104.6 41 38. 15.4 1 93.6 374 1 1495 69.3 1 904.9 888 1 8994 1055 48 38.8 15.7 3 94.6 385 3 150.3 60.7 8 8055 883 9 9614 1055 43 39.9 16.1 3 954 386 3 151.1 61.1 3 306.8 835 3 309.4 109 44 40.8 164 4 96.4 39. 4 1581 61.4 4 307.7 889 4 363.3 1095 45 41.7 16.9 5 97.4 39.3 5 153. 01.8 5 308.6 84.3 5 864.3 1095 46 487 17.3 6 98.3 39.7 153.9 083 6 3094 84.7 3655 107.1 47 43.6 17.6 7 99.8 40.1 7 154.8 086 7 9104 85. 7 869.1 1075 48 444 18 8 109.1 404 8 155.8 089 8 311.4 85.4 8 867. 1075 49 45.4 184 9 101.1 405 9 156.7 63.3 9 8185 85.8 9 908 1085 56 464 187 110 168. 415 170 1575 687 8330 8185 865 990 8685 106.0 51 47.3 19.1 1 1089 41.6 1 1584 64.1 1 914.9 865 ,1 9894 109. 58 49.9 194 9 1035 48 8 1594 644 9 815.1 689 9 876.7 109.4 53 49.1 19.9 3 1045 48.3 3 100.4 64.8 3 318 873 3 971.7 1095 54 50.1 89.3 4 105.7 487 4 1013 655 4 317. 87.7 4 9786 116.1 55 5L 89.6 5 1065 481 5 1085 65.6 5 3174 88 5 8784 1195 56 91.9 81. 6 1074 434 6 1095 65.9 6 8185 884 874-4 1165 57 588 31.4 7 1084 43.8 7 104.1 66.3 7 819.7 895 7 37M 1115 58 535 81.7 8 109.4 445 8 105. 68.7 6 889.7 895 8 8995 1115 59 54.7 99.J 9 1104 44.6 9 106. 07.1 9 9815 895 9 8775 118 69 55,6 894 189 111.3 45. 189 109.9 074 840 3884 895 390 3785 118.4 dirt. <»•*.- dlat. dirt. dep. d. lat. dirt. dep, d.lat. dirt. dep. d. lat. dirt. **. 4. lot 680. Digitized by VjOOQIC TABU T« C ga u r a a MO DiC Latitat aadDepartaie. 138 dirt. d.lat dep dUt d.lat. dep. dirt. d.lat. dtp. dirt. d. tat. dtp. dirt. d.lat. dep. 1 0.9 9.4 61 5641 933 19)1 111.4 4741 181 166.6 70,7 941 9314) 94.9 9 1.8 0.8 69 57.1 9441 9 119.3 47.7 9 1674$ 71.1 9 9324) 94.6 3 9.8 1.8 63 58. 94.6 3 11341 48.1 3 1684$ 714$ ' 3 923.7 94.9 4 3.7 1.6 64 58.9 95. 4 114.1 48.5 4 109.4 il.9 4 294.6 95.3 J 4.8 8. 65 594) 95.4 5 115.1 .484) 5 17041 794) 5 225.5 95.7 • 5.5 9.3 66 6041 954) 6 116. 49.9 6 171.9 79.7 6 2264 96.1 7 6.4 9.7 67 61.7 96.9 7 116.9 49.6 7 179.1 73.1 7 2274 96.5 8 7.4 3.1 68 69.6 96.6 8 117.8 50. 8 173.1 734$ 8 298.3 96.9 9 84) 34$ 09 63L5 97. 9 118.7 50.4 9 174. 73.8 9 2994) 97.3 10 93 3.9 7© 64.4 974 130 119.7 504) 100 174.9 74.8 9S0 939.1 97.7 11 10.1 4.3 71 65.4 97.7 1 130.6 51.3 1 1754) 74.6 1 931. 98.1 13 11. 4.7 79 •641 98.1 9 181.5 51.6 9 176.7 75. 9 939. 984$ 13 19. 5.1 73 6741 9&5 3 1394 59. 3 177.7 75.4 3 933.9 98.9 14 13.9 54$ 74 •8.1 98.9 4 193.3 59.4 4 1784) 75.8 4 933.8 99.9 15 134) 5.9 75 •9. 9941 5 19441 52.7 5 1794$ 76.9 5 834.7 99.6 16 14.7 6.3 76 70. 99.7 6 195.3 53.1 6 180.4 76.6 6 935.6 100. 17 15.6 6.6 77 7041 30.1 7 196.1 53.5 7 1814) 77. 7 938.6 1004 18 16.6 7. 78 714) 30.5 8 197. 53.9 8 1894) 77.4 8 9374$ 100.8 19 174$ 74 79 78.7 304) 9 198. 54.3 9 1834) 774) 9 938.4 1014) 90 18.4 7.8 80 73.6 3141 140 1984) 54.7 900 184.1 78.1 960 9394) 1014) 91 193 8.8 81 74.6 314) 1 1994) 55.1 1 185. 784$ 1 9404) 109. 98 90.3 &6 89 7541 34. 9 130.7 55.5 9 185.9 78.9 8 941.9 1094 93 91.9 9. 83 76.4 39.4 3 131.6 55.9 3 W6.9 79.3 3 949.1 1094) 94 99.1 9.4 84 77.3 394) 4 1394) 56.3 4 187.8 79.7 4 943. 103.9 95 93. 9.8 85 7841 33.9 5 1334$ 56.7 5 188.7 80.1 5 943.9 103.5 96 93.9 10.8 86 79.9 334) 6 1344 57. 6 189.6 80.5 944.9 103.9 97 94.9 104$ 87 80.1 34. 7 135.3 57.4 7 190.5 80.9 7 245.8 104.3 98 95.8 10.9 8B 81. 34.4 8 136.9 57.8 8 191.5 81.3 8 946.7 104.7 90 96.7 114) 89 81.9 3441 9 13741 584) 9 199.4 61.7 9 9474) 105.1 96 974 11.7 00 834) 35.9 150 138.1 584) 9)10 1934) 89.1 970 9484$ 10541 31 985 19.1 91 834) 35.6 1 139. 59. 1 1944) 89.4 1 9494$ 105.9 39 90.5 194$ 99 84.7 35.9 9 1394) 59.4 9 195.1 89.8 9 9504 1064) 33 30.4 19.9 93 85.6 364) 9 140.8 59.8 3 196.1 83.2 3 2514) 108.7 34 31.3 13.3 94 86.5 36.7 4 1414) 60.9 4 197. 83.6 4 2584) 107.1 35 39.9 13.7 95 87.4 37.1 5 149.7 60.6 5 197.9 84. 5 953.1 1074$ 36 33.1 14.1 96 88.4 37.5 6 143.6 61. 6 1988 84.4 6 954.1 1074) 37 34.1 14.5 97 89.3 37.9 7 1444$ 61.3 7 199.7 844) 7 355. 1084) 39 35. 144) 98 •0,2 38.3 8 145.4 61.7 8 960.7 85.9 8 955.9 108.6 39 354) 154) 99 91.1 38.7 9 1464 69.1 9 901.6 85.6 9 9564) 109. 40 38,8 15.6 100 99.1 39.1 160 147.3 09.5 990 9094$ 86. 980 957.7 1094 41 37.7 16. 1 93. 394$ 1 148.9 69.9 1 903.4 864 1 958.7 1094) 49 38.7 n.4 9 93.9 3941 9 149.1 63.3 9 984.4 867 9 959.6 110.9 43 39.6 164) 3 94.8 409 3 150. 63.7 3 9fe£ § (7.1 3 9604$ 110.6 44 40.5 17.9 4 95.7 40.6 4 151. 64.1 *4 *m i 74$ 4 3614 111. 45 41.4 17.6 5 96.7 41. 5 151.9 644$ 5 96W i 7» 5 8683 111.4 46 49.3 18. 6 97.6 41.4 « 1594) 64.9 6 388. i 8.9 9634) 111.7 47 43-3 18.4 7 98.5 41.8 7 153.7 65.3 7 999^ t PJfr 7 964.9 112.1 48 44.9 18.8 8 99.4 49.9 8 1544) 65.6 8 969.9 i m * 265.1 119.5 266. . 119.9 49 45.1 19.1 9 10041 49.6 9 155.6 66. 9 910.8 8 94$ •*: SO 46, 19.5 110 101.3 43. 170 156.5 66.4 930 211.7 8 0.9 900 966.9 113* 51 4641 19.8 1 109.9 43.4 1 157.4 66.8 1 919.6 fl 0.3 1 267.9 11317 59 47.9 8041 9 103.1 434) 9 158.3 67.8 9 913.6 fl 04$ 9 968.8 114.1 53 48.8 90.7 3 164. 44.9 3 159.8 67.6 3 9144$ fl 1. 3 369.7 114.5 54 49.7 91.1 4 104.9 444$ 4 160.3 68. 4 915.4 11 14 4 370.6 1144) 55 5041 9141 5 105.9 44.9 5 161.1 68.4 5 916.3 S 14) 5 271.5 1154) 56 5I4S 91.9 6 1004) 45.3 6 169. 684) 6 317.9 fl 124) 6 2724$ 115.7 57 534$ 89.3 7 107.7 45.7 7 169.9 69.9 7 918.9 II 19.6 7 273.4 116. 58 53.4 99.7 8 108.6 46.1 8 1634) 69.6 8 919.1 11 (3. 8 2744) 1164 59 54.3 93.1 9 109.5 46.5 9 1644) 69.9 9 999. fl 3.4 9 9754) 1164) 60 554) 93.4 190 110.5 46.9 180 165.7 70.3 940 999.9 fl 134) 300 9764) 1174) dill. W-- d. let. dirt. dep. d. let. dirt. dep. d. let. dirt. dep. d. let. dirt. dep. d. let. Dfcrtanee, Departure and DiOT. Latitat*. Coawae 6fo. Digitized by VjOOQIC 134 TABUS T. Canrm 9J4P. DfeUaee, DiC Latitude and Departs*. dirt. d. lat. dep dirt. d. lat. dep. dirt d. lat. dap. dirt. d.tat. dep, dirt. d.lat **. 1 0.9 0.4 61 55.7 243 191 1103 493 181 1654 733 941 2903 98 2 1.8 0.8 62 563 293 2 1113 49.6 2 1663 74. 9 231.1 984 3 9.7 13 63 573 25.6 3 112.4 50. 3 1673 74.4 3 233. 983 4 3.7 1.6 64 583 26. 4 113.3 50.4 4 168.1 743 4 3333 993 5 4.6 9. 65 59.4 26.4 5 1143 503 5 169. 753 5 3233 99.7 6 5.5 9.4 66 603 963 6 115.1 513 6 169.9 75.7 6 2*.7 100.1 7 64 93 67 613 273 7 116. 51.7 7 1703 76.1 7 2253 100L3 8 7.3 33 68 62.1 27.7 8 116.9 52.1 8 171.7 763' 8 2363 1003 9 8.2 3.7 69 63. 28.1 9 1173 523 9 172.7 763 9 2373 1013 10 9.1 4.1 70 63.9 383 130 1183 593 100 173.6 773 980 2384 101.7 11 10. 43 71 64.9 283 1 119.7 533 1 1743 77.7 1 2993 103.1 19 11. 43 72 653 293 2 120.6 53.7 2 1754 78.1 9 3393 1023 13 113 53 73 66.7 29.7 3 1213 5U 3 1763 783 3 231.1 1083 14 123 5.7 74 67.6 30.1 4 1224 543 4 1773 783 4 232. 1033 15 1&7 6.1 75 683 303 5 1233 543 5 178.1 793 5 233. 103.7 16 14.6 63 76 694 30.9 6 1243 553 6 179.1 79.7 6 233.9 104.1 17 15.5 6.9 77 703 31.3 7 1253 55.7 7 180. 80.1 7 2343 1043 18 16.4 73 78 71.3 31.7 8 1-J6.1 561 8 180.9 803 8 235.7 104.9 19 17.4 7.7 79 723 32.1 9 127. 563 9 1813 803 9 2363 1053 90 18L3 ai 80 73.1 323 140 1373 56.9 1900 182.7 813 9«0 2373 1053 si 19.9 as 81 74. 32.9 1 1288 573 1 1833 813 1 238.4 1063 22 90.1 &9 82 74.9 33.4 2 129.7 573 2 1843 893 2 2393 1063 93 21. 9.4 83 753 33.8 3 1303 583 3 1854 823 3 2403 107. 94 91.9 9.8 84 76.7 343 4 131.6 58.6 4 186.4 83. 4 2413 1074 95 233 103 85 77.7 34.6 5 1333 59. 5 1873 834 5 242.1 1073 28 233 103 86 78.6 35. 6 133.4 594 6 1883 833 6 24a 1083 97 24.7 11. 87 793 35.4 7 1343 59.8 7 189.1 843 7 843.9 108.6 98 25.6 11.4 88 804 35.8 8 1353 603 8 190. 843 8 2443 109. 99 363 113 89 813 363 9 136.1 693 9 1903 85. 9 245.7 1094 80 27.4 193 00 833 363 150 137. 61. aio 1913 854 970 246.7 1093 31 383 123 91 83.1 37. 1 137.9 61.4 1 1993 853 1 2473 1103 33 29.2 13. 92 84. 37.4 2 138.9 613 2 193.7 863 2 2483 1103 33 30.1 134 93 85. 37.8 3 139.8 693 3 1943 86.6 3 9494 111. 34 31.1 133 94 85.9 383 4 140.7 62.6 4 1953 87. 4 9593 1114 39 32. 14.2 05 86.8 38.6 5 141.6 63. 5 196.4 874 5 2513 1113 36 33.9 143 98 87.7 39. 6 1423 633 6 1973 873 6 252.1 1123 37 33.8 15. 97 88.6 393 7 143.4 63.9 7 1983 883 7 253.1 113.7 39 34.7 153 98 893 39.9 8 144.3 643 8 1993 88.7 8 254. 113.1 39 354 153 99 90.4 40.3 9 1453 64.7 9 9003 89.1 9 3543 1133 40 36.5 163 100 914 40.7 160 1463 65.1 aao 201. 893 980 2553 1133 •41 373 16.7 1 92.3 41.1 1 147.1 653 i 201.9 89.9 1 256.7 1143 49 38.4 17.1 2 933 413 2 148. 65.9 2 202.8 903 3 257.6 114.7 43 39.3 173 3 94^ 41.9 3 148.9 663 3 203.7 90.7 3 3583 1154 44 40.9 17.9 4 •«r« 4 1493 66.7 4 2043 91.1 4 3594 1153 45 41.1 183 5 5 150.7 67.1 5 2053 913 5 9894 1153 46 49, 18.7 6. 963 43.1 6 151.6 673 6 9063 913 6 2913 1163 47 49.9 19.1 7 97.7 433 7 152.6 67.9 7 2074 923 7 2623 116.7 48 43.9 193 e 98.7 433 8 1533 683 8 2083 92.7 8 363.1 117.1 49 443 .193 9 993 443 9 1544 08.7 9 2093 93.1 9 264. 1173 90 45.7 203 110 1003 44.7 170 1553 69.1 93)0 910.1 933 900 264.9 na 51 46.6 20.7 1 101.4 45.1 1 156.9 69.6 1 211. 94. 1 9653 na4 52 47.5 21.2 2 1023 45.6 2 157.1 70. 2 211.9 944 2 2663 1183 53 46.4 21.6 3 1033 46. 3 158, 70.4 3 912.9 94.8 3 367.7 119.9 54 49.3 22. 4 104.1 46.4 4 159. 703 4 2133 953 4 3683 1193 55 50.9 224 5 105.1 463 5 159.9 713 5 214.7 95.6 5 3893 120. 56 312 22.8 6 106. 473 6 160.8 713 6 215.6 96. 6 8794 129.4 57 52.1 23.2 7 106.9 473 7 161.7 72. 7 2163 964 7 2713 1903 58 53. 233 8 1073 48. 8 162.6 724 8 2174 983 8 3733 1913 59 53.9 24. 9 108.7 4*4 9 163.5 723 9 2183 97.2 9 273.2 1213 60 543 24.4 120 1093 483 180 164.4 73.2 240 2193 973 300 974,1 122. dirt. dep. d. lat. dirt dep. d. lat dirt. dep. 4.1at. dirt. dep. d. lat. dirt. dep. d. lat. Dirtanee, Departure and DiH Latitude. Digitized by VjOOQIC 135 DUE Latitude and Departure. diet. d.lat. ddp. dirt. d.lat. dep. diet d.lat. dep. dirt d. lat. dep. dirt- d. lat. dep. 1 9.9 0:4 61 55.3 85.8 191 109.7 51.1 181 164. 765 941 818.4 101.9 9 1.8 0.8 63 503 96.3 8 110.6 51.6 8 1644 76.9 3 3194 103 3 3 8.7 14 63 57.1 96.6 3 111.5 58. 3 165.9 774 3 930.3 108.7 4 3.6 1.7 64 58. 97. 4 113.4 53.4 4 166.8 77.8 4 331.1 103.1 5 44 8.1 65 58.9 975 5 1134 53.8 5 167.7 78.3 5 333. 103.5 6 5.4 85 66 59.8 97.9 6 1143 53.3 6 1684 78.6 6 333. 104. 7 6.3 3. 67 60.7 98.3 7 115.1 53.7 7 1695 79. 7 333.9 104.4 6 7.3 3.4 68 61.6 98.7 8 116. 54.1 8 170.4 795 8 3344 104.8 9 83 3.8 69 63.5 993 9 116.9 545 9 171.3 79.9 9 335.7 105,8 10 9.1 4.3 70 63.4 99.6 130 1174 544 100 1733 804 900 936.6 105.7 11 10. 4.6 71 644 30. 1 11&7 55.4 1 173.1 80.7 1 2*7.5 106.1 19 10.9 5.1 79 65.3 30.4 3 119.6 55.8 9 174. 81.1 3 338.4 1065 13 11.8 55 73 66.3 30.9 3 1805 56.3 3 174.9 81.6 3 3394 108.9 14 18.7 5.9 74 67.1 314 4 131.4 56.6 4 1754 88- 4 3393 107.3 15 13.6 6.3 75 68. 31.7 5 133.4 57.1 5 176.7 83.4 5 331.1 1074 16 144 6.8 76 68.9 33.1 6 133.3 57.5 6 177.6 834 6 333. 108.3 17 15.4 73 77 69.8 33.5 7 184.3 57.9 7 1785 83.3 7 333.9 1084 18 16.3 7.6 78 70.7 33. 8 135.1 58.3 8 179.4 83.7 8 3334 109. 19 17.3 a 79 71.6 33.4 9 136. 58.7 9 180.4 84.1 9 834.7 1094 90 18.1 &5 80 734 33.8 140 1964 593 aoo 1814 845 900 8354 1094 SI 19. 8.9 81 73.4 34.3 1 1374 59.6 i 183.9 84.9 1 9364 1104 S3 19.9 9.3 88 744 34.7 8 138.7 69. 3 183.1 85.4 3 9374 110.7 S3 80.8 9.7 83 75.3 35.1 3 1394 69.4 3 184. 85.8 3 338.4 1U.I 84 31.8 10.1 84 76.1 354 4 130.5 60.9 4 184.9 86.8 4 8394 1114 89 82.7 10.6 85 77. 35.9 5 131.4 614 5 185.8 86.6 5 8403 118. 88 33.6 11. 86 77:9 364 6 133.3 61.7 6 186.7 87.1 6 841.1 118.4 87 84.5 11.4 87 78.8 36.8 7 133.8 63.1 7 187.6 874 7 843. 1184 84 85.4 11.8 88 79.8 373 8 134.1 634 8 188.5 87.9 8 3434 113.3 89 86.3 134 89 80.7 37.6 9 135. 63. 9 189.4 884 9 3434 113.7 30 873 13.7 00 81.6 38. 150 1354 63.4 910 1904 88.7 970 944.7 114.1 31 38.1 13.1 91 885 384 1 139.9 63.8 1 1913 893 1 94S4 1144 38 89. 13.5 93 834 38.9 9 137.8 64.3 3 193.1 894 a 9464 115. 33 394 13.9 93 84.3 394 3 138.7 64.7 3 193. 90. 3 947.4 115.4 34 304 14.4 94 85.3 39.7 4 139.6 65.1 4 193.9 90.4 4 948.3 1158 35 31.7 14.8 95 86.1 40.1 5 140.5 65.5 5 194.9 90.9 5 9493 1163 36 33.6 15.3 98 87. 40.6 6 141.4 65.9 6 195.8 914 6 950.1 1164 37 334 15.0 97 87.9 41. 7 1434 66.4 7 196.7 91.7 7 951. 117.1 38 34.4 16.1 98 88.8 41.4 8 1433 66.8 8 197.6 93.1 8 953. 1174 39 354 165 99 89.7 414 9 144.1 673 9 1984 934 9 953.9 1174 40 364 16.9 100 90.6 494 100 145. 67.6 990 199.4 93. 980 353.8 118.3 41 37.3 17.3 1 91.5 48.7 1 145.9 68. i 3004 93.4 1 854.7 i& 48 38.1 17.7 3 93.4 43.1 3 146.8 685 9 3013 934 3 955.6 43 39. 18.3 3 934 43.5 3 147.7 68.9 3 803.1 94.9 3 956.5 1194 44 39.9 18.6 4 944 44. 4 148.8 69.3 4 303. 94.7 4 957.4 180. 45 404 19. 5 95.3 44.4 5 1494 69.7 5 303.9 95.1 5 9584 1804 46 41.7 19.4 6 96.1 44.8 6 150.4 70.3 6 994.8 955 6 9593 1804 47 43.6 19.9 7 97. 45.3 7 151.4 70.6 7 905.7 95.9 7 980.1 1814 48 43.5 30,3 8 97.9 98.8 45.6 8 153.3 71. 8 306.6 96.4 8 961. 181.7 49 44.4 80.7 9 46.1 9 1533 71.4 9 307.5 964 9 9614 133.1 50 45.3 81.1 110 99.7 465 170 154.1 714 930 3084 97.3 900 9694 1394 51 463 81.6 1 100.6 46.9 1 155. 73.3 1 309.4 974 1 963.7 183. 53 47.1 88. 3 101.5 47.3 3 155.9 78.7 3 310.3 98. 8 964.6 133.4 53 48. 33.4 3 103.4 474 3 156.8 73.1 3 3113 984 3 9654 183.8 54 484 83.8 4 103.3 48.8 4 157.7 73.5 4 313.1 98.9 4 9664 194.3 55 49.8 83.3 5 104.3 48.6 5 158.6 74. 5 313. 994 5 967.4 184.7 56 50.8 93.7 6 105.1 49. 6 1595 74.4 6 3134 99.7 6 9684 185.1 57 51.7 34.1 7 106. 49.4 7 160.4 74.8 7 3144 100.3 7 9693 1954 58 53.6 84.5 8 106.9 49.9 8 161.3 75.3 8 315 7 1004 8 970.1 195.9 59 53.5 849 9 107.9 50.3 9 163.3 75.6 9 3166 101. 9 971. 1964 60 54.4 «4 180 108.8 50.7 180 163.1 76.1 840 817.5 101.4 300 971.9 1864 din. dep. d.lat. J diit. dep. d.lat. dirt. dep. d. lat dirt. dep. d. lat. diet. dep. d. lat. Distance, Departure and Dili Latitude. Cowraa 05°. Digitized by VjGOQIC 136 TAHIS V. 3 198. 43 38.3 19.5 3 91.8 463 3 1455 74. 3 19&7 1013 3 9595 1985 44 39.2 90. 4 92.7 475 4 146.1 743 4 199.6 101.7 4 953. 1984 45 40.1 90.4 5 93.6 47.7 5 147. 74.9 5 2003 103.1 5 953.9 199.4 46 41. 90.9 6 94.4 48.1 6 147.9 75.4 6 201.4 102.6 6 2545 1993 1303 47 41.9 91.3 7 95.3 48.6 7 1483 753 7 2023 103.1 7 255.7 48 49.8 91.8 8 96.9 49. 8 149.7 76.3 8 203.1 1033 8 258.6 130.7 49 43.7 225 9 97.1 49.5 9 150.6 76.7 9 204. 104. 9 257.5 1313 00 444 99.7 110 98. 495 170 1513 775 930 2043 104.4 900 258.4 131.7 51 45.4 93.2 1 98.9 50.4 1 152.4 773 1 205.8 1045 1 2593 132.1 59 465 93.6 3 99.8 50.8 3 153.3 78.1 3 206.7 1053 2 2603 1324 53 47.9 94.1 3 100.7 51.3 3 154.1 783 3 207.6 105.8 3 261.1 133. 54 48.1 945 4 101.6 513 4 155. 79. 4 2085 1063 4 262. 133.5 55 49. 95. 5 1025 59.2 5 155.9 79.4 5 209.4 106.7 5 2623 133.9 56 49.9 95.4 6 103.4 52.7 6 1565 79.9 6 210.3 107.1 6 263.7 134.4 57 50.8 95.9 7 104.9 53.1 7 157.7 80.4 7 2115 1076 7 964.6 1345 58 51.7 983 8 105.1 53.6 8 158.6 80.8 8 212.1 10a 8 9655 1353 59 59.6 96.8 9 106. 54. 9 159.5 81.3 9 213. 1083 9 966.4 135.7 60 535 97.2 120 106.9 543 180 160.4 81.7 240 2135 109. 300 9873 1363 dirt. dep. d. lat. dirt. dep. d. lat. dirt. I dep. d. lat. dist. dep. d. lat. dirt. dep. d. lat. Distance, Departure and Diff Latitude. Course 63°. Digitized by VjOOQIC 138 TABLE T. Wetanee, Biff Latitade and Depnrtara. diet. d. tat. dep ditt. d. lat. dap.' ditt. d.lat dep. disc. d.lat dep. diet. d.lat ** 1 9.9 04 01 53.9 88.6 191 1084 56.8 181 1594 85. 3941 9134 113.1 9 1.8 0.9 69 54.7 S9.1 2 107.7 574 3 M0.7 85.4 3 313.7 1134 3 9.6 1.4 63 55.6 89.6 3 108.6 57.7 3 161.6 85.9 9 3144 114.1 4 3.5 1.9 64 56.5 30. 4 1094 584 4 1624 86.4 4 215.4 1144 5 4.4 24 65 57.4 30.5 5 110.4 58.7 5 1634 864 5 2164 115. e 6.3 9.8 66 58.3 31. 6 1114 594 6 164.3 87.3 6 2174 1154 ? 64 34 67 599 31.5 7 1191 59.6 7 165.1 87.8 7 218.1 116. 8 7.1 34 68 69. 31.9 8 .113. 60.1 8 166. 88.3 8 219. 1164 9 7.9 44 69 60.9 33.4 9 1134 60.6 9 1664 88.7 9 2194 1194 10 84 4.7 TO 614 39.9 130 1144 61. 100 1674 894 059 299.7 117.4 11 9.7 54 71 69.7 334 1 115.7 614 1 1684 89.7 1 8314 1174 n 10.6 5.6 79 634 334 2 116.5 68. 9 1094 90.1 3 2894 1104 13 1M 6.1 73 644 344 3 117.4 69.4 3 170.4 994 3 2S&4 1184 14 19.4 64 74 654 34.7 4 1184 68.9 4 1714 91.1 4 3944 1194 15 134 7. 75 664 354 5 1194 63.4 5 178.3 914 5 3394 119.7 16 14.1 74 76 67.1 35.7 6 120.1 634 6 173.1 93. 6 899. 1294 17 15. 8. 77 68. 36.1 7 121. 643 7 1734 984 7 8964 139v7 18 15.9 84 78 094 36.6 8 1214 644 8 1744 93. 8 8974 191.1 19 16.8 84 79 604 37.1 9 188.7 654 9 175.7 93.4 9 828.7 1314 00 17.7 9.4 80 794 37.6 140 1934 65.7 9300 1764 994 009 8394 133.1 91 18.5 9.9 81 714 38. 1 134.5 664 1 1774 94.4 1 830.4 1394 » 19.4 10.3 89 73.4 384 2 195.4 66.7 9 178.4 944 9 3314 133. S3 80.3 10.8 83 734 39. 3 1964 67.1 3 1794 954 3 8394 1334 94 21.9 11.3 84 744 39.4 4 197.1 67.6 4 180.1 95.8 4 833.1 1934 95 99.1 11.7 85 75.1 39.9 5 188. 68.1 5 181. 96.-2 5 834. 1344 99 93. 124 86 75.9 40.4 6 138.9 684 6 181.9 96.7 6 3344 1944 97 93.8 12.7 87 76.8 40.8 7 129.8 69. 7 1824 97.9 7 8317 1354 98 94.7 13.1 88 77.7 414 . 8 130.7 694 8 183.7 97.7 8 8364 1354 99 95.6 13.6 89 784 414 9 131.6 70. 9 1844 981 9 3374 1904 30 96.5 14.1 00 794 494 150 138.4 70.4 SJlO 185.4 98.6 9JT0 33M 1304 31 97.4 14.6 91 804 42.7 1 133.3 70.9 1 1864 99.1 1 8394 1374 39 283 15. 99 814 434 9 1344 71.4 9 1874 994 9 3494 127.7 33 99.1 154 93 89.1 43.7 3 135.1 714 3 188.1 109. 3 341. 1394 91 39. 16. 94 83. 44.1 4 136. 784 4 189. 100.5 4 3414 1394 39 30.9 16.4 95 83.9 44.6 5 1364 794 5 1894 100.9 5 3494 1394 39 31.8 16.9 98 844 45.1 6 137.7 734 6 190.7 101.4 6 843,7 1394 97 39.7 17.4 97 85.6 454 7 138.6 73.7 7 191.6 101.9 7 8444 139. 38 33.6 17.8 99 864 46. 8 1394 74.2 8 1934 1034 8 3454 1394 39 34.4 184 99 87.4 464 9 140.4 74.6 9 193.4 1038 9 8464 131. 40 35.3 184 100 884 464 100 1414 73.1 asjo 1944 1034 009 3474 1314 41 36.9 194 1 894 47.4 1 148.3 75.6 i 195.1 1034 1 348.1 1314 49 37.1 19.7 9 90.1 474 9 143. 76.1 8 196. 1044 9 349. 139.4 43 3a 90.9 3 90.9 48.4 3 143.9 764 3 196.9 104.7 3 3494 1334 44 38.8 90.7 4 91.8 484 4 1444 77. 4 1974 1054 4 8594 1334 45 39.7 91.1 5 92.7 4»4 5 145.7 77.5 5 198.7 105.6 5 8514 1334 49 40.6 91.6 6 93.6 494 6 146.6 774 6 199.5 106.1 6 8584 1344 47 41.5 99.1 7 944 509 7 1474 78.4 7 900.4 106.6 7 853.4 134.7 48 49.4 224 8 95.4 50.7 8 1484 78.9 8 201.3 107. 8 8544 1354 49 434 S3. 9 964 514 9 149.9 794 9 209.9 1074 9 2554 135.7 50 44.1 334 110 97.1 51.6 190 159.1 794 9330 903.1 168. 000 859.1 139.1 51 45. 93.9 1 98. 52.1 1 151. 804 1 904. 108.4 1 9564 1364 59 45.9 944 9 984 52.6 2 151.9 80.7 3 9044 108.9 9 8574 137.1 53 46.8 24.9 3 99.9 53.1 3 159.7 81.9 3 995.7 169.4 3 85B.7 1374 54 47.7 254 4 100.7 534 4 153.6 81.7 4 806.6 10fr.9 4 3594 139. 55 48.6 354 5 1014 54. 5 1544 884 5 8074 110.3 5 9604 1394 56 49.4 964 6 163.4 544 6 155.4 82.6 6 808.4 1104 6 361.4 139. 57 50.3 864 7 1034 54.9 7 156.3 83.1 7 909.3 1114 7 369.9 130.4 58 519 974 8 1644 55.4 8 1574 83.6 8 210.1 1117 8 869.1 1394 99 59.1 97.7 9 105.1 554 9 158. 84. 9 911. 1194 9 864. 149.4 60 53. 98.2 190 106. 564 180 158.9 844 340 911.9 112.7 399 994.9 1494 dirt. dap. .9 786 1 1784 103.5 1 883.7 134.4 28 18.9 114 83 70.3 48.3 3 181.7 73.1 3 173.1 104. 3 884.6 134.9 33 19.7 114 83 71.1 48.7 3 183.6 73.7 3 174. 104.6 3 835.4 1354 34 30.6 18.4 84 73. 43.3 4 183.4 74.3 4 174.9 105.1 4 836.3 136. 35 31.4 18.9 85 78.9 434 5 1344 74.7 5 175.7 105.6 5 887.1 1364 38 83.3 13.4 86 73.7 44.3 6 135.1 75.3 6 176.6 108.1 6 838. 137. 37 33.1 13.9 87 74.6 44.8 7 186. 75.7 7 177.4 106.6 7 888.9 1375 38 34. 14.4 88 75.4 45.3 8 136.9 76.3 8 1784 107.1 8 839.7 138. 39 34.9 14-9 89 764 45.8 9 187.7 76.7 9 179.1 107.6 9 830.6 1384 30 35.7 154 00 77.1 46.4 ISO 138.6 77.3 810 180. 108.8 970 331.4 139.1 31 36.6 16. 91 78. 46.9 1 139.4 774 1 180.9 108.7 1 3334 139.6 33 374 16.5 93 78.9 47.4 3 130.3 78.3 3 181.7 109.3 3 333.1 140.1 33 38.3 17. 93 79.7 47.9 3 131.1 78.8 3 188.6 109.7 3 334. 140.6 34 39.1 17.5 94 80.6 48.4 4 138. 794 4 183.4 1104 4 834.9 1411 35 30. 18. 95 81.4 48.9 5 138.9 79.8 5 1844 110.7 5 835.7 141.6 36 30.9 184 98 884 49.4 6 133.7 80.3 6 185.1 111.9 6 836.6 148.3 37 31.7 19.1 97 83.1 50. 7 134.6 80.9 7 186. 111.8 7 337.4 143.7 38 33.6 19.6 98 84. 504 8 135.4 81.4 8 186.9 113.3 8 338.3 143.3 39 33.4 801 99 84.9 51. 9 136.3 81.9 9 187.7 1184 9 339.1 143.7 40 34.3 30.6 100 85.7 51.5 100 137.1 88.4 990 188.6 1134 380 340. 1444 41 35.1 31.1 1 86.6 58. 1 138. 88.9 1 189.4 113.8 I 340.9 144.7 43 36. 31.6 9 87.4 58.5 3 138.9 83.4 3 1904 1144 3 341.7 145.3 43 38.9 88.1 3 88.3 53. 3 139.7 84. 3 191.1 1144 3 343.6 145.8 44 37.7 88.7 4 89.1 53.6 4 140.6 84.5 4 193. 115.4 4 343.4 146.3 45 38.6 33.3 5 90. 54.1 5 141.4 85. 5 193,9 115.9 5 3444 1464 48 39.4 23.7 6 90.9 54.6 6 1434 854 6 193.7 116.4 6 345.1 147.3 47 40.3 34.3 7 91.7 55.1 7 143.1 86. 7 194.6 116.9 7 346. 1474 48 41.1 34.7 8 98.6 55.6 8 144. 864 8 195.4 117.4 8 346.9 1484 49 43. 85.3 9 93.4 56.1 9 1444 67. 9 198.3 117.9 9 347.7 1484 50 43.9 854 110 944 56.7 170 145.7 67.6 8330 197.1 1184 300 348.0 149.4 51 43.7 86.3 1 95.1 574 1 146.6 88.1 1 19a 119. 1 349.4 149.9 53 44.6 33.8 3 98. 57.7 3 147.4 88.6 9 J98.9 1194 3 3503 150.4 53 45.4 87.3 3 96.9 58.8 3 1484 89.1 3 199.7 130. 3 351.3 150.9 54 46.3 87.8 4 97.7 58.7 4 149.1 89.6 4 800.6 180.5 4 358. 151.4 55 47.1 38.3 5 98.6 59.3 5 150. 90.1 5 801.4 131. 5 3584 151.9 56 48. 38.8 6 99.4 59.7 6 150.9 90.6 6 3084 1814 6 853.7 158.5 57 48.9 89.4 7 1004 604 7 151.7 91.3 7 303.1 138.1 7 3544 153. 58 49.7 39.9 8 101.1 60.8 8 158.6 917 8 304. 188.6 8 355.4 1534 59 50.6 30.4 9 103. 614 9 153.4 984 9 304.9 183.1 9 3564 154. 60 51.4 30.9 130 103.9 614 180 1544 98.7 340 305.7 133.6 300 357.1 1544 dirt. dep. d.lat. ditt. Idep. 4. lat. 4 4 1884 170. 15 Jl.l 11.9 10. 75 55.7 505 5 1005 90.3 5 144.9 1305 5 1895 1704 16 10.7 76 564 50.9 6 101.1 91. 6 145.7 131.1 6 1904 1715 17 19.6 11.4 77 57.9 515 7 101.8 91.7 7 146.4 1314 7 101. 179. 18 13.4 13. 78 58. 53.3 8 1034 99.3 8 147.1 1334 8 191.7 1794 10 14.1 19.7 79 58.7 595 9 1035 93. 9 1475 1335 1995 1735 *0 144 1X4 80 59 5 535 140 104. 93.7 ftOO 1464 1334 8)6© 1935 174. 91 15.6 14J 81 605 545 1 104 8 94.3 1 1494 1345 1 194. 1744 99 16.3 14.7 83 60.9 54.9 3 105.5 95. 9 150.1 135.4 9 194.7 1755 93 17.1 154 83 61.7 55.5 3 1065 05.7 3 150.9 1354 1365 3 195.4 176. 94 17.8 16.1 84 63.4 565 4 107. 06.4 4 1514 4 1964 176.7 95 18.6 16.7 85 63.3 56.9 5 107.8 97. 5 1595 1375 5 196.0 1775 96 19.3 17.4 86 63.9 57.5 6 106.5 97.7 6 153.1 1375 6 197.7 178. 97 90.1 18.1 87 64.7 585 7 1094 98.4 7 1534 138.5 7 196.4 178.7 98 90.8 91.0 18.7 88 654 58.9 8 110. 99. 8 1544 1394 8 199.9 1795 99 19.4 69 66.1 594 110.7 90.7 9 1555 1394 1905 18a 30 99.3 90.1 00 00.9 605 ISO 1115 100.4 910 150.1 1405 »T0 9005 180.7 31 93. 30.7 91 67.6 60.9 1 U85 101. 1 1504 1415 1 901.4 1815 33 93.8 91.4 93 68.4 61.6 9 113. 101.7 9 157.5 1414 3 903.1 189. 33 94.5 23.1 93 69.1 62.8 3 113.7 103.4 3 1585 1494 3 9095 189.7 34 95.3 96. 33.8 94 69.9 634 4 114.4 103. 4 159. 1435 4 9086 1835 35 93.4 95 70.6 63.6 5 115.2 103.7 5 1594 143.9 5 904.4 184. 36 96.8 S4.1 06 71.3 64.3 6 115.0 104.4 6 1605 1445 6 906.1 184.7 37 97.5 98.9 99. 94.8 97 73.1 644 7 116.7 105.1 7 1614 1455 7 9064 1855 38 95.4 98 79.8 65.6 8 117.4 105.7 8 163. 145.0 8 806.6 180, 39 9&1 99 no 665 9 1185 106.4 9 109.7 1404 9075 186.7 4VO 99.7 964 100 74.3 66.9 160 1185 107.1 89)0 1634 1475 9j80 906.1 187.4 41 30.5 97.4 1 75.1 67.6 1 119.0 107.7 1 1645 147.9 1 9084 188. 49 315 93.1 8 75.8 6B.3 9 130.4 108.4 9 165. 148.5 9 909.6 188.7 43 39. 98.8 3 76.5 68.9 3 181.1 109.1 3 165.7 149.3 3 9105 189.4 44 39.7 39.4 4 77.3 694 4 121.0 100.7 4 1664 149.9 • 4 811.1 190. 45 33.4 30.1 5 78. 70.3 5 133.6 110.4 5 167.9 150.6 5 311.8 190.7 46 34.3 30.8 6 78.8 70.9 6 183.4 111.1 6 168. 151.3 6 3185 191.4 47 34.9 31.4 7 79.5 71.6 7 124.1 111.7 7 168.7 151.9 7 3135 199. 48 35.7 39.1 8 80.3 735 8 1844 118.4 8 169.4 153.6 8 914. 199.7 49 36.4 334 9 8L 735 9 135.6 113.1 9 1705 153.9 9 9145 1934 §o 37.9 335 110 81.7 73.6 170 186.3 1134 930 170.0 1534 9J90 3155 194. 51 37.9 34.1 1 89.5 74.3 1 187.1 114.4 1 171.7 154.6 1 9165 194.7 59 38.6 344 9 835 74.9 9 187.8 115) 9 179,4 1555 9 917. 1954 53 39.4 35.5 3 84. 75.6 3 148.6 115 8 3 173.3 155.9 3 917.7 196.1 54 40.1 36.1 4 84.7 76.3 4 139.3 116.4 4 173.9 156.6 4 3185 196.7 .55 40.9 36.8 5 85.5 77. 5 130.1 117.1 5 174.6 1575 5 2195 197.4 56 41.6 374 6 86.9 77.6 6 130.8 117.8 6 175.4 1579 6 990. 198.1 57 40-4 38.1 7 86.9 78.3 7 1315 118.4 7 176.1 158.6 7 990.7 198.7 58 43.1 384 8 87.7 79. 8 1395 119.1 8 176.9 150.3 8 9914 199.4 59 43.8 30.5 9 88.4 70.6 9 133. 1194 9 1774 159.9 883.9 900.1 60 44.0 40.1 190 895 80.3 180 1334 180.4 940 178.4 100.6 300 9995 800.7 diet* de*. d.lat diet. dep. d. lat. diet. dep. Hat. diet. dep. Hat. diet. Idep. d.lat» Diataaee,De|tartaieaBdIHCLaiit«de. Digitized by VjOOQIC TABLTY. 158 Dirtajue, DUE Latitade and Dtpaitam dirt. d-lat. (fop. dirt. d.lat dep. dirt. d-lat dap. dirt. d.laL dep. | dirt. d.lat dep. 1 6.7 0.7 61 444 41.6 iai 884 844 181 139.4 193.4 941 1764 1644 8 14 1.4 68 454 484 8 894 819 9 1311 194.1 3 177. 161 a 34 8. 63 46.1 43. 3 90. 819 3 1334 1944 3 177.7 1617 4 8.8 8.7 64 464 416 4 90.7 84.6 4 1344 1954 4 1784 166.4 « 3.7 3.4 65 474 444 6 91.4 854 5 1354 1*64 5 1794 167.1 • 4.4 4.1 66 484 45. *6 919 85.9 6 136. 196.9 6 179.9 1674 7 5.1 44 67 49. 45.7 7 919 86.6 7 1364 197.5 7 180.6 168.5 8 5.8 54 68 49.7 46.4 8 916 874 8 1374 1964 8 1814 169.1 64 6.1 69 504 47.1 9 944 81 9 1313 1984 9 1611 J694 10 74 64 VO 514 47.7 ISO 95.1 88.7 100 138. 199.6 980 1818 1704 XX & 74 71 514 48.4 1 954 894 1 1317 1304 1 1816 171.3 n 84 19 79 58.7 49.1 9 964 90. 9 140.4 1304 9 1844 171.9 13 94 8.9 73 514 494 3 974 917 3 1414 1314 3 185. 1715 14 10JI 9.5 74 54.1 504 4 91 91.4 4 141.9 1384 4 1854 1713 15 11. 104 75 544 51.1 6 98.7 911 5 1416 131 6 1864 1719 16 11.7 104) 76 554 514 6 994 918 6 1434 133.7 6 1874 174.6 17 19.4 11.6 77 564 584 7 1004 93.4 7 144.1 134.4 7 188. 1754 18 134 18-3 78 57. 518 8 100.9 94.1 8 1444 135. 8 1817 176. 19 134 13. 79 574 534 9 10X7 944 9 1454 1317 9 1884 1716 SO 14.6 13.6 80 584 544 146 1094 954 900 1464 1314 900 1964 1774 81 15.4 144 81 594 554 1 1011 98.8 1 147. 137.1 I 1964 171 » 161 15 88 60. 55.9 3 1019 98.8 3 147.7 137.8 9 191.6 1717 93 164 15.7 83 60.7 56.6 3 104.6 97.5 3 1484 138.4 3 1994 179.4 84 17.6 16.4 84 614 574 4 1054 984 4 1494 139.1 4 1911 180. 85 113 17. 85 684 58. 5 106. 989 5 149.9 1394 5 1934 lfc0.7 86 19. 17.7 86 68.9 58.7 6 1064 99.6 6 150.7 1404 6 1944 181.4 87 19.7 18.4 87 616 594 7 1074 1004 7 151.4 1414 7 1954 1811 88 30.5 19.1 88 64.4 68. 8 1084 100.9 8 1511 1414 8 191 1894 88 914 194 88 65.1 617 8 109. 101.6 9 1594 1415 9 1917 1834 80 81.9 904 00 654 61.4 190 169.7 1813 910 1516 1434 970 1974 184.1 31 88.7 31.1 91 66.6 611 1 110.4 101 1 1544 1434 1 1919 184.8 38 83.4 91.8 99 67.3 617 9 111.3 1017 9 155. 144.6 9 1919 185.5 33 84.1 88.5 93 68. 614 3 1114 104.3 3 1554 145.3 3 199.7 1864 34 84.9 818 94 617 64.1 4 1116 105. 4 1564 1419 4 9604 186.9 33 85.6 819 95 694 64.8 5 1114 195.7 5 1574 1416 5 901.1 1874 33 964 94.6 96 704 654 6 114.1 108.4 6 15ft 1474 6 901.9 1884 37 87.1 85.3 97 70.9 664 7 1144 107.1 7 158.7 141 7 9016 188.9 38 878 85.8 96 71.7 664 8 115.6 107.8 8 J59.4 1417 8 9034 189.6 38 aw 864 99 794 674 9 1164 1014 9 1604 149.4 9 904. 1904 40 893 874 100 711 684 100 117. 109.1 9390 M0.9 150. 980 9044 191. 41 30. 88. 1 734 68.9 1 117.7 1094 1 1614 150.7 1 8054 191.6 48 30.7 98.6 3 74.6 69.6 3 1184 110.5 3 1614 151.4 9 9084 1994 43 314 89.3 3 754 704 3 1194 1113 3 1611 1511 3 907. 191 44 319 30. 4 78.1 719 4 1194 111.6 4 1618 1594 4 907.7 1917 45 38.9 30.7 5 764 71.6 5 190.7 1115 5 164.6 1514 5 908.4 194.4 46 33.6 31.4 6 774 784 6 191.4 1)19 6 1654 1541 6 9094 195.1 47 34.4 311 7 784 71 7 199.1 1119 7 161 154.8 7 900.9 1917 48 35.1 317 8 79. 717 8 199.9 114 6 8 166.7 155.5 8 9104 1964 48 354 33.4 9 79.7 744 9 1934 1154 9 1674 1564 9 9114 197.1 BO 364 34.1 110 80.4 75. 170 1944 115.9 930 1684 1519 900 9111 1974 51 374 344 1 8J4 75.7 1 195.1 116.6 1 1684 1574 1 9194 1984 58 38. 354 9 81.9 78.4 9 1954 1174 * 169.7 1519 9 8116 199.1 53 384 36.1 3 884 77.J 3 1964 118. 3 170.4 1519 3 914.3 1994 54 394 364 4 814 77.7 4 1974 1117 4 171.1 159.6 4 315. 9004 55 404 375 5 84.1 78.4 5 198. 1194 5 171.9 160.3 5 915.7 9014 56 41. 38.8 6 844 79.1 6 198.7 190. 6 1794 161. 6 9164 9014 57 41.7 38.9 7 816 794 7 199.4 190.7 7 1713 161.6 7 9174 9016 58 48.4 39.6 8 86.3 804 8 1304 191.4 8 1741 1613 8 9174 9034 58 43.1 40.9 9 87. 814 9 130.9 199.1 9 1744 163. 9 9117 9019 60 43.9 40.9 180 874 814 180 131.6 1918 940 1754 1617 300 9194 9044 dirt. dep. d. lat. dirt. dep. d. lat. dirt. 1 dep. d. lat. dirt. dep. i. lat. dirt. dep. d. lat. DieUBOT, Departure and Diff Latitude <2emree4T0. u Digitized by VjOOQIC 164 TABLE V. Oomrea *4°. Distance, Difi Latitude mod Departure. dirt. (JUlmt. dep. dirt. d.lat. dep. dirt d.lat. dep. dirt. d. *t. dep. dirt. d.lat. *» 1 0.7 0.7 61 43.0 424 191 87. 84.1 181 1303 135.7 941 173.4 187.4 3 1.4 1.4 63 44.6 43.1 3 87.8 84.7 3 130.9 186.4 8 174.1 168.1 3 3.3 8.1 63 45.3 433 3 885 85.4 3 131.6 187.1 3 1743 1883 4 8.9 3.8 64 46. 44.5 4 89.8 86.1 4 133.4 137.8 4 1755 1693 5 3.6 33 65 46.8 453 5 89.9 86.8 5 133.1 1483 5 1763 1703 6 4.3 4.3 66 47.5 45.8 6 90.6 873 6 133.8 1393 6 177. 1703 7 5. 4.9 67 48.3 46.5 7 91.4 88.3 7 1343 189.9 7 177.7 1713 8 5.8 5.6 68 483 47.9 8 93.1 88.9 8 1353 130.6 8 178.4 1733 9 63 6.3 69 49.6 47.9 9 933 89.6 9 136. 131.3 9 179a 173. 10 7.3 6.9 70 50.4 48.6 130 933 90.3 100 136.7 133. 990 1793 173.7 11 7.9 7.6 71 51.1 49.3 1 943 91. 1 137.4 133.7 1 1803 174.4 13 8.6 8.3 78 514 50. 3 95. 91.7 8 138.1 133.4 3 1813 179.1 13 9.4 9. 73 58.5 50.7 3 95.7 98.4 3 1383 134.1 3 183. 175.7 14 10.1 9.7 74 533 51.4 4 98.4 93.1 4 1393 1343 4 183.7 170.4 15 10.8 10.4 75 54. 53.1 5 97.1 933 5 1403 1353 5 183.4 177.1 16 11.5 11.1 76 54.7 53.8 6 973 945 6 141. 1363 6 1843 1773 17 J3.S 11.8 77 55.4 533 7 985 95.9 7 141.7 136.8 7 1843 1783 18 12.9 13.5 78 56.1 543 8 99.3 95.9 8 143.4 1373 8 1853 1793 10 13.7 13.3 79 583 54.9 9 100. 96.6 9 143.1 138.3 9 1863 1783 90 14.4 13.9 80 SIS 55.6 140 100.7 973 9JO0 143.9 138.9 SJ60 187. 180.6 si 15.1 14.6 81 583 563 1 101.4 97.9 1 144.6 1393 1 187.7 1813 93 153 15.3 83 59. 57. 8 103.1 98.6 3 1453 1403 3 1883 188. 33 16.5 16. 83 59.7 57.7 3 108.9 993 3 146. 141. 3 1893 183.7 34 17.3 16.7 64 60.4 58.4 4 103.6 100. 4 146.7 141.7 4 1893 1*3.4 35 18. 17.4 85 61.1 59. 5 104.3 100.7 5 1473 1434 5 190.6 184.1 36 18.7 18.1 * 86 613 59.7 6 105. 101.4 6 148.3 143.1 6 1913 1843 87 19.4 18.8 87 68.6 60.4 7 105.7 109.1 7 148.9 1433 7 193.1 1853 3d 30.1 •19.5 88 63.3 61.1 8 1065 103.8 8 149.6 1443 8 1938 1603 39 30.9 30.1 89 64. 613 9 1073 1033 9 150.3 1453 9 1933 1883 30 31.6 30.8 00 64.7 63.5 190 107.9 1043 910 151.1 145.9 970 1943 1873 31 84.3 315 91 65.5 63.9 1 108.6 104.9 1 151.8 146.6 1 194.9 1883 33 33. 833 93 663 63.9 3 1093 105.6 3 153.5 1473 8 195.7 168.9 33 33.7 83.9 93 66.9 64.6 3 110.1 W6.3 3 153.3 148. 3 196.4 1893 34 34.5 93.6 94 67.6 65.3 4 1103 107. 4 153.9 148.7 4 197.1 1903 35 353 843 95 683 66. 5 1113 107 7 5 154.7 149.4 5 1973 191. 36 853 85. 98 69.1 66.7 6 1133 108.4 6 155.4 150. 6 1983 1917 37 36.6 85.7 97 693 67.4 7 113.9 109.1 7 156.1 150.7 7 1993 198.4 38 37.3 86,4 98 704 68.1 8 113.7 109.8 8 1563 151.4 8 300. 193.1 39 88.1 87.1 99 713 68.8 9 114.4 110 5 9 1573 153.1 9 300.7 1933 40 383 87.3 100 71.9 693 160 115.1 lll.l 990 1583 1593 980 3014 1943 41 39.5 883 1 73.7 70.8 1 1153 111.8 i 159. 153.5 1 303.1 1953 43 30.3 89.3 3 73.4 70.9 3 1163 113.5 3 159.7 154.3 3 304.9 1953 43 30.9 89.9 3 74.1 713 3 117.3 113.3 3 160.4 154.9 3 303.6 1983 44 31.7 30.6 4 748 73.3 4 118. 113.9 4 161.1 155.6 4 8043 1973 45 33.4 31.3 5 755 73.9 5 118.7 114.6 5 161.9 156.3 5 805. 198 46 33.1 33. 6 76.3 73.6 A 119.4 115.3 6 163.6 157. 6 305.7 198,7 47 33.8 33.6 7 77. 74.3 7 180.1 116. 7 1633 157.7 7 3063 198 4 48 34.5 33.3 8 77.7 75. 8 1803 116.7 8 164. 158.4 8 8073 £00.1 49 35.3 34. 9 78.4 75.7 9 131.6 117.4 9 164.7 159.1 9 3073 9003 50 36. 34.7 110 79.1 76.4 190 1833 118.1 9)30 165.4 1593 900 3083 8013 51 36.7 35.4 1 793 77.1 1 133. 118.8 1 1663 160.5 1 309.3 9U9.I 53 37.4 36.1 3 80.6 77.8 3 133.7 119.5 8 166.9 161.3] 3 810. 8033 53 38.1 36.8 3 81.3 78.5 3 184.4 180.4 3 1673 161.9 3 310.8 8033 54 38.8 37.5 4 83. 79.3 4 1858 130.9 4 1683 163.6 4 3115 3043 55 39.6 38.3 5 83.7 7».9 5 135.9 131.6 5 169. 163.3 5 3183 8043 56 40.3 389 6 834 806 6 1363 133.3 6 169.8 163.9 6 3139 805.6 57 41. 39.6 7 84.3 81.3 7 1873 133. 7 1703 164.6 1653 7 813.6 8063 58 41.7 40.3 8 84.9 83. 8 138. 133.fi 8 1713 9 314.4 807. 59 43.4 41. 9 85.6 83.7 9 188.8 1343 9 171.9 166. 9 3151 807.7 60 43.3 41.7 190 663 83.4 180 1393 185. 840 173.6 166.7 300 8153 808.4 dirt. dep. d.lat dirt. dep. d. let. dirt. dep. d let dirt. dep. d. let. dirt. dep. llati Dirtauee, Departure and Diff Latitude. Ctwea 48*. Digitized by VjOOQIC TABLE ▼. C««rM 49°. Distance, Di€ Latitude tad Departure 155 dteL d.lat. dap. dist. d.lat. dap. dill d.lat. dap. dial d.lat. dap. diat. d.lat. dap. 1 0.7 0.7 61 43.1 43.1 101 85.6 85.6 181 138. 198. 041 1704 170.4 8 1.4 1.4 88 434 434 864 804 198.7 188.7 171.1 171.1 a 9.1 8.1 63 444 444 87. 87. 199.4 1804 1714 1714 4 84 84 64 454 454 87.7 87.7 130.1 130.1 178.5 1784 5 34 35 65 46. 46. 884 884 1304 1304 173.9 173.3 6 44 44 66 46.7 46.7 89.1 89.1 1314 1314 173.9 173.9 7 4.9 4.9 67 47.4 474 894 80.8 132.9 138.8 174.7 174.7 8 5.7 5.7 68 48.1 48.1 904 904 139.9 139.9 1754 175.4 9 8.4 8.4 69 484 484 914 914 1334 133.6 176.1 176.1 10 7.1 7.1 90 494 494 ISO 914 91.9 100 1344 134.4 090 1764 1764 u 74 74 71 504 594 99.6 984 135.1 135.1 1774 1774 18 84 84 78 504 504 913 934 1354 1354 1784 1784 13 94 94 73 514 514 94. 94. 1364 1364 1784 1784 14 9.9 94 74 584 594 944 944 1374 1379 179.6 179.6 15 10.6 104 75 53. 53. 954 954 137.9 137.9 1804 1804 16 114 114 76 53.7 53.7 96.9 96.9 138.6 138.6 181. 181. 17 19. 18. 77 54.4 54.4 964 96.9 1394 1394 131.7 181.7 10 19.7 18.7 78 554 55.9 97.6 974 140. 140. 188.4 188.4 19 13.1 134 79 554 554 984 984 1407 140.7 183.1 183.1 00 14.1 14.1 80 564 564 140 99. 99. 000 1414 1414 060 1834 1834 91 143 144 81 574 574 99.7 99.7 148.1 148.1 1844 184.6 it 15.6 154 89 58. 58. 1004 1004 1494 1484 1854 1854 » 164 164 83 58.7 58.7 101.1 101.1 1434 143.5 186. 186. 84 17. 17. 84 59.4 594 101.8 1014 1444 1444 186.7 186.7 S3 17.7 17.7 85 69.1 60.1 1094 1094 145. 145. 187.4 1874 96 18.4 18.4 85 604 604 1034 1034 145.7 145.7 188.1 168.1 fl7 19.1 19.1 87 614 614 103.9 103.9 1464 1464 1884 1A84 SB 19.8 194 88 69.9 684 104.7 104.7 147.1 147.1 1894 1894 89 90-5 804 89 684 684 105.4 105.4 1474 1474 1904 1904 oo 914 814 00 634 834 100 106.1 106.1 010 1484 1484 oyo 190.0 1904 ai SL9 814 91 644 644 1064 1064 1494 1404 191.6 191.6 at 884 88.6 99 65.1 65.1 1074 1074 149.9 1494 1994 1994 33 834 834 93 654 654 1084 1084 150.6 150.6 193. 193. 34 94. 84. 94 664 864 1084 1084 1514 1514 193.7 193.7 as 94.7 84.7 95 674 674 109.6 109.6 159. 159. 1944 1944 34 955 954 98 674 67.9 1104 1104 •158.7 159.7 1954 1954 37 953 884 97 684 684 111. 111. 153.4 153.4 195.9 195.9 38 364 854 98 694 694 111.7 111.7 154.1 154.1 1964 1964 33 974 874 99 70. 70. 118.4 118.4 1544 1544 1974 1974 40 864 884 100 70.7 70.7 160 113.1 113.1 008 1554 155.6 OOO 198. 198. 41 99. 89. 1 71.4 71.4 1134 1134 1564 1564 198.7 19*7 43 99.7 99.7 9 78.1 79.1 114.6 1144 157. 157. 199.4 199.4 43 39.4 35.4 3 784 784 1154 115.3 157.7 157.7 890.1 900.1 44 31.1 31.1- 4 734 734 116. 116. 158.4 158.4 8004 8004 49 31J8 314 5 744 744 116.7 116.7 159.1 159.1 8014 8014 43 384 394 6 75. 75. 1174 1174 1594 1594 808.9 8084 47 334 334 7 75.7 75.7 118.1 118.1 1604 1604 808.9 8084 48 334 33.9 6 784 764 1184 1184 1614 1614 8034 8034 49 344 34.6 9 77.1 77.1 1194 119.5 1614 1614 8044 8944 00 354 35.4 119 774 774 170 1804 1804 008 1684 1684 000 805.1 805.1 51 38.1 36.1 1 784 785 180.9 1904 1634 1634 8054 8054 JO 354 364 8 794 794 1914 181.6 164. 164. 8054 8064 fl 374 374 3 794 794 1894 1894 1644 1644 8074 9974 54 384 394 4 894 894 183. 183. 1654 1655 8074 8979 55 334 35.9 5 814 814 183.7 183.7 1664 1664 8084 8684 58 394 394 6 88. 89. 1844 1844 1664 166.9 8094 9094 87 494 494 7 89.7 89.7 1854 1854 1674 1674 810. 810. 58 4L 41. 8 834 83.4 1854 1854 1884 1684 8M.7 910.7 59 417 417 9 84.1 84.1 1864 1864 169. 189. 8114 9114 88 484 484 ISO 844 844 180 1874 1874 840 169.7 169.7 300 818.1 818J diat. fr d.lat Idirt. W d.lat diet. dap, d.lat diat. dap. d.lat diat. *8> 6.1st. nataaaa.OapaitaraaadDtCLaUtada. Digitized by VjOOQIC Digitized by VjOOQIC TABLE VI. MERIDIONAL PARTS. Digitized by VjOOQIC Digitized by VjOOQIC tabu n. 159 1 8© 1© SO So 40 50 60 70 80 OO 10O lio 18© ISO MO / 00 ISO 180 MO 300 861 481 483 549 603 664 785 787 848 1 1 61 81 81 41 01 69 99 83 43 04 65 86 88 50 1 9 9 68 99 89 49 09 63 93 84 44 05 68 87 89 51 8 3 3 63 83 83 43 03 64 94 85 45 06 67 88 90 59 3 4 4 64 84 84 44 04 65 85 86 46 07 68 89 91 53 4 5 5 65 95 85 45 ' 05 66 86 87 47 08 69 30 98 54 5 6 8 66 88 86 46 06 67 87 88 48 09 70 31 93 55 6 7 7 67 87 87 47 07 68 88 89 49 10 71 38 94 58 7 8 8 68 88 88 48 08 09 SB 90 50 11 78 33 95 57 8 9 69 SB 89 49 09 70 30 91 51 IS 73 35 96 58 10 10 70 30 SO 50 10 71 31 99 59 13 74 36 97 59 10 1J 11 71 31 91 51 11 79 39 93 53 14 76 37, 98 60 11 IS 18 78 39 99 59 19 73 33 94 54 15 76 38 99 61 18 13 13 73 33 93 53 13 74 34 95 55 16 77 30 800 63 13 J4 14 74 34 94 54 14 75 35 96 58 17 78 40 01 63 14 15 15 75 35 95 55 15 76 30 97 57 18 79 41 OS 64 15 16 10 76 36 96 56 16 77 37 98 58 19 80 48 03 65 16 17 17 77 37 97 57 17 78 38 99 59 80 81 43 04 66 17 18 18 78 38 98 58 18 79 30 500 60 81 88 44 05 67 18 19 19 79 39 99 59 19 80 40 01 61 88 83 45 06 68 19 SO 80 80 40 900 60 90 81 41 09 69 83 84 46 07 69 80 81 81 81 41 01 61 91 89 49 03 63 84 85 47 08 70 81 a SS 88 48 09 69 99 83 43 04 65 95 86 48 00 71 99 S3 83 83 43 03 63 83 84 44 05 68 SO 88 49 10 79 93 84 84 84 44 04 64 84 85 45 06 67 87 89 50 11 73 84 SS SS 85 45 05 65 85 86 46 07 68 88 90 51 19 74 85 SO 98 86 46 08 66 96 87 47 08 69 99 01 58 13 75 86 87 87 87 47 07 67 87 88 48 09 70 31 98 53 14 76 97 88 88 88 48 08 68 88 88 49 10 71 39 93 54 16 77 98 89 88 89 49 09 69 99 90 50 11 79 33 94 55 17 78 29 30 30 90 50 10 70 30 01 51 19 73 34 95 56 18 79 30 31 31 91 51 11 71 39 98 59 13 74 33 96 57 19 80 31 38 39 98 59 19 79 33 93 53 14 75 36 97 58 80 89 38 33 33 93 53 13 73 34 94 54 15 76 37 98 50 31 83 33 34 34 94 54 14 74 35 95 55 16 77 3B 99 60 89 84 34 35 35 95 55 15 75 36 96 58 17 78 39 700 61 83 85 35 38 38 98 50 16 76 37 97 57 18 79 40 01 68 *4 86 36 37 37 97 57 17 77 38 98 58 IB 80 41 09 63 85 87 37 38 38- 98 58 18 78 SB 99 59 90 81 49 03 64 86 88 38 38 39 99 59 19 79 40 400 60 91 89 43 04 65 87 89 39 40 40 100 60 80 80 41 01 61 SS 83 44 OS 60 SB 90 40 41 41 01 61 81 81 49 09 69 83 84 45 06 67 SB 01 41 48 48 09 69 89 &i 43 03 63 94 85 46 07 68 30 99 49 43 43 03 63 S3 83 44 04 64 95 86 47 08 60 3i 93 43 44 44 04 64 84 84 45 05 65 96 87 48 09 70 39 94 44 45 45 05 65 S5 65 46 06 66 97 88 49 10 71 33 95 45 46 46 06 66 86 86 47 07 67 *8 89 50 11 78 34 96 46 47 47 07 67 87 87 48 08 68 99 90 51 19 73 35 87 47 48 48 08 68 98 88 40 09 60 30 01 59 13 74 36 98 48 49 49 09 60 99 89 50 10 70 31 09 53 14 75 37 99 49 50 50 10 70 30 90 51 11 71 39 93 54 15 76 38 900 50 51 51 11 71 31 01 59 19 79 33 94 55 16 78 3B 01 51 58 59 19 78 39 99 53 13 73 34 95 58 17 70 40 09 59 53 53 13 73 33 93 54 14 74 35 96 57 18 80 41 03 53 54 54 14 74 34 94 55 15 75 36 97 58 19 81 49 04 54 55 55 15 75 35 95 58 16 77 37 98 59 90 89 43 05 55 5ft 56 16 70 38 98 57 17 78 38 99 00 81 83 44 06 56 57 57 17 77 37 97 58 18 79 30 600 61 89 84 45 07 57 5* 58 18 78 38 98 59 19 80 40 01 69 83 85 46 08 58 59 59 119 179 8J39 899 360 480 481 541 OS 663 784 786 847 900 59 ' 00 I© SO 30 40 50 60 70 BO BO loo" lio ISO 130 140| < Digitized by VjOOQIC 160 TASLSTL 1 150 160 170 180 190 800 810 980 830 84? 9SP SB* 970 S9> 1 9iO 073 1035 1098 1161* 13125 18389 1854 1419 1484 1859 1818 1684 1931 4 1 11 74 36 99 63 38 90 55 SO 85 81 18 88 58 1 9 18 75 37 1100 64 97 91 56 SI 83 10 88 53 t 3 14 76 38 01 65 88 98 57 S3 87 83 99 87 59 J 4 15 77 39 08 66 89 93 58 S3 88 84 91 86 51 4 5 16 78 41 03 67 30 95 59 84 SO 88 99 88 57 1 6 17 79 48 05 68 83 98 60 85 01 87 93 99 51 6 7 18 80 43 06 09 33 97 61 86 03 88 94 01 59 7 8 19 81 44 07 70 34 98 63 37 03 80 03 09 69 6 9 80 88 45 08 71 35 99 93 88 04 80 98 04 61 9 10 31 83 46 09 78 86 1800 64 30 05 81 98 98 81 8 11 88 84 47 10 73 37 01 66 31 08 08 90 09 64 "1 13 83 85 48 11 74 38 08 67 33 87 83 30 07 65 nl 13 84 86 49 18 75 39 03 68 33 98 04 31 9ft OS u 14 85 87 50 13 76 40 04 69 34 90 88 39 09 97 M 15 86 68 51 14 77 41 05 70 35 1500 87 33 1999 63 IS 16 87 89 58 15 78 43 08 71 86 03 08 34 01 63 8 17 88 90 53 16 79 43 07 73 37 OJ 80 38 Of 79 17 18 89 91 54 17 81 44 08 73 88 04 70 37 01 79 8 19 30 93 55 18 89 45 10 74 39 09 71 38 05 73 8 SO 31 94 56 19 83 46 11 75 40 08 79 39 86 74 • 81 38 95 57 SO 84 48 13 76 41 07 73 40 07 75 « S3 33 96 58 81 85 49 13 I 43 08 74 41 89 74 «' 83 34 97 59 S3 86 50 14 44 09 73 49 89 77 84 35 98 60 83 87 51 15 80 45 10 77 43 U * U 85 36 99 61 85 88 58 16 81 46 \\ 78 44 n 99 B 86 37 1000 63 86 83 53 17 n 47 13 79 48 13 81 • 37 38 01 64 87 90 54 18 63 48 14 80 47 M 68 * 88 39 0* 65 88 91 55 19 84 49 15 81 48 U 83 S* 89 41 03 66 89 98 ' 56 SO 85 50 16 89 40 18 84 9) 30 43 04 67 30 93 57 SI 86 51 17 83 89 17 99 » 31 43 05 68 31 94 58 S3 87 53 18 84 81 n 89 *i 38 44 06 69 33 95 59 84 88 53 19 85 59 99 67 * 33 45 07 70 33 96 60 85 89 55 80 87 83 91 99 * 34 46 08 71 34 98 61 86 90 56 81 88 84 88 99 "1 35 47 69 78 35 99 68 87 93 57 83 80 89 S3 91 8' 36 48 10 73 36 18)00 64 89 S3 58 84 SO 57 94 99 8' 37 49 11 74 37 01 65 89 94 59 85 91 SB 95 SI 97! 38 50 19 75 38 08 66 SO 95 60 86 99 39 96 94 8 39 51 13 76 39 03 67 31 96 61 87 S3 80 97 99 »| 46 58 14 77 40 04 68 39 97 69 88 94 81 99 97 8, 41 53 15 78 41 05 69 33 98 63 89 95 89 89 99 41 ! 43 54 16 79 49 06 70 34 90 04 SO 96 83 31 99 8 43 55 18 80 44 07 71 35 1400 65 31 98 84 39 1869 "1 44 56 19 81 45 08 78 36 01 67 33 99 86 33 91 44 45 57 80 89 46 09 73 38 08 68 33 1860 87 31 68 * 46 58 81 84 47 10 74 39 03 69 35 01 88 31 93 81 47 59 .83 85 48 11 75 40 05 70 30 09 80 39 OS **l 48 60 83 86 49 18 76 41 06 71 37 03 70 38 OS *: 49 61 84 87 50 13 77 43 67 73 38 94 71 39 87 50 68 85 88 51 15 78 43 08 73 39 05 79 49 * m 51 63 86 89 54 16 80 44 09 74 40 08 73 41 »» 51 59 64 87 90 53 17 81 45 10 75 41 08 73 49 "1 a. 53 65 88 91 54 18 88 46 11 76 43 09 78 43 11 81 54 66 89 99 55 19 63 47 19 77 43 10 77 44 13 8 55 68 30 93 56 SO 84 48 13 78 44 11 78 49 14 a 56 69 31 94 57 31 85 49 14 80 46 19 78 47 U 8 57 70 33 95 58 S3 86 50 15 81 47 13 88 48 H 57 58 71 33 96 59 S3 87 58 16 83 48 14 81 40 17 8 59 978 1034 1097 IT© 1160 180 19)84 18J88 1853 1418 1483 1049 1815 ] 1889 1 1939 1 819 •/ / 15© 160 190 -1 Sio 880 830 340 89" 990 970 J ' 1 Digitized by VjOOQIC TABLE TI. Meridional Parts* 161 / 390 30© 31o 39P 330 340 350 360 J 370 380 390 40O 410 430 1 ' 1819 1888 1858 9038 3100 9171 9944 93189393 9468 9545 9033 9703 9782 1 31 90 59 30 01 73 46 19 94 70 46 34 03 83 1 3 33 91 60 31 09 74 47 SO 95 71 48 85 04 84 S 3 S3 99 63 33 03 73 48 33 96 73 49 97 06 fc6 3 4 34 93 63 33 04 70 49 S3 98 73 50 98 07 87 4 5 35 94 64 34 06 78 50 34 99 75 51 39 08 88 5 6 38 95 65 35 07 79 59 35 9400 76 53 31 10 W) 6 7 37 96 66 37 08 80 53 37 01 77 54 39 11 91 7 8 39 98 67 38 09 81 54 SB 03 78 55 33 13 93 8 9 30 99 69 39 10 83 55 39 04 80 57 34 14 94 9 10 31 1800 70 40 11 84 57 30 05 81 58 36 15 95 10 11 39 01 71 41 13 85 58 33 06 89 59 37 16 97 11 IS 33 09 73 43 14 80 59 33 08 84 60 38 18 98 12 13 34 03 73 44 15 87 00 34 09 85 69 40 19 99 13 14 35 05 74 45 16 88 61 35 10 86 63 41 SO 8801 14 15 37 06 76 46 17 90 63 37 11 87 64 43 S3 03 15 16 38 07 77 47 19 91 64 38 13 89 66 44 83 03 16 17 39 08 78 48 90 99 65 39 14 90 67 45 34 05 17 18 40 09 79 50 81 93 60 40 15 91 68 46 88 06 18 19 41 10 80 51 89 94 68 49 16 99 69 48 87 07 19 SO 49 11 81 53 83 96 09 43 18 94 71 49 83 09 30 Si 43 13 83 53 85 97 70 44 19 95 79 50 39 10 31 S3 45 14 84 54 SO 98 71 45 SO 96 73 51 31 11 S3 83 40 15 85 50 37 9900 79 46 S3 98 75 53 34 13 23 34 47 16 80 57 88 01 74 48 83 99 76 54 33 14 34 95 48 17 87 58 39 09 75 49 84 9500 77 55 35 15 35 SB 49 19 88 59 31 03 70 50 85 01 78 57 36 17 86 97 50 SO 90 60 33 04 77 51 87 03 80 58 37 18 37 98 53 31 91 61 33 05 79 53 88 04 81 59 39 30 88 99 53 83 93 63 34 07 80 54 89 05 83 61 40 81 39 30 54 S3 93 64 35 08 81 55 30 06 84 69 43 33 30 31 55 35 94 *5 37 09 89 56 39 08 85 63 43 34 31 39 50 86 95 66 38 10 83 58 33 09 60 65 44 35 33 33 57 87 97 67 39 11 85 59 34 10 88 66 46 26 33 34 58 88 98 69 40 13 86 60 35 13 89 67 47 38 34 35 60 39 99 70 41 14 87 61 37 13 90 69 48 89 35 30 01 31 9000 71 43 15 88 63 38 14 91 70 50 30 30 37 69 33 01 73 44 16 90 64 39 15 93 71 51 33 37 38 63 33 03 73 45 17 91 65 40 17 94 73 53 33 38 39 64 34 04 75 46 19 98 66 49 18 95 74 54 34 39 40 65 35 05 78 47 SO 93 68 43 19 97 75 55 36 40 41 66 36 08 77 49 31 95 69 44 81 98 76 56 37 41 49 68 37 07 78 50 83 96 70 45 S3 99 78 58 39 43 43 69 38 08 79 SI 34 97 71 47 S3 9001 79 59 40 43 44 70 39 10 80 59 85 96 73 48 84 OS 80 60 41 44 45 71 41 11 89 53 80 99 74 49 96 03 83 63 43 45 40 79 49 19 83 55 87 9301 75 51 87 04 83 63 44 46 47 73 43 13 84 56 38 03 76 59 88 06 84 64 45 47 48 75 44 14 85 57 30 03 78 53 30 07 86 66 47 48 49 76 45 15 86 58 31 04 79 54 31 08 87 67 48 49 59 77 46 17 88 59 39 00 80 56 39 10 88 68 49 59 51 78 48 18 89 61 33 07 81 57 33 11 90 70 51 51 53 79 49 19 90 03 35 08 83 58 35 IS 91 71 53 58 53 80 50 99 91 63 30 09 84 59 36 14 98 73 54 53 54 81 51 91 99 64 37 11 85 61 37 15 94 74 55 54 55 83 53 88 94 65 38 IS 86 38 16 95 75 56 55 50 84 53 84 95 67 39 13 88 63 40 17 96 76 58 56 57 85 55 85 96 68 41 14 89 64 41 19 98 78 59 57 58 80 56 86 97 69 49 16 90 66 49 80 99 79 60 58 59 1887 1857 8037 9098 9170 9943 9317 9391 9467 9544 9031 9700 9780 9863 59 990 30O 310 330 330 340 350 360 370 390 390 400 41o 480 1 Digitized by VjOOQIC 162 TABLE VI. Meridional Parts* 1 43© 440 450 460 470 48° 490 500 510 530 530 540 550 SCO t 2803 9946 3030 3116 3903 3993 3383 3474 3969 3665 3764 3865 39*8 44*74 1 64 47 31 17 04 93 84 76 70 67 65 66 70 76 3 (as 41) 33 18 06 95 85 78 78 6t 67 68 71 77 3 67 50 34 90 07 96 87 79 74 70 69 70 73 7§ 4 611 51 3b 31 0i» 98 88 81 75 73 70 71 75 91 5 70 53 37 83 10 99 90 83 77 73 78 73 77 63 6 71 54 38 34 18 3301 91 84 78 75 74 75 78 65 7 73 56 40 Sti 13 03 93 85 80 77 75 77 60 9§1 7 8 74 57 41 37 14 03 94 87 83 78 77 78 89 69 9 75 58 43 39 16 05 96 88 83 80 70 60 94 90 10 77 60 44 30 17 06 97 90 85 81 60 83 85 99 19 11 78 61 46 31 19 08 98 93 86 83 88 83 87 94 11 13 80 63 47 33 80 09 3400 93 88 65 64 85 80 95 n 13 81 64 48 34 83 11 03 95 90 66 85 67 01 97 n 14 83 65 50 35 83 18 03 96 91 88 87 80 08 99 M 15 '84 67 51 36 85 14 05 98 93 90 69 00 94 4191 19 ie 85 68 53 37 86 16 07 99 94 91 90 08 96 93 99 17 86 70 54 40 88 17 08 3501 96 93 93 94 98 94 17 38 88 71 55 49 89 19 10 03 96 95 94 05 90 96 m 10 89 78 57 43 31 80 11 04 99 96 05 07 4001 96 » SO 91 74 58 44 38 33 13 06 3601 98 07 09 03 19 99 31 99 75 60 46 34 83 14 07 03 99 99 3901 05 19 91 33 93 76 61 47 35 85 16 09 04 3701 3800 08 06 13 99 33 95 78 63 49 37 ST 17 10 06 03 03 04 08 15 93 34 96 79 64 50 38 38 19 18 07 04 04 06 10 17 94 '35 97 81 65 53 40 . 89 SO 14 08 06 66 07 19 19 99 36 99 83 67 53 41 31 33 15 10 06 07 09 14 91 99 37 3000 83 68 55 48 33 83 17 13 09 09 11 15 89 87 38 03 85 70 56 44 34 85 18 14 11 11 13 17 84 99 39 03 86 71 57 45 35 87 SO 15 13 13 14 10 89 89 30 04 88 73 59 47 37 88 81 17 14 14 16 81 88 39 31 08 89 74 60 48 38 30 83 18 16 16 18 39 30 31 33 07 91 75 68 50 40 31 85 30 17 17 19 84 38 39 33 08 93 77 63 51 41 33 86 83 19 19 91 96 33 » 34 10 93 78 65 53 43 34 88 83 31 81 83 88 34 »! 35 11 95 80 06 54 44 36 89 85 88 88 85 90 37 35 36 13 96 81 68 56 46 37 31 86 84 84 86 31 39 36 37 14 98 83 69 57 47 38 33 88 36 88 SB 33 41 37 38 15 99 84 71 59 49 40 34 30 37 87 30 35 48 Si 39 17 3000 85 73 60 50 41 36 31 89 80 38 97 44 30 40 18 03 87 73 68 59 43 37 33 31 31 33 38 46 49 41 19 03 88 75 63 53 45 30 34 33 38 35 40 48 41 48 81 05 90 76 65 55 47 40 36 34 34 37 49 59 48 43 38 06 91 78 66 5ti 48 49 38 36 36 38 44 59 43 44 34 07 93 79 68 58 50 43 39 37 38 40 45 53 44 45 35 09 94 81 69 59 51 45 41 39 30 48 47 55 45 46 96 JO 95 83 71 61 53 47 43 41 41 44 49 57 49 47 88 13 97 84 73 63 54 48 44 43 43 45 51 50 47 48 89 13 98 85 74 64 56 50 46 44 44 47 59 61 49l 49 31 14 3100 87 75 65 57 51 47 46 46 49 54 68 • f 50 33 16 01 88 77 67 59 53 49 47 48 51 56 94 591 51 33 17 03 90 78 68 60 55 51 40 40 53 58 69 » . 53 35 19 04 91 80 70 68 56 58 50 51 54 CO 99 59 53 36 80 05 93 81 71 64 58 54 59 53 56 61 79 53 54 37 81 07 94 83 73 65 59 55 54 54 56 63 79 54 55 39 83 08 95 84 74 67 61 57 55 56 59 65 73 55 56 40 84 10 97 86 76 68 69 59 57 56 61 67 75 59 57 49 86 11 96 87 78 70 64 60 59 60 63 60 77 57 58 43 87 13 3900 89 7P 71 66 68 60 61 64 70 79 59 59 9944 3089 3114 01 39903381 3473 3967 3664 3763 3863 3966 4078 4iei 59 i 430 440 450 460 470 48© 400 500 510 580 53* 540 550 590 9 Digitized by VjOOQIC TABLE VI. 103 Meridional Part* 1 570 580 590 OOO 610 4649 O30 4975 630 4905 640 650 66O 670 68O 690 700 1 ♦183 4994 4409 4537 5039 5179 5384 6474 5631 5795 6966 1 84 96 11 39 51 77 07 43 81 9b 77 33 97 69 1 9 80 98 13 31 53 79 09 44 64 98 79 36 5600 73 8 3 8e 4300 15 33 55 81 13 40 86 31 83 39 03 75 3 4 90 03 17 35 57 84 14 49 88 33 84 43 06 78 4 5 93 04 19 37 60 86 16 51 91 36 87 44 09 81 5 6 94 06 31 39 63 88 18 53 93 38 89 47 11 84 6 7 96 Ob 93 41 64 90 80 55 96 41 98 50 14 86 7 8 97 OB 85 43 66 93 83 58 98 43 95 53 17 fc9 8 9 911 11 87 45 66 94 95 60 5900 46 97 55 90 93 9 10 4901 13 99 47 70 96 87 69 03 48 5500 58 93 95 10 1J 03 15 31 49 78 98 99 05 05 51 03 60 85 98 11 18 05 17 33 51 74 4801 31 67 07 53 05 63 38 0001 13 13 07 18 34 53 76 03 34 69 10 58 07 66 31 04 13 14 08 SO 36 55 78 05 36 71 13 58 10 68 34 07 14 15 10 93 38 57 80 07 38 74 14 61 13 71 37 10 15 its 19 34 40 59 83 09 40 76 17 63 15 74 39 13 16 17 14 36 43 03 84 11 43 78 19 66 18 76 43 16 17 18 16 93 44 04 87 14 45 81 83 68 90 79 45 19 18 19 18 30 46 06 89 16 47 83 84 71 83 89 48 33 10 90 90 33 48 68 91 18 49 85 86 73 86 85 51 85 30 91 SI 34 50 70 93 30 51 68 39 76 88 87 54 36 31 99 93 3D 53 73 95 S3 54 90 31 78 31 90 56 31 33 93 95 38 54 74 97 84 56 93 34 80 33 93 59 34 33 94 97 40 56 76 99 96 58 95 36 83 36 95 63 37 34 95 90 49 58 78 4701 89 60 97 38 85 39 98 65 40 85 96 31 44 60 80 03 31 63 99 41 88 41 5701 68 43 36 97 a 45 03 83 05 33 65 5108 43 90 44 04 71 46 37 98 34 47 64 84 07 35 07 04 46 93 46 06 74 49 38 99 36 49 06 86 10 37 09 06 48 95 40 09 76 59 39 30 38 51 68 88 19 39 78 08 50 98 59 19 79 55 30 31 40 53 70 90 14 43 74 11 53 5401 54 15 83 58 31 39 49 55 78 93 16 44 76 13 55 03 57 17 85 61 33 33 44 57 74 94 18 46 78 15 58 06 59 90 88 64 33 34 46 50 76 96 90 48 81 18 60 08 63 93 91 67 34 35 47 •1 78 98 93 50 83 90 63 11 65 95 94 70 35 30 49 63 80 4600 94 53 85 83 65 13 67 *J8 96 73 36 37 51 05 83 03 36 55 87 85 67 16 70 31 99 76 37 38 53 07 84 04 38 57 90 87 70 18 73 34 5903 79 38 39 55 09 86 06 31 59 93 99 73 81 75 36 05 83 30 40 57 70 88 08 33 01 94 33 75 83 78 39 08 85 40 41 59 79 90 10 35 03 96 34 77 86 80 43 11 88 41 49 09 74 0-2 19 37 65 99 36 80 88 83 45 14 91 44 43 09 70 94 14 39 68 5001 39 88 31 86 47 17 94 43 44 04 78 95 16 41 70 03 41 84 33 88 50 19 97 44 45 06 80 97 IP 43 78 05 43 87 36 91 53 83 6100 45 40 08 83 99 90 45 74 08 46 89 38 94 56 35 03 46 47 70 84 4501 93 47 76 10 48 98 41 96 58 88 08 47 48 79 86 03 95 50 79 13 51 94 43 99 61 31 09 48 49 74 88 05 97 59 81 14 53 97 46 5603 64 34 13 49 50 75 90 07 99 54 83 17 55 99 48 04 67 37 15 50 51 78 99 09 31 56 85 19 58 5301 51 07 70 40 18 51 59 80 94 11 33 .58 87 31 60 04 54 10 78 43 31 53 53 89 96 13 35 60 90 33 03 06 58 13 75 46 84 53 54 84 98 15 37 69 98 86 65 09 59 15 78 48 87 54 55 85 90 17 39 04 94 98 67 11 61 17 81 51 30 55 5ft 87 4401 10 41 06 96 30 69 14 64 30 83 54 33 56 57 89 03 91 43 09 98 33 78 16 66 33 86 57 36 57 5* 91 05 33 45 71 4901 35 74 19 69 35 89 60 40 58 59 4993 07 45*25 4647 4773 03 5037 5176 5331 5471 5638 5793 9963 6143 59 / 570 58© 590 OOO 610 690 H 640 650 66O 670 680 690 TOO 1 Digitized by VjOOQIC 164 TABU VI. Meridional Part* f 710 730 730 740 750 760 77° 780 790 80O 810 880 830 84P 6146 6335 6534 6746 6970 79J10 7467 7745 B0468375 9739 9145 9606 10137 6 1 49 38 36 49 74 14 73 49 51 81 45 53 14 147 1 s 53 41 4J 53 78 18 76 54 56 87 58 60 98 158 f 3 55 45 45 57 88 S3 81 59 61 93 58 67 31 186 1 4 58 48 4b 60 86 87 85 64 67 98 65 74 39 K? 4 5 61 51 53 64 90 31 90 68 73 8404 71 88 47 Iff 5 6 64 54 55 68 94 35 94,' 73 77 10 78 89 55 195 8 7 67 58 58 71 97 39 98! 78 83 16 84 96 64 7 8 70 61 68 75 7001 43 7503J 83 88 S3 91 9903 79 815 8 9 73 64 65 79 05 47 07 88 93 87 97 11 69 994 • 10 77 67 69 88 09 53 18' 93 99 33 8804 18 89 934 »l 11 80 71 73 86 13 56 16 98 8104 39 10 95 97 944 111 12 83 74 76 90 17 60 817803 09 45 17 33 9706 954 Mi 13 86 77 79 93 81 64 85 06 15 51 83 40 14 964 Ul 14 89 80 83 97 85 68 30, 19 80 57 30 48 93 974 14 15 93 84 86 6801 89 73 35: 17 85 63 30 55 31 994 »! 16 95 87 90 04 33 77 39 88 31 69 43 63 40 994 » 17 98 90 93 08 37 81 44 87 36 74 49 70 48 394 17 » 18 69)01 94 97 18 41 85 48 33 41 80 56 77 57 314 1< 19 05 97 6600 15 45 89 53 37 47 66 63 65 65 394 It SO 08 6400 03 19 48 94 57 48 53 98 69 98 74 331 »l SI 11 03 07 83 59 98 08, 47 58 98 76 9300 83 345 si! S3 14 07 10 86 56 7303 661 53 63 8504 83 07 91 355 911 S3 17 10 14 30 60 06 71 57 68 10 89 15 9809 365 83 84 SO 13 17 34 64 11 76 68 74 16 96 88 09 SB 94. 35 83 17 81 38 68 15 80 67 79 98 8903 30 17 385 95' 96 86 90 94 41 78 19 85 73 85 88 09 37 96 398 »l 87 30 83 88 45 76 S3 89 77 90 34 16 45 35 488 97 98 33 87 31 49 80 98 94 83 96 40 93 53 44 418 9* 89 36 30 35 53 84 33 99 87 8*01 46 30 60 59 497 98 30 39 33 39 56 88 36 7603 98 07 53 36 69 61 437 »• 31 48 37 48 60 93 41 08 97 18 56 43 76 74 448 ». 39 45 40 46 .64 96 45 13 7903 18 65 50 83 79 459 a 1 33 49 43 49 68 7100 49 17 07 S3 71 57 91 88 488 s 34 58 47 53 71 04 53 83 18 99 77 63 99 97 479 *. 35 55 50 56 75 68 58 86 17 34 83 70 9407 9901 498 35 36 58 53 60 79 18 63 31 98 40 69 77 14 15 591 38 37 61 57 63 83 16 68 36 87 45 95 84 88 94 511 37 38 64 60 67 86 80 71 40 33 51 8601 91 30 33 591 3? 39 66 63 70 90 84 75 45 37 56 07 96 38 49 539 39" 40 v71 67 74 94 88 79 50 43 69 14 9005 45 SI 543 41 41 74 70 77 98 33 64 54 48 67 SO 19 53 68 554 41 43 77 73 81 6901 36 88 59 53 73 96 18 61 69 585 41 43 80 77 85 05 40 93 64 58 79 39 85 69 78 sn 43 44 83 80 88 09 45 97 68 63 84 36 39 77 87 44 45 87 83 98 13 49 7401 73 68 90 44 39 85 96 597 45 46 90 87 95 17 53 06 78 73 95 51 46 93 10005 688 48 47 93 90 99 80 57 10 83 78 8301 57 53 9501 015 611 47 48 96 94 6703 84 61 14 87 83 07 63 60 69 084 • 49 99 97 06 88 65 19 93 89 IS 69 67 17 033 641 « 50 6303 6500 10 39 69 S3 97 94 18 78 74 85 043 881 51 51 06 04 13 36 73 87 7703 99 94 89 81 33 059 863 51 53 09 07 17 40 77 31 06 8004 89 88 88 41 061 674 51 53 19 11 80 43 61 36 11 09 35 95 96 40 071 861 53 54 15 14 84 47 85 41 16 14 41 8701 9103 57 *». 55 19 17 88 51 89 45 81 80 47 07 10 65 97 2! 56 S3 31 31 55 94 49 85 85 53 14 17 73 091 7W 38 t 57 85 84 35 59 98 54 30 30 58 SO 94 81 108 738 57' 58 88 88 3P 63 7903 58 35 35 64 88 31 89 Iffl 749 51. 59 6S33 6531 6743 696t 06 7463 7740 8O40 8369 8733 9138 9598 10197 1079 38 i 710 78P 73© 740 750 7«o 770 780 790 800 61* 88O 830 840 ' Digitized by VjOOQIC TABLE VH. AMPLITUDES Digitized by VjOOQIC 166 TABLE VH. Amplitude* Declination of the Sun. lat. 0O 10 30 SO o' 30 40 50 60 70 80 , 90 l«o IP .*. 03 P 0' 33 0' 40 50 OO 0' 70 0' 80 0' 90 c J4P * IP • * 1 • • 1 2 • • t 3 1 1 1 1 1 1 4 1 1 1 1 1 1 I 9 i 5 1 1 1 1 8 8 8 8 3 * 6 1 1 1 3 8 s 3 3 3 4 t 7 J 1 8 3 3 3 4 4 5 5 7 8 1 8 3 3 4 4 5 5 6 7 - y 1 3 3 4 5 5 6 7 6 a • 10 8 3 4 5 6 7 7 8 t » u n 3 3 4 6 7 8 9 10 11 13 ii l* 3 4 5 7 8 11 13 14 15 ii 13 3 5 6 8 10 11 13 14 16 10 U 14 4 6 7 9 11 13 15 17 19 99 i« 15 3 4 6 8 11 13 15 17 19 21 94 ii Hi o • 3 5 7 10 12 15 17 19 83 84 97 l. 17 3 5 8 li 14 17 19 83 85 88 31 IT Id 3 6 9 13 15 19 82 85 88 3 14 .- 12 3 7 10 14 17 81 34 88 31 15 * is 40 4 8 13 15 19 83 $7 31 35 13 43 21 41 4 9 13 17 SI 36 30 34 39 43 4* I 22 5 9 14 19 84 88 33 38 43 48 53 a 33 5 10 16 81 86 31 36 43 47 53 50 a 24 6 11 17 83 3d 34 40 46 53 57 19 3 t* 25 6 13 19 85 31 37 44 50 56 11 3 9 si 2d 7 14 80 87 34 41 48 54 10 1 8 15 t 27 7 15 Si 82 37 44 53 59 7 14 92 r 2d 8 16 •84 33 40 48 56 9 4 13 SI *> *• 29 17 86 34 43 58 8 1 9 18 87 3» tt 30 19 87 37 47 56 5 15 84 14 44 31 31 10 80 30 40 50 7 10 SI 31 41 59 Ji 32 11 83 33 43 54 5 16 87 38 49 IS • Ji 33 IS 83 35 46 58 10 31 33 45 57 9 J} 34 13 35 37 50 6 3 15 87 40 53 IS 5 W H 35 13 87 40 53 6 *0 33 47 11 1 14 9* li 36 14 88 43 57 11 85 40 54 94 99 » 37 15 30 45 5 1 16 30 47 10 8 18 14 49) 37 38 16 32 48 5 31 37 54 10 87 44 14 1 39 39 17 34 53 9 86 44 9 1 19 37 55 13 3tf 40 18 37 55 13 33 51 9 88 47 11 6 * " . 41 80 39 59 18 38 58 18 38 58 18 3* 41 > 42 81 48 4 3 83 44 8 5 86 48 18 9 31 51 49 • 43 32 44 6 SB 51 13 36 58 81 44 15 7 43 44 83 47 10 34 5* SI 45 11 9 34 5R 99 4« 45 35 50 15 40 7 5 30 55 81 47 14 13 39 45 4:i Si 53 19 46 13 &> 10 6 33 13 1 . 89 57 «t 47 88 56 84 53 81 49 18 46 16 1 45 16 IS 47 48 30 59 8J 59 89 59 30 IS 31 15 S 14 4- 4J 31 3 3 35 6 6 38 9 10 43 15 *l 91 54 4> 50 33 7 40 14 48 83 56 30 14 5 1 49 17 19 39 51 35 11 46 83 58 34 11 10 47 84 18 1 3»|31 53 37 15 53 30 8 8 47 85 13 4 43 1 93 18 13: 53 40 19 59 39 80 10 41 88 15 4 1 46 *• ,53 51 43 84 5 7 49 33 15 58 48 86 17 11 57 M 55 45 83 14 59 44 30 IS 16 14 3 50 37 19 9m a 56 47 35 83 7 10 58 46 35 85 16 15 18 5 57 > 57 50 40 31 88 9 13 11 4 56 48 49 16 39 39 57 59 53 47 40 34 88 83 13 18 15 14 17 10 19 8 91 • > 5 > 57 53 50 47 45 43 41 41 41 49 45 5 no . 9,0 o 40 60 80 1 100 9 ISO 4 140 6 MP 10 180 14 990 19 *9o*> it lat.

130 MO 150 I60 170 ISO j IO© SOO 810 88O 230 let. "io* o° .90 0' 130 p 140 150 0* 160 170 0' ISO O'llbO SO© O'iio 88° 0' 430 1 4) 1 3 1 1 I 1 1 I 1 1 1 s 3 1 1 1 1 1 3 3 8 8 • 8 8 3 4 9 8 9 9 8 3 3 3 3 3 3 4 4 5 3 3 3 4 4 4 4 5 5 5 5 5 ft 4 4 5 5 5 7 7 7 8 8 7 * 6 7 7 8 8 9 9 10 10 11 7 8 7 8 8 9 10 10 11 18 18 13 14 14 8 9 t 10 U 11 IS 13 14 15 10 16 17 18 9 io 11 19 13 14 15 10 17 18 19 SO 81 83 10 11 14 15 10 17 18 SO SI S3 S3 85 80 87 11 19 10 18 19 31 83 84 25 80 88 30 31 33 19 13 19 91 83 84 80 88 39 31 33 35 37 38 13 14 » 84 90 88 30 38 34 30 38 40 43 45 14 15 90 98 30 33 35 37 39 48 44 47 4V 58 15 16 89 38 35 37 40 48 45 48 51 53 50 5U 10 17 33 30 39 48 45 48 51 54 58 88 33 4 84 7 17 18 38 41 44 47 51 ^ * 58 80 1 81 5 8 18 15 18 19 49 46 49 53 57 18 1 19 5 8 18 16 80 84 19 •20 47 51 55 59 17 3 8 18 10 80 85 30 34 90 il 58 57 15 1 16 10 15 80 85 89 34 40 44 81 23 57 14 8 7 13 18 93 38 34 30 44 50 55 39 •a 13 3 9 14 30 30 31 37 43 49 55 84 1 95 7 93 44 9 15 81 37 34 40 40 53 88 93 6 13 10 94 *5 16 88 89 30 43 49 50 81 3 10 18 35 33 35 3o 99 30 37 44 58 59 30 7 14 88 30 38 40 30 27 30 37 45 53 18 1 19 9 18 *0 34 43 53 90 1 97 id 37 40 54 17 3 11 80 SO 38 47 57 85 16 8H 99 45 54 10 3 13 98 33 41 51 83 1 84 11 88 33 3D 30 53 1 5 3 13 S3 34 44 54 88 5 10 37 38 49 30 31 14 8 13 84 34 45 57 81 8 19 31 43 55 97 7 31 32 11 83 34 40 58 80 10 88 35 47 95 30 13 80 33 33 SI 34 40 59 19 11 94 37 51 84 4 18 38 40 33 34 31 45 58 18 11 85 30 53 S3 7 88 37 58 88 7 34 35 48 50 17 11 35 40 55 S3 10 85 41 57 37 13 99 35 3G 54 J 9 84 39 55 81 11 87 44 -5 1 96 18 35 53 30 37 15 5 88 38 54 20 11 88 40 34 3 81 40 58 99 18 37 :w Id 35 53 19 10 3d 47 83 5 34 43 97 3 38 33 44 38 39 31 50 18 8 37 40 88 90 40 80 7 88 49 30 11 39 40 45 17 5 85 45 .'1 5 98 47 95 9 31 54 89 17 40 40 41 59 90 48 SO 3 85 48 94 10 33 57 38 8J 40 31 11 41 42 16 15 37 19 S3 40 83 10 34 59 87 84 50 30 10 43 4* 43 31 55 19 44 98 8 34 85 30 80 53 39 SO 49 38 18 43 44 48 18 13 39 81 5 38 59 80 55 88 33 53 31 S3 54 44 45 17 6 33 80 38 57 84 35 55 37 SS 50 30 97 59 33 33 45 40 85 54 83 53 93 13 53 30 35 57 89 30 31 3 33 38 34 14 40 47 45 19 10 47 88 18 50 35 33 57 88 31 30 43 33 19 57 47 40 8 6 39 81 13 I 45 84 SO 55 37 30 39 7 44 38 S3 34 3 35 44 48 49 89 .* 3 38 .83 14 51 SO 88 88 45 31 85 33 7 49 36 33 49 50 58 89 88 7 45 35 94 87 3 44 30 96 39 9 53 35 39 37 98 50 51 19 17 57 30 ,84 17 59 41 89 85 31 9 55 34 43 30 32 38 83 51 53 44 11 86 83 8 53 90 30 88 81 30 8 56 33 45 35 30 37 89 39 94 53 53 90 13 57 43 35 88 37 10 89 4 54 38 45 34 38 36 33. 38 30 40 89 53 54 43 S 30 34 18 ,80 7 58 50 31 43 33 38 35 35 37 34 39 38 41 40 54 55 91 15 83 5 57 49 98 43 30 39 38 30 34 35 30 30 38 40 40 47 48 50 55 5 I30 j 140 150 160 l?o 180 190 SOO SI© 830 830 let. I DeeUaetion of the San. Digitized by VjOOQIC Digitized by VjOOQIC TABLE VIII. TIME OF THIS SUN'S RISING AND SETTING. Digitized by VjOOQIC 170 TABLE Vm. Time of the Son's rising and setting . App.ti«ae.t^2lr when the UL and dec are of ff^y I* Declination of the Bon. tat. 0O I© SO 30 40 50 60 70 80 90 lOo lio no hu. oo 6* p 0- 6* 0- 6* 0- 6* 0- 6* 0-6* 0- 6» 0- 6* 0- 6* 0- 6* 0- 6* 0- 0* 0- 00 1 6 1 1 1 1 1 3 6 1 1 1 1 9 S 9 3 3 6 1 1 1 1 9 9 s 3 3 4 6 1 1 3 8 8 3 3 3 3 5 6 1 3 S 3 3 3 4 4 4 6 6 1 3 3 3 3 4 4 5 5 7 6 1 3 3 3 4 4 5 5 6 8 6 3 3 3 3 4 5 5 6 6 7 6 3 3 3 4 4 5 6 6 7 8 10 6 1 3 3 4 4 5 6 6 7 R • to 11 6 3 3 3 4 5 5 6 7 8 9 • 11 IS 3 3 3 4 5 6 7 8 9 9 IB IB 13 8 3 4 5 6 6 7 8 • 10 11 n 14 3 3 4 i 6 7 8 9 10 1 11 19 M 15 3 3 4 6 8 9 10 11 18 13 15 16 3 3 5 6 7 8 9 10 19 13 14 M 17 3 4 5 6 7 9 10 11 18 14 15 17 18 3 4 5 7 8 9 10 13 13 14 If to 19 3 4 6 7 8 10 11 13 14 15 17 19 90 3 4 6 7 9 10 18 13 15 M 10 80 SI 13 5 6 8 9 11 18 14 16 17 19 ta S3 3 5 6 8 10 11 13 15 16 18 89 89 33 3 5 7 9 10 13 14 15 17 19 n 93 34 4 5 7 9 11 13 14 16 18 90 93 94 35 4 6 7 9 11 13 15 17 19 81 83 95 SO 4 6 8 10 IS 14 16 18 90 83 94 99 37 4 6 8 10 18 14 16 19 81 33 95 97 88 4 6 9 11 13 15 17 19 83 34 90 98 SB 4 , 7. 9 11 13 16 18 80 83 85 87 90 30 5 7 19 14 16 19 31 S3 M 98 39 31 5 7 10 18 14 17 19 S3 84 87 90 St 33 5 8 10 13 15 18 80 S3 85 88 31 39 33 5 8 10 13 16 18 31 84 86 89 33 33 34 3 5 8 11 14 16 19 S3 85 37 30 33 34 35 6 8 11 14 17 30 S3 85 SB 31 34 33 36 6 9 13 15 18 80 S3 86 SB 33 9* 39 37 3 6 9 13 15 18 81 84 87 31 34 37 37 38 3 6 9 13 16 19 83 85 86 g 35 SB 39 30 3 6 10 13 16 30 83 86 SB 36 40 39 40 3 7 10 13 17 80 34 87 31 34 38 41 49 41 3 7 10 14 17 31 35 88 33 35 30 43 41 43 7 11 14 18 33 85 89 33 37 40 44 49 43 7 11 15 19 S3 36 30 34 38 48 40 43 44 8 13 15 19 33 37 31 35 39 43 47 44 45 8 IS 16 30 34 38 33 36 41 45 40 45 46 8 13. 17 91 35 89 33 38 43 46 51 49 47 9 13 17 93 86 30 35 39 44 48 53 47 48 9 13 18 S3 87 31 36 41 45 50 55 48 49 9 14 18 S3 88 33 37 48 47 53 57 49 50 10 14 19 34 89 34 39 44 49 54 50 59 51 10 15 30 85 30 35 40 45 50 50 7* 1 51 53 10 15 91 86 31 36 41 47 59 58 3 59 53 11 16 31 87 38 38 43 49 54 7* 6 S3 54 11 17 33 88 33 39 45 50 56 3 8 54 55 11 17 33 89 35 40 46 53 58 4 11 SS 56 13 18 34 30 36 48 48 54 7* 1 7 13 59 57 6, 13 19 85 31 37 44 50 56 3 10 16 *7 58 13 19 96 38 39 45 53 59 6 13 SO 59 50 6. 13 30 37 33 40 47 54 7» 1 8 15 83 JO 60 6* 6» 7 6* 14" 6*81- 6*88- 6*35" 6*43- 6*49" 6*56- 4 11 19- 80 99 tat. 00 10 SP 30 40 50 60 TO I 8© OO 100 lio ISO WU » IS*— Ape. time at somas, gives the tins of setting. Digitized by VjOOQIC TABLE VIU. Time of the Son'i rising and letting. 171 *»*■•« SS2T when the lat. and dec • « * ffJ^JS? Dedication of the Sun. lat. 13© 14© 15© IfiO 17© 18© 19© SO© 810 33© S3© 83© 88' lat 6» 0- 6* 0- 6* 0- 6» 0- 6» 0* 6* 0- 6» 0" S» 0" 6k 0- 6» 0* 6» 0* 6* 0- 0© 1 1 1 1 1 1 1 1 1 S 3 8 S 1 3 3 8 8 3 9 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 & 3 4 4 4 4 5 5 5 6 6 6 6 7 7 4 5 5 5 5 6 6 7 7 7 8 8 9 9 5 6 6 6 6 7 7 8 8 9 9 10 10 10 6 7 6 7 8 8 9 9 10 10 11 11 • 19 19 7 8 7 8 9 9 10 10 11 13 IS 13 14 14 8 9 8 9 10 10 11 13 13 13 14 15 15 16 9 10 9 10 11 19 19 13 14 15 16 16 17 18 10 11 10 11 13 13 14 14 15 16 17 18 19 19 11 13 11 13 13 14 15 16 17 18 19 30 81 31 13 13 13 13 14 15 16 17 18 19 30 31 33 33 13 14 13 14 15 16 17 19 30 31 83 83 84 85 14 15 14 15 16 18 19 80 31 88 34 35 86 87 15 16 15 16 18 19 80 81 83 34 35 37 88 99 16 17 16 17 19 30 31 33 34 36 37 88 30 31 17 18 17 19 90 81 33 34 *6 37 89 30 38 39 18 19 18 SO 81 33 34 86 37 89 30 33 34 34 19 90 19 31 33 34 36 37 89 30 33 34 36 30 80 21 90 33 34 35 87 89 30 33 34 36 38 38 81 33 81 S3 35 37 88 30 33 34 36 36 39 40 83 S3 33 34 36 38 30 38 34 36 38 39 43 43* 33 34 34 35 37 89 31 33 35 37 39 41 44 45 84 35 35 37 89 31 33 35 37 39 41 43 46 47 85 36 36 38 30 38 34 36 39 41 43 45 48 49 80 37 37 89 31 34 36 38 40 43 45 48 50 51 87 38 38 30 33 35 37 40 48 45 47 50 53 53 38 39 39 33 34 37 39 43 44 47 49 53 54 56 39 30 31 33 36 38 41 43 46 49 51 54 57 58 30 31 33 34 37 40 48 45 48 51 53 56 59 7» 31 33 S3 36 39 41 44 47 50 53 56 58 7» 9 3 38 33 34 37 40 43 46 49 53 55 58 7» 1 4 5 33 34 36 39 43 45 48 51 54 57 7» 3 7 8 34 35 37 40 43 46 49 53 58 59 3 6 9 11 35 36 39 43 45 48 51 55 58 7» 1 5 8 13 14 36 37 40 43 47 50 53 57 7* 4 7 11 15 16 37 39 43 45 48 53 55 59 3 6 10 14 17 19 38 39 43 47 50 54 ¥ 7» 1 5 9 13 16 30 93 39 40 45 48 53 56 59 3 7 11 15 19 33 35 40 41 46 50 54 58 7» 9 6 10 14 18 88 37 39 41 43 48 53 56 7» 4 8 IS 17 31 35 39 33 44 43 50 54 58 3 6 11 15 19 34 39 33 36 43 1 44 53 56 7» 4 9 13 18 93 37 33 37 39 44 45 53 58 3 7 11 16 31 85 30 35 40 43 45 46 55 7» 4 9 14 19 84 89 34 39 44 47 46 47 57 3 7 IS 17 83 37 33 37 43 48 51 47 48 59- 4 9 14 19 95 30 35 41 47 53 55 48 49 7» 3 « 13 17 83 38 33 39 45 51 57 8» 49 50 4 9 14 30 85 31 37 43 49 55 8» 8 5 50 51 6 13 17 33 39 35 41 47 53 8» 7 10 51 53 9 14 30 36 33 38 45 51 58 5 18 15 59 53 11 17 33 89 36 43 49 56 8» 3 10 17 81 53 54 14 30 87 33 40 46 53 8* 8 15 33 37 54 55 17 33 30 37 44 51 58 5 13 81 3D 33 55 56 30 37 34 41 48 55 » 3 11 19 37 36 40 56 57 33 30 37 45 58 8* 8 16 35 34 43 48 57 58 37 34 43 49 57 5 14 S3 33 41 51 56 58 59 30 38 46 54 8» 3 11 80 89 39 49 9* 9* 5 59 60 34 43 51 59 8 17 38 36 47 58 9 15 60 lat. 130 140 15© 16© 17© 18© 190 SO© 31© 33© 33© S3© 38 ' lat. 1 * 13*— App, time at suiwrr, fives the time of rifinf Digitized by VjOOQIC Digitized by VjOOQIC TABLE IX, Digitized by VjOOQIC 174 TABLE DC. TABLE X. Atmospherical Refractions. Barom. 30 in. Fa. Therm. 50° App. Alt. Refrac- tion. Diffi forlOO Therm. App. Alt. Refrac- tion. Biff for 20° Therm. 10O 5' 20" •7" 50O 1' 49" •8" 11 4 51 6 '51 47 3 IS 88 5 53 45 3 13 8 5 53 44 3 14 3 50 5 54 43 3 15 34 4 55 41 3 16 SO 4 56 39 3 17 9 4 57 38 18 3 58 4 58 36 19 48 3 59 35 SO 39 3 60 f34 31 31 3 61 33 83 33 3 63 31 83 17 3 . 63 30 34 10 3 64 38 85 4 3 65 87 36 1 59 3 66 86 37 54 3 67 35 38 49 3 68 34 39 45 3 69 83 30 41 3 70 31 31 37, 3 71 80 1 33 33 3 73 19 33 30 3 73 18 34 86 3 74 17 35 83 3 75 16 36 89 3 78 14 37 17 3 77 13 38 14 78 IS 39 13 79 11 40 9 80 10 41 7 81 9 43 5 83 8 43 3 4 83 7 44 84 6 45 58 85 5 46 56 86 4 47 54 87 3 48 53 88 8 49 51 89 1 50 49 90 Augmentation of the moon's semi-diamTr. Altitude. Augment. 10© 3" 15 4 30 5 35 7 30 8 35 9 40 10 45 11 50 IS 55 13 60 14 70 15 90 16 TABLE XL Son's Alt PTxinalL 150 9" 35 8 45 7 55 6 65 5 70 4 75 3 80 8 65 1 • When the Therm, is below 50° the correction in t Nwt columns la addatiye to the refraction. Digitized by VjOOQIC Digitized by VjOOQIC Digitized by VjOOQIC MAURY'S NAVIGATION, Jt! ELEMENTARY, PRACTICAL, AND THEORETICAL TEEAT1SB Off NAVIGATION i WITH A MEW AND EASY FLAN FOE FIMB1MO D1FF. LAT. t DEP., CQUB8E, AND DISTANCE 1Y PROJECTION. BY M. r . MAURY, LIEUT., U. S. NAVY. OPIHIO At OP MAYIQATORS AMU PftoriBSOKg. Bos-row, April 21st, 1835. A work of the kind you are preparing for the pKN t containing the demonstrations of the formulas of Nautical Astronomy, would be very useful to those who have a tmite for the ■object, and would like to eiamion tile demoiMtfations of the rules. Heajiectfully, Your obedient sferv ant, N. BOWDITCtf, PniLAintPHiA, 14th April, 1835. Dsa« 8n: 1 hate eiamined, with is mficli care as th« nature of my engagements has permitted, the book intended for the instruction of the ionnfer ©fleers of the navy, which you awe left with me. My opinion ia f that inch a work will be valuable to them, and will met with fawovr among them; aappl ying, iw it does, the mathematical principle! in- volved in the studies of their profession in a sufficiently condensed form. Coming from one of their own profession, Especially, 1 nboold anticipate that the work would be received among them, even with- out the injunction of the authorities, who would, however, 1 think, find it to the inte- rest of the ■ertke to sinction it. Allow me to say, that 1 consider the work filly to aostaiii the high character for scion- tilc acquirement, which I have always heard attributed to its anther. Respectfully yours, A. 0. BAOHE, Prof, &e. The nuiersigiied are of ©pinion that the work of Lieutenant M. F. Maury, on navi- gation, ii eminently useful as a school book for nmutical students. It illustrates with clearness and aimplieity, the principles on whieh the oaknlmtions in nat igation are founded. • ^ We felt the want of just such a oeok in tad of our early studies, and cheerfully re- eonunead it to all who desire to inform thorns©!? es in this branch of education, with a. vkw to the nautical profession. f MANC1S H. GREGORY, Capt KOBEMT F. STOCKTON, Cant FEBBEWCK BUGLE, Com. G. A. MAGRUDER, Com. Mv Diam 8m: . I have great pleasure in stating my be- lief that it is of the utmost importance that the midshipmen of the navy should have some established work, containing within itself all the information on mathematics and Mmgfttion, including nautical astro- nomy, which they arc required to know in •tiler to pass am examination fur promo- mentary, and embrace arithmetic, algebra, geometry, and plane and spherical trigo- nometry, io far, and so far only, as might be necessary to the construction of all the rules and fermnlie requisite to solve the various problems in navigation and sur- veying: When 1 Was preparing for exami- nation, 1 felt an earnest desire to pssess this information, and fo ascend step by step to a complete understanding of the whole subject, so as to hate the means of reach- ing all the processes of which 1 availed myself by my 6wn resources, without taking any thing on trust. After my pro- motion 1 devoted my whole time and atten- tion, for a considerable period, in attaining this object; and feeling how much my own coorse hid been impeded by the want of books containing the required knowledge, I carefully preserved all that I had recourse to for the purpose; such as La Croix, Be- lont, Le'gendre, Lassafle, Borda, and Cal- let, and determined at my earliest leisure to compile from them a treatise, narrowed down to. what was indispensable, so as to spare others, ambitious of more complete information on this branch of professional knowledge than is usual, the great diffi- culty 1 hail experienced in knowing where to apply for information. The appearance of your work, so exactly sifpplying what Was needed, and, Hfom your infinitely higher mathematical attainments, executed in so superior a manner, to what it would have been had the task been left to me, took from me all motive and desire to go on with the undertaking;. After having exerted such commendable exertion, in- genuity, and judgment in accomplishing your task, 1 trust you may, at least, have the satisfaction of seeing your work gene- rally used by the midshipmen, if not as » manual of practical navigation, which Bow- ditch's admirable work so effectually surf* plies, at least as an elementary treatise lor the instruction of the young officers of the navv, the more acceptable snd encouraging for having been supplied by one, who was, at the time, of their number. Believe me, very truly, And respectfully yonr% ALEX. SL1BELL MACKEN BE, Commander, U. S. Mavy. Taftstrowff, 14th November, 1843. 1 should not hesitate to commend Maury's Navigation for the use of the midshipmen of our navy. . To those of them who lire advanced ii tie elements of the science, it sUppliea the prmdkal information nec->"-*"~~~ to nuke , them good navigators ; 1 others, who have commenced with 1 g OPINIONS OF NAVIGATORS AND PlOFJSMOfS. of the principles are both ample, eisy , and i the work myself, I know liii valoe, andt f well arranged. % therefore, hope it will become the aolho- The work, I know, originated In the rized book of study for the midshipmen of wants of the students of navigation on | our navy. boafd ships, and I confidently belie? e that It will supply those wants. L. M. POWELL, Commander, U. S. Navy. Sib: U. S. Nav? Yard, Goaf out, < 8th January, 1833. < THOS. A. DOANIN. Commander, U- S. Narfy. 1 am much pleased with your ''Treatise on Nat igation." The mathematical inves- ligations It affords of the principles of the science, particularly of nautical astronomy, place it upon different grounds from the treatises upon the subject in common uae, and adapt It much better to the purpose of Instruction. 1 ana desirous of introducing It, as far as may be practicable, among my own classes; and recommend it to afltiie younger officers in our na¥il service, who desire to become acquainted with the theory, as well as the practice of the mathematical part of their profession. Its designation as one of the books to be used In their exami- nation, would, I think, conduce to elevate Sib: the standard of mathematical attainments among them. With great retard, Your obedient servant. JOHH H. C. COFFIN. Prof, of Mathematics, U. S. Navy. Wasmhgtom, 20th Dec, 1842. Diaji Sim: 1 have been much Interested in a hasty examination of your work upon Naviga* tion, more partlculatly with that part or it, which relates to "Spherical Trigonometry," and " Nautical Astronomy," two branches of navigation that hate oeen too superfi- cially treated In the most popular works npon the subject, to answer the Increasing general Information of the practical alli- gators of the present day. During the last forty years, hut little im- provement of this kind has been Introduced into the standard works upon navigation, and as a general remark, It may be safely asserted that they are behind the wants of those who use them. Ever anilous for the general diffusion of such Important knowledge in our profes- sion, 1 trust you will be encouraged to Introduce the work into the navy as a Text' Booh 1 remain, respectfully, etc., JAMES GLYNN, Commander, U. S. Navy. Lt.M.F.MAOaT 9 U.S.N. U. S. Ship Dam, 23d Oat, 1843. 1 feel great pleasure In recommending Maury's Navigation as a work of real use- fulness ami Importance to the young omV cers of our navy. It Imbodles whatever can be of utility to the navigator, in a concise and perspicuous *-anner; and Its explanation* and references Mediated to excite, In youthful and in- ns mmd*, a desire for the higher atical attainments. Hating uaed Fjlag Ship FamfsftvaiiiA, > November 4th, 1843. | Mr Beam Sm: 1 have, with great pleasure and care, ett> mined your book on Navigation, and do de- cidedly recommend and prefer It to any other id use. The niathematlcal prinoipM condensed in such a form, ia a sufficient recommendation to eirery^ student of navi- gation, and 1 recommend It to all mathema- ticians and young officers belonginp; to, mml at schools attached to the mrt y , and should think that the Hon. Secretary of the Navy would so order It. I hate the pleasure to remain, with regard. Your obedient servant, E. F. KENNEDY, Lt M. P. Maobf, U. S. N. P. C, Norfolk. U. S. Ship Pbs»tlvavia 9 > Nov. 3d, 1643. | 1 have been much gratified In the pcmaail of your Treatise on Navigation; and tMnk it veil adapted for use as a school booh, ami one best calculated, of any that I have secn>- to Induce a lote for the prosecution of the stodj of navigation aa a science, sad not merely as an art. 1 "am, wry respectfully, Your obedient servant A. G. PENDLETON, Prof, of Mathematics. P. a Jtuvy. Lt. M. F. Maw»¥, U. S. M. U. S. Ship Ohio, Bosto*. > Not. Mth, 1843, } Sir: I have eiamlned, with a food deal of at- tention, your Treatise on Navigation, and find It embraces all the elements necessity to constitute a soientiSe navigator. II would, I believe, be found a valuable aux- iliary In our naval schools. * The work of Dr. Bowditeb, although emi- nently useful as a pmetiml one, faila almost entirely In the development of the nrlnei* pies from which its rules are derived. It seems, therefore, desirable, that some work explaining more fully the tAasrv of navigation should be put into the hands of our midshipmen, In order that they may become, as we all desire, aotnlpe aa well aa practical nat waters. Hoping that tie pleasure of famishing such a work for the younger officers of the serv ice may be yours, I remain, very respectfully, Your obedient servant, JOS. T. MOSTOH f Prof, of Mathematios. U. a Maw. Lt. M. F. Maw, U. 8. N. U. S. Ship Boaww, Bosvov, 1 Nor.l5ut,1813; j Bmm But: 1 am much plesfed to-ltwn, uutogfe. Hit OPINIONS OF KAflGATOES AND PROFESSORS. Army and Navy Chronicle, that i new edi- tion of your valuable Navigator Is soon to be published. 1 cannot doubt the success of a large se- cond edition, iind I am cooident that it will add to your reputation, and secure for your book the celebrity which it deserves. Itf merit is recognised in the navy, and 1 would recommend it in all schools of navi- gation, particularly on account of the man- ner in which many difficult and obscure pointp are made eaay and plain. Respectfully, etc.,_ 'ENBEIGMAST. Commander U. S. Navy. lit. M. F. Maurt, U.S. Navy. WiuciaoToa f Del. Nov. 5th, 1843. 1 eoniider Maury's Treatine on Na? iga- tion, the very work that hai long_ been wanting in our schools, and 1 hope it will eventually be uaed in all of them (particu- larly the naval onea) instead of Bow ditch's Practical Na¥igator ; for 1 think it far su- perior aa a book of instruction. 1. 8HUBR1CK, Commander, U. S. P. NoBFouf, Nov. 7th, 1843, i think Maury's Navigation is admirably adapted for the instruction of the young ©ffieers of the Navy. All the problems are dedneed f mm theorems, in such a manner aa to give the young seaman a correct idea of the theory aa well as the practice of navi- gation. The methods ate simple and accu- rate, and the tables wel and carefully con- structed. The work contains all that the atudent of navigation can require; and, were it made the authoriied text book of the Navy, the standard of mathematical attain- ■entsamong midshipmen, would be greatly etlerateal. R. B. CUNNINGHAM. Commander, Us 8. Navy. Nofimim 8th, 1843. 1 peasess a copy of Maury's Navigation, and consider it a valuable text-book for all nautical students, whether in the United Stales Naval Service, or in the commercial marine. The author, Lieutenant M. F. Maury, U. 8. Navy, is a man of science, and has pro- duced this work under the advantage of knowing from experience what the nantl •at student and practical navigator require. 8. P. LEE, U. U. S. Navy. Sim: U. 8. Natal Hospital, New York, Nov. 10th, 1843. Your volume seems to me well calcu- lated to achieve the object for which it seems designed: namely, to demonstrate the formulas of Nautical Astronomy, anil ex- plain the principles upon which the art of navigation is founded. A better hook for aehoola of navigation, than yonrs, i am ner- amidcd dnea not exist in onr faunam Bat after the expression of favourable opinions of it, by such men as Bowditch, Alexander Dallas Bache, P. J. Rodriguez, Edward C. Ward, and John H.C. Coffin, all eminently qualified to judge of such a work, few can doubt its worth or set any value upon the opinion of, Very respectfully, * Your obedient servant, - W. 8. W. 1USCBENBEBGER, Surgeon, U. 8. N. Lieut M. F. Maoey, U. S. Navy. Data Sn: U. S. Ship Cumberlahd, \ Boston, Nov. 14lh, 1843. J From the cursory examination 1 have given your treatise" on navigation, I, for one, am proud that so useful and valuable a work has been furnished by one of Onr own corps. With the improvements you propose to add in the new edition you are preparing, I doubt not it will possess advantages over other works of the kind, and be found a valuable auxiliary in our naval schools, very truly yours, JOSEPH SMITH, Captain U. S. Navy. Lieut M. F.JMauiiv, U. S. Navy. Washihgtoh Citt, Nov. 23d f 1843. Bkar Maumv, 1 take this occasion to express to yon the pleasure 1 feel, in noticing the announce- ment of a new edition of your treatise on navigation. Its subject matter being strict- ly professional, has called for the close scan of* many of your brother officers, myself of the numb'er. Ita worthiness to become the text book of onr young naval officers, may, with propriety, be judged of by those who are called on to exhibit a certificate of having been closely examined on, and found to possess a thorough knowledge of the sub- ject treated of in your book alluded to. Without an exception, all of our brother officers,and tfiey are many whom 1 hate heard descant freely on the merita of your work on navi|ration, pronounced it to be the best text booli on that subject extant. In a foil concurrence with that opinion, 1 am with much esteem, Respectfully yonrs truly, WM. W. BCJNTlp, Lieut 0. S. Navy. Lieut 11 F. Mauef, U. S. Navy. Dear Sn: U. S. Brio Pxmnv, | Norfolk, ¥a., Not. 24th, 1843. | i am pleased to leam yon are preparing an improved edition of your Navigation, more especially with the view of instruct- ing the midshipmen in the theory of naviga- tion. To carry the student beyond the mechanical solution of nautical problems, into a comprehension of those principles of Mathematics and Aftronomy, upon whr these problems are based, stems to fa been waning in moat treatises on Nav; tion. OPINIONS OF »A¥IGATOfM AID PIOFESSOIS. Even Dr. Bowdltch'a invaluable epitome, fhat has laid every American, who has to trice his way on the grreat deep, under a lasting debt of g ratttnoe, is wholly practi- cal ip Its method. But the value of a Claw Book proposing to teach the young officer the theory of one branch ctf his profession, -which Imbues his mild with lome tincture of science, and raises him above the blind worker of mechanical problems, need not be enlarged upon; though it cannot be bet- ter appreciated than by those in the profes- plon, who were deprived of the many ad- vantage* now offered to our midshipmen, find who were compelled to prepare for their examination with a Practical Naviga- tor for their sole instructor, aid a camp- ftool between two guna, for their study fooni. Uniformity in Instruction too is a matter pi great importance, and not doubting that the iuperior authority, who alone can prescribe the book to be taught, will fully appreciate the honorable contribution af- forded by four work, to the character anil benefit of the Navy, and that it will be made the standard at the examination of midship- pen, I remain, my dear sir, Very sincerely, &c. 8. P. DUPONT, Commander, U. S. N. feieiit M, F. Mauev, U. S. Nayy. On. AvQvwnnm. S. Floaida, > NoF.87tb t 184a5 My ©pinion can contribute nothing to Uhne pstablisfaed reputation of your valuable work. I ean only say, that when I firat looked through it, 1 considered it as thoroughly supplying the great desideratum of a mid- phi pman's study of navigation, apd remarked to those who were present, " How nnfortu- nate were we, in not having inch a book when we were etudenta or navigation." My opinion has been confirmed by that of jother and more competent judges, and 1 believe that throughout the entire sen ice, there haa not been a disparaging voice raised against it. 1 regard it as being to Jiowiitcn what Bowditch was to Hamilton Moor©. Hespeetfuly, &c. WE f . LYNCH, Lieut U. 8. Navy, punt M. F. if AUEY, Yale College, Conn. October 36th, 1843. This laluaMft wot k «P Mm f gallon, theo- retical and practical, it seems to me desira- ble to -have placed in the hinds of every naval officer, "who may have occaaiojj to navigate a ship or to explain the principles of Nautical Astronomy. These are well brought out, and illustrated with examples of their application, which render the trea- tise clear and intelligible, and adapt it well "~ *V purposes of a text book for learners, "'bis book as a ^ulde In the rational* ciples of navigation, and Bowditch ipanioii In the practical compote- tions, the young officer* of our Navy may be well prepared for the important and ^re- ■ponaible duties of nafigalom Having formerly used the work at sea, while en- gaged as an instructor in the naval service of the U. S., I cordially give it this recom- mendation. • /AMES HOOKEY, Jr. Tutor in Nat. Philosophy, I^te Prof, of Mali U. 8. N. 8prv»yi!!o 8c am. Gallativ. | Philadelphia, Dec. 13th, 1843. | Dear Sin: 1 have learnt with pleasure that a seooni edition of jour work on Navigation wil shortly be published. 1 have always considered this hook, from its general arrangement, and the kinds of solution employed, as decidedly the boot w« k for students extant Believe me, truly yours, (Signed) GEO. 8. BLAKE. Lt M. F. ftUuBT, 17. 8. N. Waibington. * Opinion of Cmpt. M'Ihtosh, U. 8. N. | Haw lonx, Oec. 12th, 1843. f It affords me great pleasure to state, that I consider your work on Navigation, aa one of the very best now extant, and most cheer- fully recommend it as most suable for • school book for midshipmen. Lieut Maury. Opinio* of Copt. Pbhciyai., U. S. N. 1 U. 8. Ship CoMSTiruTioir, { Goaport, Bee. 14th, 1843, . In compliance with your feqiieat, 1 ham perused Maury's "New Theoretical, and Practical Treatise on Navigation," and hawe found it, as far aa I am able to Judge, a eonffr* nient reference, in illustrating the princi- ples of Nautical Aatroiiomy. Its explana- tions of the principles of Spherical Trigo- nometry, and its application of them to the solutions of the various astronomical pro- blems, so essential in navigation, render it a book, in my opinion, not only useful aa a> supplement to our firat ( Bowditch *a) stan- dard work on the subject; but valuable in itself: an acquisition to the nautical stu- dent, who, if ho is desirois of acquiring a correct, and practical k now ledge of his pro- fesiioDj may be largely aided by the ntudj thereof! Lt M. F. Maoev, U. S. N. Qptaiom of Omwl Fommasr, U. 8. N . 1 . WasHiwovoa, Dec. 18th, 1843. J I take much pleasure In recommending your "New Theoretical and Practical Trea- tise on Navigation-* ' The explanations and illustrations are rendered clear and compre- hensive, and 1 believe it to be joat each • production as we require for the instruction of the young ©ficera of our Navy, as well aa others desirous of obtaining a well grounded and accurate knowledge of tin science. LtM.r.MaoRT.U.&N. OPINIONS OF MAViGATOlS AND FBOFE8SOB& fiphiivn qf A§ U»& Mkwal Lymmm, > Brooklyn, Mew York. § Brooklt», Dec. 90th, 1843. The undersigned, a committee to which wu referred Lieut. Maury's " Treatise on Navigation," report that they hi?© careful- ly examined the same, and aw of opinion that it is a work well adapted for the in- •friction of the young officers of the Navy, m mil the problems and formalB that mre neceiiary in their profession, ire there broug ht together in a oondenwd form f and ■o clearly, and concisely demonstrated, that the student may easily inform himself of the theory and principles on which his practice Is founded; and the accompanying tablea are no constructed aa to facilitate hit calculations; all of which are systematically wring ed, with a limplicity that has hereto- fore Been generally wanting in works on Navigation. They wonld therefore recom- mend the same to be adopted for the use of the Natal schools. Signed, J. H. STIIlfGHAM, WM.D. NEWMAN, ALEX. C. GIBSON. The following ©pinions have already ap- peared in print, but as they hire in all probability escaped the notice of many to whom these pages will be presented f they are again inserted here. « U. 8. M. &, Ate Work, Jmmmy 19, 1836. '•Bear Sir,— 1 have bad mncfi pleasure in the peraial of yonr " New Theoretical and Practical Treatise on Navigation;" the plan and arrangement* of which are origi- nal; itcontainalittleor nothing superfluous, and every part of it appears to be ai clear and intelligible as the nature of the subject will admit. Such a work has long been wanted in our Naval Schools, and on board opr vessels of war. I intend to make use of it in the Naval School on this station; and 1 recommend it to be med by all the profes- sors of Maiheipatica and Nautical Science, in the Nawy of the United States. «*Yoori Respectfully, "EDW. C. WA1D, M Proi:Math.U.aNa.vy." "Passed Midshipman M. F. Maury, « U.S. Navy." " K S. JVbvy fur J, Gosport, March 7, 1836. " 1 have examined a Treatise on Naviga- tion' written by M. F. Maury of the U. S. Navy; mnd have no hesitation in recom- mending it to the atodents of that science. The explanations are clear, the roles are illustrated by many examples, and the new arrangement of some of the tables simpli- fy the calculations of the navigator. Mr. Maury is deserving of great credit for the work, and 1 wish him every success. f . J. ROPlieUEZ.