Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

"जानने का अधिकार, जीने का अधिकार"
Mazdoor Kisan Shakti Sangathan
“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru
“Step Out From the Old to the New”

Indian Standard
PORTLAND-POZZOLANA CEMENT — SPECIFICATION
PART 2 CALCINED CLAY BASED
(Third Revision)

Second Reprint DECEMBER 2004

UDC 621.944.1.046

© BIS 1991

BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

May 1991

Price Group 4
AMENDMENT NO. 1 NOVEMBER 1991
TO
IS 1489 (Part 2) : 1991 PORTLAND - POZZOLANA
CEMENT — SPECIFICATION

PART 2 CALCINED CLAY BASED

(Third Revision)

(Page 5, clause B-1.2) — Substitute ‘up to 25 tonnes’ for ‘of 20 to 25 tonnes’.

(CED 2)
Substitute the following for the existing clauses:

\begin{enumerate}
\item \textbf{10.2.2} When cement is intended for export and if the purchaser so requires, packing of cement may be done in bags or in drums with an average net mass of cement per bag or drum as agreed to between the purchaser and the manufacturer.
\item \textbf{10.2.2.1} For this purpose the permission of the certifying authority shall be obtained in advance for each export order.
\item \textbf{10.2.2.2} The words \textbf{‘FOR EXPORT’} and the average net mass of cement per bag/drum shall be clearly marked in indelible ink on each bag/drum.
\item \textbf{10.2.2.3} The packing material shall be as agreed to between the manufacturer and the purchaser.
\item \textbf{10.2.2.4} The tolerance requirements for the mass of cement packed in bags/drum shall be as given in 10.2.1.1 except the average net mass which shall be equal to or more than the quantity in 10.2.2
\end{enumerate}
AMENDMENT NO. 3 MAY 2000
TO
IS 1489 (Part 2) : 1991 PORTLAND-POZZOLANA CEMENT — SPECIFICATION
PART 2 CALCINED CLAY BASED
(Third Revision)

Substitute 'net mass' for 'nominal average net mass' and 'average net mass' wherever these appear in the standard.

(CED 2)

Printed at Simco Printing Press, Delhi
AMENDMENT NO. 4 JUNE 2009
TO
IS 1489 (PART 2) : 1991 PORTLAND-POZZOLANA CEMENT —
SPECIFICATION

(Third Revision)

(Page 3, clause 10.2.1) — Substitute the following for the existing:

‘The net mass of cement per bag may also be 25 kg, 10 kg, 5 kg, 2 kg or 1 kg subject to tolerances as given in 10.2.1.1 and packed in suitable bags as agreed to between the purchaser and the manufacturer.’

(Page 3, clause 10.2.1.1, last sentence) — Substitute the following for the existing:

‘However, the average of net mass of cement in a sample shall be equal to or more than 25 kg, 10 kg, 5 kg, 2 kg or 1 kg, as the case may be.’
FOREWORD

This Indian Standard (Part 2) (Third Revision) was adopted by the Bureau of Indian Standards after the draft finalized by the Cement and Concrete Sectional Committee had been approved by the Civil Engineering Division Council.

Portland-pozzolana cement can be produced either by grinding together Portland cement clinker and pozzolana with addition of gypsum or calcium sulphate, or by intimately and uniformly blending Portland cement and fine pozzolana. While grinding of the two materials together presents no difficulty, the mixing of dry powders uniformly is extremely difficult. The blending method should, therefore, be resorted to only when the grinding method is impossible or proves uneconomical in a particular case. Where blending method is adopted, every care should be taken to see that the blending is as intimate as possible. Generally, if the blending is not uniform, it is reflected in the performance tests. The Sectional Committee responsible for the preparation of this specification is of the opinion that the blending method should be confined to factories and such other works where intimate and uniform blending is feasible with the employment of requisite machinery so as to ensure uniformity of production and guaranteed performance.

Portland-pozzolana cement produces less heat of hydration and offers greater resistance to the attack of aggressive waters than normal Portland cement. Moreover, it reduces the leaching of calcium hydroxide liberated during the setting and hydration of cement. It is particularly useful in marine and hydraulic construction and other mass concrete structures. Portland-pozzolana cement can generally be used wherever 33 grade ordinary Portland cement is usable under normal conditions. However, it should be appreciated that all pozzolanas need not necessarily contribute to strength at early ages. In view of this fact, this present specification has been prepared to enable manufacturers to produce Portland-pozzolana cement equivalent to 33 grade ordinary Portland cement on the basis of 3, 7 and 28-days compressive strength.

For construction of structures using rapid construction methods like slipform construction, Portland-pozzolana cement shall be used with caution since 4 to 6 h strength of concrete is significant in such construction.

This standard was first published in 1962 and subsequently revised in 1967 and 1976. In this revision the standard has been split into two parts based on the pozzolana used in the manufacture of such cements in view of the special needs of some hydraulic structures which require pozzolana cement manufactured only with fly ash pozzolana and for easy identification of pozzolana used in the manufacture of Portland-pozzolana cement in the interest of consumers. Part 1 of this standard covers pozzolana cement manufactured by using only fly ash pozzolana and Part 2 covers pozzolana cement manufactured by using either calcined clay or a mixture of calcined clay and fly ash as pozzolana. In this revision both chemical and physical requirements have been kept the same as was given in 1976 version of this standard as amended from time to time. Various requirements of Portland-pozzolana cement given in 1976 version of this standard had been modified from time to time by issuing amendments based on the experience gained with the use of the standard and the requirements of the users and also keeping in view the raw materials and fuel available in the country for manufacture of cement.

The important amendments include lowering the value of compressive strength in lime reactivity test from 5 MPa to 4 MPa, incorporating a value of 3 day compressive strength as 16 MPa, modifying the requirement of sulphuric anhydride (SO₃) and insoluble residue, deleting the requirement of pozzolanicity test, increasing the value of 28 days compressive strength from 31 MPa to 33 MPa, making autoclave soundness test compulsory irrespective of the magnesia content in cement, incorporating a provision for retest in respect of autoclave soundness test after aeration of the cement, incorporating a clause on false set of cement and permitting packaging of cement in 25 kg bags. All these amendments have been taken care of in this revision.

Mass of cement packed in bags and the tolerance requirements for the mass of cement packed in bags shall be in accordance with the relevant provisions of the Standard of Weights and Measures (Packaged Commodities) Rules, 1977 and B-1.2 (see Annex B). Any modification in these rules in respect of tolerance on mass of cement would apply automatically to this standard.

(Continued on third cover)
Indian Standard

PORTLAND-POZZOLANA CEMENT —
SPECIFICATION

PART 2 CALCINED CLAY BASED

(Third Revision)

1 SCOPE

This standard (Part 2) (Third Revision) covers the manufacture, physical and chemical requirements of Portland-pozzolana cement manufactured by using calcined clay pozzolana or a mixture of calcined clay and fly ash pozzolana.

2 REFERENCES

The Indian Standards listed in Annex A are necessary adjuncts to this standard.

3 TERMINOLOGY

3.0 For the purpose of this standard, the definitions given in IS 4845 : 1968 and the following shall apply.

3.1 Pozzolana

An essentially silicious material which while in itself possessing little or no cementitious properties will, in finely divided form and in the presence of water, react with calcium hydroxide at ambient temperature to form compounds possessing cementitious properties. The term includes natural volcanic material having pozzolanic properties as also other natural and artificial materials, such as diatomaceous earth, calcined clay and fly ash.

3.2 Portland Clinker

Clinker, consisting mostly of calcium silicates, obtained by heating to incipient fusion, a predetermined and homogeneous mixture of materials principally containing lime (CaO) and silica (SiO₂) with a smaller proportion of alumina (Al₂O₃) and iron oxide (Fe₂O₃).

3.3 Portland-Pozzolana Cement

An intimately interground mixture of Portland clinker and pozzolana with the possible addition of gypsum (natural or chemical) or an intimate and uniform blending of Portland cement and fine pozzolana.

4 RAW MATERIAL

4.1 Pozzolana

4.1.1 Pozzolana used in the manufacture of calcined clay based Portland-pozzolana cement shall be either calcined clay pozzolana conforming to IS 1344 : 1981 or a mixture of calcined clay pozzolana conforming to IS 1344 : 1981 and fly ash conforming to IS 3812 : 1981 subject to the requirements of 4.1.2 and 4.1.3.

4.1.2 Fineness and average compressive strength in lime reactivity of pozzolana that is to be blended with finished Portland cement to produce Portland-pozzolana cement, when tested in accordance with the procedure specified in IS 1727 : 1967, shall not be less than 320 µm/kg and 4.0 MPa respectively. Average compressive strength in lime reactivity test of such pozzolana shall be carried out at the fineness at which pozzolana has been ground for blending.

4.1.3 Average compressive strength in lime reactivity of pozzolana that is to be interground with Portland cement clinker for manufacture of Portland-pozzolana cement shall not be less than 4.0 MPa when tested at the fineness of Portland-pozzolana cement manufactured out of it or at the fineness in ‘as received’ condition, whichever is greater, in accordance with procedure specified in IS 1727 : 1967.

4.1.4 The purchaser shall have the right, if he so desires to obtain samples of pozzolana used in the manufacture of Portland-pozzolana cement for purposes of checking its conformity to the requirements specified in 4.1.1 to 4.1.3.

4.2 Portland Cement Clinker

The Portland cement clinker used in the manufacture of Portland-pozzolana cement shall comply in all respects with the chemical requirements of IS 269 : 1989 and the purchaser shall have the right, if he so desires, to obtain samples of the clinker used in the manufacture for purposes of checking its conformity to IS 269 : 1989.

4.3 Portland Cement

Portland cement for blending with pozzolana shall conform to IS 269 : 1989.

4.4 Other Admixtures

When Portland-pozzolana cement is obtained by grinding pozzolana with Portland cement clinker, no material other than gypsum...
IS 1489 (Part 1) : 1991

(natural or chemical) or water or both, shall be added. Such air-entraining agents or surfactants which have been proved not harmful, may be added in quantities not exceeding one percent.

5 MANUFACTURE

Portland-pozzolana cement shall be manufactured either by intimately intergrinding Portland cement clinker and pozzolana or by intimately and uniformly blending Portland cement and fine pozzolana. For blending of Portland cement and pozzolana, the method and equipment used shall be the one well accepted for achieving a complete uniform and intimate blending. The blending operation shall be a properly designed and well defined unit operation in approved blenders. Gypsum (natural or chemical) may be added if the Portland-pozzolana cement is made by intergrinding Portland cement clinker with pozzolana. The pozzolana constituent shall not be less than 10 percent and not more than 25 percent by mass of Portland-pozzolana cement. The homogeneity of the mixture shall be guaranteed within ±3 percent in the same consignment.

6 CHEMICAL REQUIREMENTS

Portland-pozzolana cement shall comply with the chemical requirements given in Table 1.

7 PHYSICAL REQUIREMENTS

7.1 Fineness

When tested by the air permeability method described in IS 4031 (Part 2) : 1988, the specific surface of Portland-pozzolana cement shall not less than 300 m²/kg.

7.2 Soundness

7.2.1 When tested by ‘Le Chatelier’ method and autoclave test described in IS 4031 (Part 3) : 1988, unaerated Portland-pozzolana cement shall not have an expansion of more than 10 mm and 0.8 percent respectively.

7.2.1.1 In the event of cement failing to comply with any or both the requirements specified in 7.2.1, further tests in respect of each failure shall be made as described in IS 4031 (Part 3) : 1988 from another portion of the same sample after aeration. The aeration shall be done by spreading out the sample to a depth of 75 mm at a relative humidity of 50 to 80 percent for a total period of 7 days. The expansion of cement so aerated shall be not more than 5 mm and 0.6 percent when tested by ‘Le-Chatelier’ method and autoclave test respectively as described in IS 4031 (Part 3) : 1988.

7.3 Setting Time

The setting time of Portland-pozzolana cement when tested by the Vicat apparatus method described in IS 4031 (Part 5) : 1988 shall be as follows:

Initial setting time 30 min, Min
Final setting time 600 min, Max

7.3.1 If cement exhibits false set, the ratio of final penetration measured after 5 min of completion of mixing period to the initial penetration measured exactly after 20 s of completion of mixing period, expressed as percent, shall be not less than 50 when tested by the method described in IS 4031 (Part 14) : 1989. In the event of cement exhibiting false set, the initial and final setting time of cement, when tested by the method described in IS 4031 (Part 5) : 1988 after breaking the false set, shall conform to 7.3.

Table 1 Chemical Requirements of Portland-Pozzolana Cement

(Clause 6)

<table>
<thead>
<tr>
<th>Sl No.</th>
<th>Characteristic</th>
<th>Requirement</th>
<th>Method of Test, Ref to IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>i)</td>
<td>Loss on ignition, percent by mass, Max</td>
<td>5.0</td>
<td>4032 : 1985</td>
</tr>
<tr>
<td>ii)</td>
<td>Magnesia (MgO), percent by mass, Max</td>
<td>6.0</td>
<td>4032 : 1985</td>
</tr>
<tr>
<td>iii)</td>
<td>Sulphuric anhydride (SO₃), percent by mass, Max</td>
<td>3.0</td>
<td>4032 : 1985</td>
</tr>
<tr>
<td>iv)</td>
<td>Insoluble material, percent by mass, Max</td>
<td>(x + \frac{4.0 \times (100 - x)}{100})</td>
<td>4032 : 1985</td>
</tr>
</tbody>
</table>

where \(x \) is the declared percentage of pozzolana in the given Portland-pozzolana cement.
7.4 Compressive Strength

7.4.1 The average compressive strength of not less than three mortar cubes (area of face 50 cm²) composed of one part of cement, three parts of standard sand (see Note 2) by mass, and $P/4 + 3.0$ percent (of combined mass of cement and sand) water, and prepared, stored and tested in the manner described in IS 4031 (Part 6): 1988 shall be as follows:

a) At 72 ± 1 h 16 MPa, \textit{Min}

b) At 168 ± 2 h 22 MPa, \textit{Min}

c) At 672 ± 4 h 33 MPa, \textit{Min}

NOTES
1. \textit{P} is the percentage of water required to produce a paste of standard consistency (see 12.3).

7.4.2 Notwithstanding the cubes satisfying the strength requirements specified in 7.4.1, they shall show a progressive increase in strength from the strength at 72 h.

7.5 Drying Shrinkage

The average drying shrinkage of mortar bars prepared and tested in accordance with IS 4031 (Part 10): 1988 shall not be more than 0.15 percent.

8 STORAGE

The Portland-pozzolana cement shall be stored in such a manner as to permit easy access for proper inspection and identification, and in a suitable waterproof building to protect the cement from dampness and to minimize warehouse deterioration.

9 MANUFACTURER'S CERTIFICATE

9.1 The manufacturer shall satisfy himself that the cement conforms to the requirements of this standard. The manufacturer shall also furnish within ten days of despatch of cement, a certificate indicating the percentage of pozzolana. The manufacturer shall also state in the certificate that the amount of pozzolana in the finished cement will not vary more than ± 3 percent from the declared value.

9.1.1 The certificate furnished shall also indicate the total chloride content in percent by mass of cement.

NOTES
1. Total chloride content in cement shall not exceed 0.05 percent by mass for cement used in long span reinforced concrete structures. (Method of test for determination of chloride content in cement is given in IS 12423: 1988.)

2. The limit of total chloride content in cement for use in plain and other reinforced concrete structures is being reviewed. Till that time, the limit may be mutually agreed to between the purchaser and the manufacturer.

10 DELIVERY

10.1 The cement shall be packed in bags [jute sacking bag conforming to IS 2580: 1982, double hessian bituminized (CRI type), multiwall paper conforming to IS 11761: 1986, polyethylene lined (CRI type) jute, light-weight jute conforming to IS 12154: 1987, woven HDPE conforming to IS 11652: 1986, woven polypropylene conforming to IS 11653: 1986, jute synthetic union conforming to IS 12174: 1987 or any other approved composite bags] bearing the manufacturer's name or his registered trade-mark, if any. The words 'Portland-pozzolana cement - calcined clay based' or a bright colour band to distinguish Portland calcined clay based pozzolana cements from other cements and the number of bags (net mass) to the tonne or the nominal average net mass (see 10.2) of the cement shall be legibly and indelibly marked on each bag. Bags shall be in good condition at the time of inspection.

10.1.1 Similar information shall be provided in the delivery advices accompanying the shipment of packed or bulk cement (see 10.3).

10.2 The average net mass of cement per bag shall be 50 kg (see Annex B).

10.2.1 The average net mass of cement per bag may also be 25 kg subject to tolerances as given in 10.2.1.1 and packed in suitable bags as agreed to between the purchaser and the manufacturer.

10.2.1.1 The number of bags in a sample taken for weight determination showing a minus error greater than 2 percent of the specified net mass shall be not more than 5 percent of the bags in the sample. Also the minus error in none of such bags in the sample shall exceed 4 percent of the specified net mass of cement in the bag. However, the average net mass of cement in a sample shall be equal to or more than 25 kg.

10.2.2 When cement is intended for export and if the purchaser so requires, packing of cement may be done in bags with an average net mass per bag as agreed to between the purchaser and the manufacturer.

10.2.2.1 For this purpose the permission of the certifying authority shall be obtained in advance for each export order.

10.2.2.2 The words 'FOR EXPORT' and the average net mass of cement per bag shall be clearly marked in indelible ink on each bag.

10.2.3 The packing material shall be as agreed to between the supplier and the purchaser.

10.2.4 The tolerance requirements for the mass of cement packed in bags shall be as given in 10.2.1.1 except the average net mass which
shall be equal to or more than the quantity in 10.2.2.

10.3 Supplies of cement in bulk may be made by arrangement between the purchaser and the supplier (manufacturer or stockist).

NOTE—A single bag or container containing 1 000 kg or more net mass of cement shall be considered as bulk supply of cement. Supplies of cement may also be made in intermediate containers, for example, drums of 200 kg, by agreement between the purchaser and the manufacturer.

11 SAMPLING

11.1 Samples for Testing and by Whom to be Taken

A sample or samples for testing may be taken by the purchaser or his representative, or by any person appointed to superintend the works for the purpose of which the cement is required, or by the latter's representative.

11.1.1 The samples shall be taken within three weeks of the delivery and all the tests shall be commenced within one week of sampling.

11.1.2 When it is not possible to test the samples within one week, the samples shall be packed and stored in air-tight containers till such time they are tested.

11.2 In addition to the requirements of 11.1, the methods and procedure of sampling shall be in accordance with IS 3535:1986.

11.3 Facilities for Sampling and Identifying

The manufacturer or supplier shall afford every facility, including labour and materials for taking and packing the samples for testing the cement and for subsequent identification of the cement sampled.

12 TESTS

12.1 The sample or samples of pozzolana cement drawn as described in 11 shall be tested as per methods referred to in relevant clauses.

12.2 The temperature for carrying out physical tests shall, as far as possible, be 27 ± 2°C. However, the actual temperature during the testing shall be recorded.

12.3 Consistency of Standard Cement Paste

The quantity of water required to produce a paste of standard consistency to be used for determination of the water content of mortar for the compressive strength test and for the determination of soundness and setting time, shall be obtained by the method described in IS 4031 (Part 4):1988.

12.4 Independent Testing

12.4.1 If the purchaser or his representative requires independent tests, the samples shall be taken before or immediately after delivery at the option of the purchaser or his representative, and the tests shall be carried out in accordance with this standard on the written instructions of the purchaser or his representative.

12.4.2 Cost of Testing

The manufacturer shall supply, free of charge, the cement required for testing. Unless otherwise specified in the enquiry and order, the cost of the tests shall be borne as follows:

a) By the manufacturer if the results show that the cement does not comply with this standard, and

b) By the purchaser if the results show that the cement complies with this standard.

13 REJECTION

13.1 Cement may be rejected if it does not comply with any of the requirements of this specification.

13.2 Cement remaining in bulk storage at the mill, prior to shipment, for more than six months, or cement in bags in local storage in the hands of a vendor for more than 3 months after completion of tests, may be retested before use and may be rejected if it fails to conform to any of the requirements in this specification.
ANNEX A
(Clause 2)
LIST OF REFERRED INDIAN STANDARDS

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>269 : 1989</td>
<td>Specification for 33 grade ordinary Portland cement (fourth revision)</td>
</tr>
<tr>
<td>650 : 1991</td>
<td>Specification for standard sand for testing of cement (second revision)</td>
</tr>
<tr>
<td>1344 : 1981</td>
<td>Specification for calcined clay pozzolana (second revision)</td>
</tr>
<tr>
<td>1727 : 1967</td>
<td>Methods of test for pozzolanic materials (first revision)</td>
</tr>
<tr>
<td>2580 : 1982</td>
<td>Specification for jute sacking bags for packing cement (second revision)</td>
</tr>
<tr>
<td>3535 : 1986</td>
<td>Methods of sampling hydraulic cements (first revision)</td>
</tr>
<tr>
<td>3812 : 1981</td>
<td>Specification for fly ash for use as pozzolana and admixture (first revision)</td>
</tr>
<tr>
<td>4031 (Parts 1 to 14)</td>
<td>Methods of physical tests for hydraulic cement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IS No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4032 : 1985</td>
<td>Method of chemical analysis of hydraulic cement (first revision)</td>
</tr>
<tr>
<td>4845 : 1968</td>
<td>Definitions and terminology relating to hydraulic cement</td>
</tr>
<tr>
<td>4905 : 1968</td>
<td>Methods for random sampling</td>
</tr>
<tr>
<td>11652 : 1986</td>
<td>Specification for high density polyethylene (HDPE) woven sacks for packing cement</td>
</tr>
<tr>
<td>11653 : 1986</td>
<td>Specification for polypropylene (PP) woven sacks for packing cement</td>
</tr>
<tr>
<td>11761 : 1986</td>
<td>Specification for multi-wall paper sacks for cement valved-sewn gusseted</td>
</tr>
<tr>
<td>12154 : 1987</td>
<td>Specification for light weight jute bags for packing cement</td>
</tr>
<tr>
<td>12174 : 1987</td>
<td>Specification for jute synthetic union bag for packing cement</td>
</tr>
<tr>
<td>12423 : 1988</td>
<td>Method for colorimetric analysis of hydraulic cement</td>
</tr>
</tbody>
</table>

ANNEX B
(Clause 10.2)
TOLERANCE REQUIREMENTS FOR THE MASS OF CEMENT PACKED IN BAGS

B-1. The average net mass of cement packed in bags at the plant in a sample shall be equal to or more than 50 kg. The number of bags in a sample shall be as given below:

<table>
<thead>
<tr>
<th>Batch Size</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 to 150</td>
<td>20</td>
</tr>
<tr>
<td>151 to 280</td>
<td>32</td>
</tr>
<tr>
<td>281 to 500</td>
<td>50</td>
</tr>
<tr>
<td>501 to 1200</td>
<td>80</td>
</tr>
<tr>
<td>1201 to 3200</td>
<td>125</td>
</tr>
<tr>
<td>3201 and above</td>
<td>200</td>
</tr>
</tbody>
</table>

The bags in a sample shall be selected at random (see IS 4905 : 1968).

B-1.1 The number of bags in a sample showing a minus error greater than 2 percent of the specified net mass (50 kg) shall be not more than 5 percent of the bags in the sample and the minus error in none of such bags in the sample shall exceed 4 percent of the specified net mass of cement in the bag.

NOTE — The matter given in B-1 and B-1.1 is extracts based on the Standards of Weights and Measures (Packaged Commodities) Rules, 1977 to which reference shall be made for full details. Any modification made in these Rules and other related Acts and Rules would apply automatically.

B-1.2 In case of a wagon/truck load of 20 to 25 tonnes, the overall tolerance on net mass of cement shall be 0 to +0.5 percent.

NOTE — The mass of jute sacking bag conforming to IS 2580 : 1982 to hold 50 kg of cement is 531 g, the mass of a double hessian bituminized (CRI type) bag to hold 50 kg of cement is 630 g, the mass of a 6-ply paper bag to hold 50 kg of cement is approximately 400 g and the mass of a polyethylene lined (CRI type) jute bag to hold 50 kg of cement is approximately 480 g.
ANNEX C
(Foreword)

COMPOSITION OF THE TECHNICAL COMMITTEE

Cement and Concrete Sectional Committee, GED 2

Chairman
Dr H. C. Visv Mudra

Representing
In personal capacity (University of Roorkee, Roorkee 247 667)

Members

Shri H. Bhattacharyya
Dr A. K. Chatterjee
Shri S. H. Subramanian (Alternate)

Chief Engineer (Designs)
Superintending Engineer
(B & S) (Alternate)

Chief Engineer, Nagpur DM
Superintending Engineer, QCC (Alternate)

Chief Engineer (Research-cum-Director)
Research Office (Concrete-Techonology) (Alternate)

Director
Joint Director (Alternate)
Director (C & MDD) (N & W)
Deputy Director (C & MDD) (N W & S)
(Alternate)

Shri K. R. Ganguwal
Shri V. P. Pattram
d Shri V. K. Ghanekar
Shri S. Gopinath
Shri R. Tamlakar (Alternate)
Shri S. K. Gour Thakurta
Shri S. P. Samaranarayanan (Alternate)

Dr Ibrad Masood
Dr Md Khairuddin (Alternate)
Joint Director, Standards (B & S) (CE-I)

Joint Director Standards (B & S)
(CB-II) (Alternate)

Shri N. G. Joshi
Shri P. D. Kekre (Alternate)
Shri D. K. Kambhgo
Shri B. R. Mehta (Alternate)

Shri P. Krishnamurthy
Shri S. Chakravarthy (Alternate)
Shri G. K. Majumdar
Shri S. O. Rangari (Alternate)

Shri P. N. Mehta
Shri J. S. Sangamner (Alternate)

Member Secretary
Director-Civil (Alternate)

Shri M. K. Mukherjee

Shri M. K. Ghosh (Alternate)
Dr A. K. Mollick
Dr S. C. Abulwalia (Alternate)

Shri Nirmal Singh

Shri S. S. Miglani (Alternate)
Shri R. C. Parate
Lt-Col R. K. Singh (Alternate)

Shri H. S. Fabhica
Shri Y. R. Phule
Shri S. S. Serena (Alternate)

Shri Y. R. Phull
Shri K. B. Thandayya (Alternate)

Dr M. Ramadhan
Dr K. G. Madhava Rao (Alternate)

Shri G. Ramdas

Central Building Research Institute (CSIR), Roorkee

Dr R. K. Singshi

Indian Hume Pipes Co Ltd, Bombay

National Test House, Calcutta

Larsen and Toubro Limited, Bombay

Hospital Services Consultancy Corporation (India) Ltd, New Delhi

Geological Survey of India, Calcutta

Central Board of Irrigation and Power, New Delhi

Roads Wing, Department of Surface Transport (Ministry of Transport), New Delhi

National Council for Cement and Building Materials, New Delhi

Development Commissioner for Cement Industry (Ministry of Industry)

Engineer-in-Chief’s Branch, Army Headquarters

Hindustan Prefab Ltd, New Delhi

Central Road Research Institute (CSIR), New Delhi

Indian Roads Congress, New Delhi

Structural Engineering Research Centre (CSIR), Madras

Directorate General of Supplies and Disposals, New Delhi
Members

Representative
Shri A. U. Rijnighani
Shri C. S. Sharma (Alternate)
Shri J. Shen Gupta
Shri A. K. Lal (Alternate)
Shri T. N. Subba Rao
Shri S. A. Reddi (Alternate)
Superintendent Engineer (Designs)
Executive Engineer, S. M. R. Division (Alternate)
Shri S. B. Suri
Shri N. Chandrasekaran (Alternate)
Dr. H. C. Vishvesvaraya
Shri D. C. Chatturvedi (Alternate)
Shri G. Raman,
Director (Civ Engg)

Representing
Builders Association of India, Bombay
Cement Corporation of India Limited, New Delhi
National Buildings Organization, New Delhi
Gannon India Limited, Bombay
Public Works Department, Government of Tamil Nadu
Central Soil and Materials Research Station, New Delhi
The Institution of Engineers (India), Calcutta
Director General, BIS (Ex-officio Member)

Secretary
Shri N. C. Bandyopadhyay
Joint Director (Civ Engg), BIS

Cement, Pozzolana and Cement Additives Subcommittee, CED 2 : 1

Convenor
Dr. H. C. Vishvesvaraya

Members
Shri S. K. Banerjee
Shri Nirmal Banerjee
Shri N. G. Barak
Shri T. Madheshwar (Alternate)
Chief Engineer (Research-cum-Director)
Research Officer (CT) (Alternate)
Shri N. B. Desai
Shri J. K. Patel (Alternate)
Director
Research Officer (Alternate)
Director (C & MDD II)
Deputy Director (C & MDD II) (Alternate)
Shri R. K. Gattani
Shri R. K. Vairnavi (Alternate)
Shri P. J. Jagun
Dr. A. K. Chatterjee (Alternate)
Joint Director (Materials)
Assistant Director (Plastic) (Alternate)
Joint Director, Standards B & S (CB-I)

Joint Director, Standards (B & S) (CB-II) (Alternate)
Shri W. N. Kanode
Shri R. Kunithapattam
Shri G. K. Majumdar
Dr. Ishrad Manood
Shri K. P. Mohinder
Shri M. K. Mukherjee
Shri M. K. Ghosh (Alternate)
Dr. A. K. Mellick
Dr. Shankar Pratap Singh
Shri D. F. Kewalramani (Alternate)
Shri Nirmal Singh
Shri S. S. Miolan (Alternate)
Shri Y. R. Pratap Singh
Shri S. S. Sheena (Alternate)
Shri A. V. Ramana
Dr. K. C. Naran (Alternate)
Col. V. K. Rao

In personal capacity
University of Roorkee, Roorkee 247 667

National Test House, Calcutta
Cement Manufacturers Association, Bombay
Directorate General of Technical Development, New Delhi
Irrigation Department, Government of Punjab
Gujarat Engineering Research Institute, Vadodara
Maharashtra Engineering Research Institute, Nasik
Central Water Commission, New Delhi
Shree Dvigvijay Cement Co Ltd, Bombay
The Associated Cement Companies Ltd, Bombay
National Buildings Organization, New Delhi
Research, Designs and Standards Organization (Ministry of Railways), Lucknow

The Hindustan Construction Co Ltd, Bombay
Chettinad Cement Corporation Ltd, Poliyur, Tamil Nadu
Hospital Services Consultancy Corporation (India) Ltd, New Delhi
Central Building Research Institute (CSIR), Roorkee
Central Warehousing Corporation, New Delhi
Roads Wing, Department of Surface Transport (Ministry of Transport), New Delhi

National Council for Cement and Building Materials, New Delhi
Central Electricity Authority, New Delhi
Development Commissioner for Cement Industry (Ministry of Industry)
Central Road Research Institute (CSIR), New Delhi
Dalmia Cement (Bharat) Ltd, New Delhi
Engineer-in-Chief's Branch, Army Headquarters

(Continued from page 6)

(Continued on page 8)
Members

SHRI N. S. GALANDE (Alternate)
SHRI S. A. REDDI
SHRI A. U. RISHISINGHANI
SHRI M. P. SINGH
SUPERINTENDING ENGINEER (D)
SENIOR DEPUTY CHIEF ENGINEER
(GENERAL) (Alternate)
SHRI S. B. SURI
SHRI N. CHANDRASEKARAN (Alternate)
SHRI L. SWAROOP
SHRI H. BHATTACHARYA (Alternate)
SHRI V. M. VED

Representing

Gammon India Limited, Bombay
Cement Corporation of India Limited, New Delhi
Federation of Mini Cement Plants, New Delhi
Public Works Department, Government of Tamil Nadu
Central Soil and Materials Research Station, New Delhi
Orissa Cement Limited, New Delhi
Bhilai Steel Plant, Bilhais
This standard contains clauses 4.1.4, 4.2 and 12.4.1 which permit the purchaser to use his option and clauses 10.2.1 and 10.3 call for agreement between the purchaser and the manufacturer.

The composition of the technical committee responsible for the formulation of this standard is given in Annex C.

For the purpose of deciding whether a particular requirement of this standard is complied with, the final value, observed or calculated, expressing the result of a test, shall be rounded off in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'. The number of significant places retained in the rounded off value should be the same as that of the specified value in this standard.
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of ‘BIS Catalogue’ and ‘Standards: Monthly Additions’.

This Indian Standard has been developed from Doc: No. CED 02 (4676).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:

Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002
Telephones: 2323 0131, 2323 3375, 2323 9402 website: www.bis.org.in

Regional Offices:

Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
 NEW DELHI 110002 2323 7617
 2323 3841

Eastern : 1/14 C.I.T. Scheme VII M, V.I.P. Road, Kankurgachi
 KOLKATA 700054 2337 8499, 2337 8561
 2337 8626, 2337 9120

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160022
 260 3843
 260 9285

Southern : C.I.T. Campus, IV Cross Road, CHENNAI 600113
 2254 1216, 2254 1442
 2254 2519, 2254 2315

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
 MUMBAI 400093 2832 9295, 2832 7858
 2832 7891, 2832 7892

Branches : AHMEDABAD. BANGALORE. BHOPAL. BHUBANESHWAR. COIMBATORE. FARIDABAD.
 GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR.
 NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM. VISAKHAPATNAM.

Printed at Simco Printing Press, Delhi